1
|
Simbilyabo LZ, Yang L, Wen J, Liu Z. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target. CNS Neurosci Ther 2024; 30:e14839. [PMID: 39021040 PMCID: PMC11255034 DOI: 10.1111/cns.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.
Collapse
Affiliation(s)
- Lucette Z. Simbilyabo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
3
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
4
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
5
|
Satou A, Takahara T, Nakamura S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14112647. [PMID: 35681627 PMCID: PMC9179292 DOI: 10.3390/cancers14112647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hodgkin lymphomas (HLs) include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular findings in HLs have contributed to dramatic changes in the treatment and identification of tumor characteristics. For example, PD-1/PD-L1 blockade and brentuximab vedotin, an anti-CD30 antibody bearing a cytotoxic compound, are now widely used in patients with CHL. Biological continuity between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma has been highlighted. An era of novel therapeutics for HL has begun. The aim of this paper is to review the morphologic, immunophenotypic, and molecular features of CHL and NLPHL, which must be understood for the development of novel therapeutics. Abstract Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases.
Collapse
Affiliation(s)
- Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-61-3811
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan;
| |
Collapse
|
6
|
Yu M, Lun J, Zhang H, Wang L, Zhang G, Zhang H, Fang J. Targeting UPR branches, a potential strategy for enhancing efficacy of cancer chemotherapy. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1417-1427. [PMID: 34664059 DOI: 10.1093/abbs/gmab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells are often exposed to cell intrinsic stresses and environmental perturbations that may lead to accumulation of unfolded and/or misfolded proteins in the lumen of endoplasmic reticulum (ER), a cellular condition known as ER stress. In response to ER stress, the cells elicit an adaptive process called unfolded protein response (UPR) to cope with the stress, supporting cellular homeostasis and survival. The ER stress sensors inositol requiring protein 1α (IRE1α), eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, also called PERK), and activating transcription factor 6 (ATF6) constitute the three branches of UPR to resolve ER stress. IRE1α, PERK, and ATF6 play an important role in tumor cell growth and survival. They are also involved in chemotherapy resistance of cancers. These have generated widespread interest in targeting these UPR branches for cancer treatment. In this review, we provide an overview of the role of IRE1α, PERK, and ATF6 in cancer progression and drug resistance and we summarize the research advances in targeting these UPR branches to enhance the efficacy of chemotherapy of cancers.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Hongwei Zhang
- Oncology Department, Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250014, China
| | - Lei Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Haisheng Zhang
- Center for Cancer Targeted Therapies, Signet Therapeutics Inc., Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| |
Collapse
|
7
|
Lin HC, Chang Y, Chen RY, Hung LY, Chen PCH, Chen YP, Medeiros LJ, Chiang PM, Chang KC. Epstein-Barr virus latent membrane protein-1 upregulates autophagy and promotes viability in Hodgkin lymphoma: Implications for targeted therapy. Cancer Sci 2021; 112:1589-1602. [PMID: 33525055 PMCID: PMC8019199 DOI: 10.1111/cas.14833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Hodgkin lymphoma (HL) is composed of neoplastic Hodgkin and Reed‐Sternberg cells in an inflammatory background. The neoplastic cells are derived from germinal center B cells that, in most cases, are infected by Epstein‐Barr virus (EBV), which may play a role in tumorigenesis. Given that EBV‐latent membrane protein 1 (LMP1) regulates autophagy in B cells, we explored the role of autophagy mediated by EBV or LMP1 in HL. We found that EBV‐LMP1 transfection in HL cells induced a modest increase in autophagy signals, attenuated starvation‐induced autophagic stress, and alleviated autophagy inhibition‐ or doxorubicin‐induced cell death. LMP1 knockdown leads to decreased autophagy LC3 signals. A xenograft mouse model further showed that EBV infection significantly increased expression of the autophagy marker LC3 in HL cells. Clinically, LC3 was expressed in 15% (19/127) of HL samples, but was absent in all cases of nodular lymphocyte‐predominant and lymphocyte‐rich classic HL cases. Although expression of LC3 was not correlated with EBV status or clinical outcome, autophagic blockade effectively eradicated LMP1‐positive HL xenografts with better efficacy than LMP1‐negative HL xenografts. Collectively, these results suggest that EBV‐LMP1 enhances autophagy and promotes the viability of HL cells. Autophagic inhibition may be a potential therapeutic strategy for treating patients with HL, especially EBV‐positive cases.
