1
|
Shakroo YM, Seabury CA, Iczkowski KA, Nelson K, Qian J, Ramnani DM. Germline pathogenic variants in prostate cancer. Pathol Res Pract 2024; 264:155718. [PMID: 39541765 DOI: 10.1016/j.prp.2024.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
While most prostate cancer is sporadic, evidence suggests that a significant minority of cases have a hereditary component, and germline variants may play a role in this heritability. In this study, we investigated germline pathogenic variants in prostate cancer patients. All genetic variants were classified using the American College of Medical Genetics and Genomics/Association for Molecular Pathology 2015 guidelines. By retrospectively reviewing patient charts and genetic testing results, we collected clinicopathologic, demographic, and genetic data. Among the 160 prostate cancer patients who met NCCN genetic testing guidelines and underwent germline testing, 41 % had metastatic cancer, while 59 % had localized cancer, mostly high-risk. Nineteen (19) out of the 160 patients (12 %) had a pathogenic or likely pathogenic variant in the following genes: MUTYH (3.1 %), ATM (1.9 %), BRCA2 (1.3 %), CHEK2 (1.3 %), PALB2 (1.3 %), HOXB13 (1.3 %), and 5 other genes (BRIP1, LZTR1, TP53, NTHL1, and NBN), each at a frequency of 0.6 %. There was no significant difference in clinicopathologic data (such as age, serum prostate-specific antigen, Gleason score, and others) between those with a pathogenic or likely pathogenic variant and those without. There was also a lack of significant difference in the number of variants of uncertain significance observed between different racial and ethnic groups. Individuals with a family history of cancer were significantly more likely to have a pathogenic or likely pathogenic variant than those without one (p = 0.002). Overall, our results show the necessity for future research with a larger sample size to better explain the relationship between clinicopathologic data and genetic variants.
Collapse
Affiliation(s)
| | | | - Kenneth A Iczkowski
- Department of Pathology and Laboratory Medicine, University of California-Davis, Sacramento, CA 95817, United States
| | | | - Junqi Qian
- Virginia Urology, Richmond, VA 23235, United States.
| | | |
Collapse
|
2
|
Ciceri S, Bertolotti A, Serra A, Gattuso G, Boschetti L, Capasso M, Cecchi C, Sorrentino S, Quarello P, Ciniselli CM, Verderio P, De Cecco L, Manenti G, Diomedi Camassei F, Collini P, Spreafico F, Perotti D. Widening the spectrum of players affected by genetic changes in Wilms tumor relapse. iScience 2024; 27:110684. [PMID: 39262773 PMCID: PMC11387809 DOI: 10.1016/j.isci.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Few studies investigated the genetics of relapsed Wilms tumor (WT), suggesting the SIX1 gene, the microRNA processing genes, and the MYCN network as possibly involved in a relevant percentage of relapses. We investigated 28 relapsing WT patients (10 new cases and 18 cases in which the involvement of SIX and miRNAPG had been excluded) with a panel of ∼5000 genes. We identified variants affecting genes involved in DNA damage prevention and repair in 12/28 relapsing patients (42.9%), and affecting genes involved in chromatin modification and regulation in 6/28 relapsing patients (21.4%), widening the spectrum of anomalies detected in relapsed tumors. The disclosure of molecular pathways possibly underlying tumor progression might allow to use molecularly targeted therapies at relapse. Surprisingly, germline anomalies, mostly affecting DNA damage prevention and repair genes, were identified in 13/28 patients (46.4%), raising the issue of performing a genetic testing to all children presenting with a WT.
Collapse
Affiliation(s)
- Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessia Bertolotti
- Diagnostic and Molecular Research Lab, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Annalisa Serra
- Department of Pediatric Hematology and Oncology, Gene and Cellular Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luna Boschetti
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Capasso
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Cecilia Cecchi
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | | | - Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Chiara Maura Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giacomo Manenti
- Unit of Animal Health and Welfare, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
3
|
Huang W, Aabed N, Shah YM. Reactive Oxygen Species and Ferroptosis at the Nexus of Inflammation and Colon Cancer. Antioxid Redox Signal 2023; 39:551-568. [PMID: 36792928 PMCID: PMC10517337 DOI: 10.1089/ars.2023.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Significance: Reactive oxygen species (ROS) are essential in maintaining normal intestinal physiology. Inflammatory bowel disease (IBD) is a relapsing chronic inflammatory disease of the intestine that is a major risk factor for colorectal cancer (CRC). Excess ROS are widely implicated in intestinal inflammation and cancer. Recent Advances: Clinical data have shown that targeting ROS broadly does not yield improved outcomes in IBD and CRC. However, selectively limiting oxidative damage may improve the efficacy of ROS targeting. An accumulation of lipid ROS induces a novel oxidative cell death pathway known as ferroptosis. A growing body of evidence suggests that ferroptosis is relevant to both IBD and CRC. Critical Issues: We propose that inhibition of ferroptosis will improve disease severity in IBD, whereas activating ferroptosis will limit CRC progression. Data from preclinical models suggest that methods of modulating ferroptosis have been successful in attenuating IBD and CRC. Future Directions: The etiology of IBD and progression of IBD to CRC are still unclear. Further understanding of ferroptosis in intestinal diseases will provide novel therapies. Ferroptosis is highly linked to inflammation, cell metabolism, and is cell-type dependent. Further research in assessing the inflammatory and tumor microenvironment in the intestine may provide novel vulnerabilities that can be targeted. Antioxid. Redox Signal. 39, 551-568.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Molecular and Integrative Physiology and Ann Arbor, Michigan, USA
- Department of Cellular and Molecular Biology; Ann Arbor, Michigan, USA
- Department of Medical Scientist Training Program; University of Michigan, Ann Arbor, Michigan, USA
| | - Noora Aabed
- Department of Molecular and Integrative Physiology and Ann Arbor, Michigan, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology and Ann Arbor, Michigan, USA
- Department of Cellular and Molecular Biology; Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022; 11:cells11233798. [PMID: 36497058 PMCID: PMC9735852 DOI: 10.3390/cells11233798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.
Collapse
Affiliation(s)
- Chunshuang Li
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
- Correspondence: (X.B.); (R.W.)
| | - Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (X.B.); (R.W.)
| |
Collapse
|
5
|
Zhang L, Peng M. Integrated bioinformatic analysis identified a novel prognostic pan-programmed cell death signature for bladder cancer. Front Immunol 2022; 13:1030097. [PMID: 36505448 PMCID: PMC9728529 DOI: 10.3389/fimmu.2022.1030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Programmed cell death (PCD) refers to a molecularly regulated form of cell death that functions as an essential anticancer defense mechanism and serves as a target of anticancer therapies. Multiple types of PCD comprehensively regulate tumorigenesis and tumor progression and metastasis. However, a systemic exploration of the multiple types of PCD in cancers, especially bladder cancer, is lacking. In this study, we evaluated the expression pattern of genes associated with multiple types of PCD in bladder cancer using the "ssGSEA" method and conceptualized the multiple types of PCD as being collectively involved in "Pan-PCD". Based on the differentially expressed genes related to Pan-PCD, we developed a Pan-PCD-related prognostic signature (PPRPS) to predict patient prognosis via univariate and multivariate Cox regression analysis. The PPRPS is an independent prognostic factor, and the AUC (Area Under Curve) for 3-year overall survival was 0.748. Combined with age and stage, PPRPS displayed excellent predictive ability. Based on the PPRPS, higher levels of immune cell infiltration, tumor microenvironment, and immune checkpoint molecules were observed in the high-PPRPS group. Furthermore, PPRPS enabled accurate risk prediction for metastatic urothelial carcinoma after anti-PD-L1 monoclonal antibody treatment. Patients in the high-PPRPS group had poor prognoses. Docetaxel, staurosporine, and luminespib were identified as potentially effective drugs for high-PPRPS bladder cancer patients. In summary, we developed the Pan-PCD signature to improve the accuracy of bladder cancer prognostic predictions and to provide a novel classification method to guide treatment selection.