Collapse
Affiliation(s)
- Hui-Chen Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Ya-Ping Chen
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Stem cell characteristics promote aggressiveness of diffuse large B-cell lymphoma. Sci Rep 2020; 10:21342. [PMID: 33288848 PMCID: PMC7721882 DOI: 10.1038/s41598-020-78508-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) may present initially in bone marrow, liver and spleen without any lymphadenopathy (referred to as BLS-type DLBCL), which is aggressive and frequently associated with hemophagocytic syndrome. Its tumorigenesis and molecular mechanisms warrant clarification. By gene microarray profiling with bioinformatics analysis, we found higher expression of the stem cell markers HOXA9 and NANOG, as well as BMP8B, CCR6 and S100A8 in BLS-type than conventional DLBCL. We further validated expression of these markers in a large cohort of DLBCL including BLS-type cases and found that expression of HOXA9 and NANOG correlated with inferior outcome and poor prognostic parameters. Functional studies with gene-overexpressed and gene-silenced DLBCL cell lines showed that expression of NANOG and HOXA9 promoted cell viability and inhibited apoptosis through suppression of G2 arrest in vitro and enhanced tumor formation and hepatosplenic infiltration in a tail-vein-injected mouse model. Additionally, HOXA9-transfected tumor cells showed significantly increased soft-agar clonogenic ability and tumor sphere formation. Interestingly, B cells with higher CCR6 expression revealed a higher chemotactic migration for CCL20. Taken together, our findings support the concept that tumor or precursor cells of BLS-type DLBCL are attracted by chemotaxis and home to the bone marrow, where the microenvironment promotes the expression of stem cell characteristics and aggressiveness of tumor cells.
Collapse
|
10
|
Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology 2020; 52:154-165. [DOI: 10.1016/j.pathol.2019.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023]
|
11
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
12
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
13
|
Riha R, Gupta-Saraf P, Bhanja P, Badkul S, Saha S. Stressed Out - Therapeutic Implications of ER Stress Related Cancer Research. ACTA ACUST UNITED AC 2017; 2:156-167. [PMID: 29445586 DOI: 10.7150/oncm.22477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) is an established and well-studied cellular response to the stress and serves to relieve the stress and reinstate cellular homeostasis. It occurs in the endoplasmic reticulum (ER), responsible of properly folding and processing of secretory and transmembrane proteins. It is extremely sensitive to alteration in homeostasis caused by various internal or external stressors which leads to accumulation of misfolded or unfolded proteins in the ER lumen. The UPR works by restoring protein homeostasis in the ER, either through the boosting of protein-folding and degradation capability or by assuaging the demands for such effects, and can cause the activation of cell death if unable to do so. Cancer cells have adapted to gain advantage from the UPR and keeping the cell away from apoptosis and promoting survival, including survival of the cancer stem cells and evading the immune system. Several components of the UPR are overexpressed in a malignant cell and are responsible for resistance from various chemotherapy options and radiotherapy, which are also responsible for causing ER stress and activating the UPR. In this review, we discuss the various ways in which UPR can aid different cancers to survive and evade therapy and highlight recent research, which exploits the UPR to confer sensitivity to these cancer cells against various drugs and radiation.
Collapse
Affiliation(s)
- Randal Riha
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Pooja Gupta-Saraf
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Samyak Badkul
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center.,Department of Cancer Biology, University of Kansas Medical Center
| |
Collapse
|
14
|
Chang KC, Chen PCH, Chang Y, Wu YH, Chen YP, Lai CH, Medeiros LJ, Su IJ, Wang HW. Epstein-Barr virus latent membrane protein-1 up-regulates cytokines and correlates with older age and poorer prognosis in Hodgkin lymphoma. Histopathology 2016; 70:442-455. [PMID: 27632954 DOI: 10.1111/his.13085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023]
Abstract
AIMS Previously, we reported an association between Epstein-Barr virus (EBV)-positive Hodgkin lymphoma (HL), older age, and poorer prognosis. The aim of this study was to investigate the mechanisms underlying this association. METHODS AND RESULTS Transfection of HL cell lines with EBV latent membrane protein-1 (LMP1) resulted in up-regulation of many cytokine genes as assessed by the use of oligonucleotide microarrays. The up-regulation of cytokines was validated by using an inflammatory cytokine protein array: macrophage inflammatory protein (MIP)-1α, MIP-1β, and interleukin (IL)-13. Immunostaining of HL samples (n = 104) showed that expression of MIP-1α, MIP-1β and IL-13 correlated with EBV infection and LMP1 expression. Combined expression of these cytokines was more common in patients aged >60 years (P < 0.001), and was associated with a poorer prognosis (P = 0.042). In another cohort, serum levels of MIP-1α, MIP-1β and IL-13 were increased in HL patients (n = 53) and highest in EBV-positive HL patients as compared with healthy controls (n = 40). Xenograft mice injected with EBV-positive HL cells had higher serum levels of MIP-1α, MIP-1β and IL-13 than mice injected with EBV-negative HL cells, although there was no difference in growth. CONCLUSIONS EBV infection appears to promote the release of cytokines in HL patients, and negatively impacts on patient survival. Physiological immunosenescence probably explains the association between EBV infection and older age. Cytokine modulation is a potential therapeutic target for EBV-positive HL patients.
Collapse
Affiliation(s)
- Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Paul C-H Chen
- Department of Pathology, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Yu-Hsuan Wu
- Department of Life Sciences, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Ping Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University and Hospital, Taipei, Taiwan
| | - Chien-Hsien Lai
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Hsei-Wei Wang
- Department of Life Sciences, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Semin Cancer Biol 2015; 33:3-15. [PMID: 25920797 DOI: 10.1016/j.semcancer.2015.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and re-establishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR.
Collapse
Affiliation(s)
- Feven Tameire
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Program in Cell and Molecular Biology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Chang KC, Chang Y, Wang LHC, Tsai HW, Huang W, Su IJ. Pathogenesis of virus-associated human cancers: Epstein–Barr virus and hepatitis B virus as two examples. J Formos Med Assoc 2014; 113:581-90. [DOI: 10.1016/j.jfma.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
|
17
|
Chang KC, Chang WC, Chang Y, Hung LY, Lai CH, Yeh YM, Chou YW, Chen CH. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma. PLoS One 2013; 8:e79863. [PMID: 24223200 PMCID: PMC3819250 DOI: 10.1371/journal.pone.0079863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/25/2013] [Indexed: 01/07/2023] Open
Abstract
Lymphoma-specific biomarkers contribute to therapeutic strategies and the study of tumorigenesis. Diffuse large B-cell lymphoma (DLBCL) is the most common type of malignant lymphoma. However, only 50% of patients experience long-term survival after current treatment; therefore, developing novel therapeutic strategies is warranted. Comparative proteomic analysis of two DLBCL lines with a B-lymphoblastoid cell line (LCL) showed differential expression of Ran GTPase-activating protein 1 (RanGAP1) between them, which was confirmed using immunoblotting. Immunostaining showed that the majority of DLBCLs (92%, 46/50) were RanGAP1(+), while reactive lymphoid hyperplasia (n = 12) was RanGAP1(+) predominantly in germinal centers. RanGAP1 was also highly expressed in other B-cell lymphomas (BCL, n = 180) with brisk mitotic activity (B-lymphoblastic lymphoma/leukemia: 93%, and Burkitt lymphoma: 95%) or cell-cycle dysregulation (mantle cell lymphoma: 83%, and Hodgkin's lymphoma 91%). Interestingly, serum RanGAP1 level was higher in patients with high-grade BCL (1.71 ± 2.28 ng/mL, n = 62) than in low-grade BCL (0.75 ± 2.12 ng/mL, n = 52) and healthy controls (0.55 ± 1.58 ng/mL, n = 75) (high-grade BCL vs. low-grade BCL, p = 0.002; high-grade BCL vs. control, p < 0.001, Mann-Whitney U test). In vitro, RNA interference of RanGAP1 showed no effect on LCL but enhanced DLBCL cell death (41% vs. 60%; p = 0.035) and cell-cycle arrest (G0/G1: 39% vs. 49%, G2/M: 19.0% vs. 7.5%; p = 0.030) along with decreased expression of TPX2 and Aurora kinases, the central regulators of mitotic cell division. Furthermore, ON 01910.Na (Estybon), a multikinase inhibitor induced cell death, mitotic cell arrest, and hyperphosphorylation of RanGAP1 in DLBCL cell lines but no effects in normal B and T cells. Therefore, RanGAP1 is a promising marker and therapeutic target for aggressive B-cell lymphoma, especially DLBCL.