Collapse
Affiliation(s)
- Lusi Zhang
- Department of Urology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mou Peng
- Department of Urology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, China,*Correspondence: Mou Peng,
| |
Collapse
|
6
|
Lodato MA, Ziegenfuss JS. The two faces of DNA oxidation in genomic and functional mosaicism during aging in human neurons. FRONTIERS IN AGING 2022; 3:991460. [PMID: 36313183 PMCID: PMC9596766 DOI: 10.3389/fragi.2022.991460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Maintaining genomic integrity in post-mitotic neurons in the human brain is paramount because these cells must survive for an individual's entire lifespan. Due to life-long synaptic plasticity and electrochemical transmission between cells, the brain engages in an exceptionally high level of mitochondrial metabolic activity. This activity results in the generation of reactive oxygen species with 8-oxo-7,8-dihydroguanine (8-oxoG) being one of the most prevalent oxidation products in the cell. 8-oxoG is important for the maintenance and transfer of genetic information into proper gene expression: a low basal level of 8-oxoG plays an important role in epigenetic modulation of neurodevelopment and synaptic plasticity, while a dysregulated increase in 8-oxoG damages the genome leading to somatic mutations and transcription errors. The slow yet persistent accumulation of DNA damage in the background of increasing cellular 8-oxoG is associated with normal aging as well as neurological disorders such as Alzheimer's disease and Parkinson's disease. This review explores the current understanding of how 8-oxoG plays a role in brain function and genomic instability, highlighting new methods being used to advance pathological hallmarks that differentiate normal healthy aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Michael A. Lodato
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | |
Collapse
|
7
|
Chen Y, Hua X, Huang B, Karsten S, You Z, Li B, Li Y, Li Y, Liang J, Zhang J, Wei Y, Chen R, Lyu Z, Xiao X, Lian M, Wei J, Fang J, Miao Q, Wang Q, Berglung UW, Tang R, Helleday T, Ma X. MutT Homolog 1 Inhibitor Karonudib Attenuates Autoimmune Hepatitis by Inhibiting DNA Repair in Activated T Cells. Hepatol Commun 2022; 6:1016-1031. [PMID: 34894107 PMCID: PMC9035570 DOI: 10.1002/hep4.1862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory liver disease driven by the hyperactivation of various intrahepatic antigen-specific T cells due to a breach of immune tolerance. Studies in immunometabolism demonstrate that activated T cells harbor increased levels of reactive oxygen species that cause oxidative DNA damage. In this study, we assessed the potential of DNA damage repair enzyme MutT homolog 1 (MTH1) as a therapeutic target in AIH and karonudib as a novel drug for patients with AIH. We report herein that MTH1 expression was significantly increased in liver samples from patients with AIH compared to patients with chronic hepatitis B and nonalcoholic fatty liver disease and from healthy controls. In addition, the expression of MTH1 was positively correlated with AIH disease severity. We further found abundant T cells that expressed MTH1 in AIH. Next, we found that karonudib significantly altered T-cell receptor signaling in human T cells and robustly inhibited proliferation of human T cells in vitro. Interestingly, our data reflected a preferential inhibition of DNA damage repair in activated T cells by karonudib. Moreover, MTH1 was required to develop liver inflammation and damage because specific deletion of MTH1 in T cells ameliorated liver injury in the concanavalin A (Con A)-induced hepatitis model by inhibiting T-cell activation and proliferation. Lastly, we validated the protective effect of karonudib on the Con A-induced hepatitis model. Conclusion: MTH1 functions as a critical regulator in the development of AIH, and its inhibition in activated T cells reduces liver inflammation and damage.
Collapse
Affiliation(s)
- Yong Chen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Xiangwei Hua
- Department of Thyroid Breast OncologyShanghai East Hospital, School of Medicine, Tongji University School of MedicineShanghaiChina
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Liver Surgery and Liver Transplantation CenterRenji HospitalSchool of MedicineShanghaiChina
| | - Bingyuan Huang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Stella Karsten
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | - Zhengrui You
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Bo Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - You Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Yikang Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Jubo Liang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Zhang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Yiran Wei
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Ruiling Chen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Zhuwan Lyu
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Xiao Xiao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Min Lian
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Jue Wei
- Department of GastroenterologyShanghai Tongren HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jingyuan Fang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Qi Miao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Qixia Wang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Ulrika Warpman Berglung
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | - Ruqi Tang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Weston Park Cancer CentreDepartment of Oncology and MetabolismUniversity of SheffieldSheffieldUnited Kingdom
| | - Xiong Ma
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
8
|