Collapse
Affiliation(s)
- Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
- * E-mail: (KCC); (CHC)
| | - Wei-Chao Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao Chang
- Division of Infectious Diseases, National Health Research Institute, Tainan, Taiwan
| | - Liang-Yi Hung
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsien Lai
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Internal Medicine, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan,
| | - Yu-Wei Chou
- Department of Pathology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (KCC); (CHC)
| |
Collapse
|
18
|
Transcriptional deregulation of homeobox gene ZHX2 in Hodgkin lymphoma. Leuk Res 2011; 36:646-55. [PMID: 22078940 DOI: 10.1016/j.leukres.2011.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 02/01/2023]
Abstract
Recently, we identified a novel chromosomal rearrangement in Hodgkin lymphoma (HL), t(4;8)(q27;q24), which targets homeobox gene ZHX2 at the recurrent breakpoint 8q24. This aberration deletes the far upstream region of ZHX2 and results in silenced transcription pinpointing loss of activatory elements. Here, we have looked for potential binding sites within this deleted region to analyze the transcriptional deregulation of this tumor suppressor gene in B-cell malignancies. SiRNA-mediated knockdown and reporter gene analyses identified two transcription factors, homeodomain protein MSX1 and bZIP protein XBP1, directly regulating ZHX2 expression. Furthermore, MSX1-cofactor histone H1C mediated repression of ZHX2 and showed enhanced expression levels in cell line L-1236. As demonstrated by fluorescence in situ hybridization and genomic array analysis, the gene loci of MSX1 at 4p16 and H1C at 6p22 were rearranged in several HL cell lines, correlating with their altered expression activity. The expression of XBP1 was reduced in 6/7 HL cell lines as compared to primary hematopoietic cells. Taken together, our results demonstrate multiple mechanisms decreasing expression of tumor suppressor gene ZHX2 in HL cell lines: loss of enhancing binding sites, reduced expression of activators MSX1 and XBP1, and overexpression of MSX1-corepressor H1C. Moreover, chromosomal deregulations of genes involved in this regulative network highlight their role in development and malignancy of B-cells.
Collapse
|
19
|
Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H, Janda KD. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol 2011; 153:741-52. [PMID: 21517817 DOI: 10.1111/j.1365-2141.2011.08671.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present previously unknown evidence that the immunoglobulin heavy chain binding protein BIP/HSPA5, also known as glucose regulated protein (GRP)78, serving as a pivotal component of the pro-survival axis of the unfolded protein response (UPR) signalling network, is abundantly expressed in relapsed B-lineage acute lymphoblastic leukaemia (ALL) and contributes to chemotherapy resistance of leukaemic B-cell precursors. The resistance of B-lineage ALL cells to the standard anti-leukaemic drug vincristine was overcome by the HSPA5 inhibitor epigallocatechin gallate, which inhibits the anti-apoptotic function of HSPA5 by targeting its ATP-binding domain. Notably, chemotherapy-resistant B-lineage ALL cells underwent apoptosis within 48 h of exposure to a doxorubicin-conjugated cell-penetrating cyclic anti-HSPA5 peptide targeting surface-expressed HSPA5 molecules on leukaemia cells. The identification of the HSPA5 as a chemoresistance biomarker and molecular target for B-lineage ALL may lead to new anti-leukaemic treatment strategies that are much needed.
Collapse
Affiliation(s)
- Fatih M Uckun
- Department of Pediatrics, Division of Hematology-Oncology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wu YP, Chang CM, Hung CY, Tsai MC, Schuyler SC, Wang RYL. Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virol J 2011; 8:128. [PMID: 21418596 PMCID: PMC3071342 DOI: 10.1186/1743-422x-8-128] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/20/2011] [Indexed: 12/19/2022] Open
Abstract
The serum-free medium from Japanese encephalitis virus (JEV) infected Baby Hamster Kidney-21 (BHK-21) cell cultures was analyzed by liquid chromatography tandem mass spectrometry (LC-MS) to identify host proteins that were secreted upon viral infection. Five proteins were identified, including the molecular chaperones Hsp90, GRP78, and Hsp70. The functional role of GRP78 in the JEV life cycle was then investigated. Co-migration of GRP78 with JEV particles in sucrose density gradients was observed and co-localization of viral E protein with GRP78 was detected by immunofluorescence analysis in vivo. Knockdown of GRP78 expression by siRNA did not effect viral RNA replication, but did impair mature viral production. Mature viruses that do not co-fractionate with GPR78 displayed a significant decrease in viral infectivity. Our results support the hypothesis that JEV co-opts host cell GPR78 for use in viral maturation and in subsequent cellular infections.
Collapse
Affiliation(s)
- Yi-Ping Wu
- Department of Biomedical Sciences, Chang Gung University, TaoYuan, 33302, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
New developments in the pathology of malignant lymphoma: a review of the literature published from November 2010–January 2011. J Hematop 2011. [DOI: 10.1007/s12308-011-0086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|