Moscatello C, Di Marcantonio MC, Savino L, D’Amico E, Spacco G, Simeone P, Lanuti P, Muraro R, Mincione G, Cotellese R, Aceto GM. Emerging Role of Oxidative Stress on EGFR and OGG1-BER Cross-Regulation: Implications in Thyroid Physiopathology. Cells 2022; 11:cells11050822. [PMID: 35269445 PMCID: PMC8909339 DOI: 10.3390/cells11050822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid diseases have a complex and multifactorial aetiology. Despite the numerous studies on the signals referable to the malignant transition, the molecular mechanisms concerning the role of oxidative stress remain elusive. Based on its strong oxidative power, H2O2 could be responsible for the high level of oxidative DNA damage observed in cancerous thyroid tissue and hyperactivation of mitogen-activated protein kinase (MAPK) and PI3K/Akt, which mediate ErbB signaling. Increased levels of 8-oxoG DNA adducts have been detected in the early stages of thyroid cancer. These DNA lesions are efficiently recognized and removed by the base excision repair (BER) pathway initiated by 8-oxoG glycosylase1 (OGG1). This study investigated the relationships between the EGFR and OGG1-BER pathways and their mutual regulation following oxidative stress stimulus by H2O2 in human thyrocytes. We clarified the modulation of ErbB receptors and their downstream pathways (PI3K/Akt and MAPK/ERK) under oxidative stress (from H2O2) at the level of gene and protein expression, according to the mechanism defined in a human non-pathological cell system, Nthy-ori 3-1. Later, on the basis of the results obtained by gene expression cluster analysis in normal cells, we assessed the dysregulation of the relationships in a model of papillary thyroid cancer with RET/PTC rearrangement (TPC-1). Our observations demonstrated that a H2O2 stress may induce a physiological cross-regulation between ErbB and OGG1-BER pathways in normal thyroid cells (while this is dysregulated in the TPC-1 cells). Gene expression data also delineated that MUTYH gene could play a physiological role in crosstalk between ErbB and BER pathways and this function is instead lost in cancer cells. Overall, our data on OGG1 protein expression suggest that it was physiologically regulated in response to oxidative modulation of ErbB, and that these might be dysregulated in the signaling pathway involving AKT in the progression of thyroid malignancies with RET/PTC rearrangements.
Collapse
Affiliation(s)
- Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (C.M.); (E.D.); (G.S.); (R.C.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (L.S.); (R.M.); (G.M.)
| | - Luca Savino
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (L.S.); (R.M.); (G.M.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (C.M.); (E.D.); (G.S.); (R.C.)
| | - Giordano Spacco
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (C.M.); (E.D.); (G.S.); (R.C.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.) at University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.) at University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Raffaella Muraro
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (L.S.); (R.M.); (G.M.)
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (L.S.); (R.M.); (G.M.)
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (C.M.); (E.D.); (G.S.); (R.C.)
- Villa Serena Foundation for Research, 66013 Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (C.M.); (E.D.); (G.S.); (R.C.)
- Correspondence: ; Tel.: +39-0871-355-4115
| |
Collapse
|
9
|
MUTYH Actively Contributes to Microglial Activation and Impaired Neurogenesis in the Pathogenesis of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8635088. [PMID: 34970419 PMCID: PMC8714343 DOI: 10.1155/2021/8635088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a major risk factor for Alzheimer's disease (AD), which is characterized by brain atrophy, amyloid plaques, neurofibrillary tangles, and loss of neurons. 8-Oxoguanine, a major oxidatively generated nucleobase highly accumulated in the AD brain, is known to cause neurodegeneration. In mammalian cells, several enzymes play essential roles in minimizing the 8-oxoguanine accumulation in DNA. MUTYH with adenine DNA glycosylase activity excises adenine inserted opposite 8-oxoguanine in DNA. MUTYH is reported to actively contribute to the neurodegenerative process in Parkinson and Huntington diseases and some mouse models of neurodegenerative diseases by accelerating neuronal dysfunction and microgliosis under oxidative conditions; however, whether or not MUTYH is involved in AD pathogenesis remains unclear. In the present study, we examined the contribution of MUTYH to the AD pathogenesis. Using postmortem human brains, we showed that various types of MUTYH transcripts and proteins are expressed in most hippocampal neurons and glia in both non-AD and AD brains. We further introduced MUTYH deficiency into App NL-G-F/NL-G-F knock-in AD model mice, which produce humanized toxic amyloid-β without the overexpression of APP protein, and investigated the effects of MUTYH deficiency on the behavior, pathology, gene expression, and neurogenesis. MUTYH deficiency improved memory impairment in App NL-G-F/NL-G-F mice, accompanied by reduced microgliosis. Gene expression profiling strongly suggested that MUTYH is involved in the microglial response pathways under AD pathology and contributes to the phagocytic activity of disease-associated microglia. We also found that MUTYH deficiency ameliorates impaired neurogenesis in the hippocampus, thus improving memory impairment. In conclusion, we propose that MUTYH, which is expressed in the hippocampus of AD patients as well as non-AD subjects, actively contributes to memory impairment by inducing microgliosis with poor neurogenesis in the preclinical AD phase and that MUTYH is a novel therapeutic target for AD, as its deficiency is highly beneficial for ameliorating AD pathogenesis.
Collapse
|
10
|
Nakamura T, Okabe K, Hirayama S, Chirifu M, Ikemizu S, Morioka H, Nakabeppu Y, Yamagata Y. Structure of the mammalian adenine DNA glycosylase MUTYH: insights into the base excision repair pathway and cancer. Nucleic Acids Res 2021; 49:7154-7163. [PMID: 34142156 PMCID: PMC8266592 DOI: 10.1093/nar/gkab492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Mammalian MutY homologue (MUTYH) is an adenine DNA glycosylase that excises adenine inserted opposite 8-oxoguanine (8-oxoG). The inherited variations in human MUTYH gene are known to cause MUTYH-associated polyposis (MAP), which is associated with colorectal cancer. MUTYH is involved in base excision repair (BER) with proliferating cell nuclear antigen (PCNA) in DNA replication, which is unique and critical for effective mutation-avoidance. It is also reported that MUTYH has a Zn-binding motif in a unique interdomain connector (IDC) region, which interacts with Rad9–Rad1–Hus1 complex (9–1–1) in DNA damage response, and with apurinic/apyrimidinic endonuclease 1 (APE1) in BER. However, the structural basis for the BER pathway by MUTYH and its interacting proteins is unclear. Here, we determined the crystal structures of complexes between mouse MUTYH and DNA, and between the C-terminal domain of mouse MUTYH and human PCNA. The structures elucidated the repair mechanism for the A:8-oxoG mispair including DNA replication-coupled repair process involving MUTYH and PCNA. The Zn-binding motif was revealed to comprise one histidine and three cysteine residues. The IDC, including the Zn-binding motif, is exposed on the MUTYH surface, suggesting its interaction modes with 9–1–1 and APE1, respectively. The structure of MUTYH explains how MAP mutations perturb MUTYH function.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Kohtaro Okabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Shogo Hirayama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan.,Shokei University and Shokei University Junior College, 2-6-78, Kuhonji, Chuo-ku, Kumamoto, 862-8678 Kumamoto, Japan
| |
Collapse
|
11
|
Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci 2021; 112:3945-3952. [PMID: 34286881 PMCID: PMC8486193 DOI: 10.1111/cas.15068] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS), a class of highly bioactive molecules, have been widely studied in various types of cancers. ROS are considered to be normal byproducts of numerous cellular processes. Typically, cancer cells exhibit higher basal levels of ROS compared with normal cells as a result of an imbalance between oxidants and antioxidants. ROS have a dual role in cell metabolism: At low to moderate levels, ROS act as signal transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS cause damage to proteins, nucleic acids, lipids, membranes, and organelles, leading to cell death. Extensive studies have revealed that anticancer therapies that manipulate ROS levels, including immunotherapies, show promising in vitro as well as in vivo results. In this review, we summarize molecular mechanisms and oncogenic functions that modulate ROS levels and are useful for the development of cancer therapeutic strategies. This review also provides insights into the future development of effective agents that regulate the redox system for cancer treatment.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Gallenga CE, Lonardi M, Pacetti S, Violanti SS, Tassinari P, Di Virgilio F, Tognon M, Perri P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10060848. [PMID: 34073310 PMCID: PMC8229325 DOI: 10.3390/antiox10060848] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinopathy. Nevertheless, non-genetic biological factors play a central role in its pathogenesis and progression, including inflammation, autophagy and oxidative stress. The retina is particularly affected by oxidative stress due to its high metabolic rate and oxygen consumption as well as photosensitizer molecules inside the photoreceptors being constantly subjected to light/oxidative stress, which induces accumulation of ROS in RPE, caused by damaged photoreceptor’s daily recycling. Oxidative DNA damage is a key regulator of microglial activation and photoreceptor degeneration in RP, as well as mutations in endogenous antioxidant pathways involved in DNA repair, oxidative stress protection and activation of antioxidant enzymes (MUTYH, CERKL and GLO1 genes, respectively). Moreover, exposure to oxidative stress alters the expression of micro-RNA (miRNAs) and of long non-codingRNA (lncRNAs), which might be implicated in RP etiopathogenesis and progression, modifying gene expression and cellular response to oxidative stress. The upregulation of the P2X7 receptor (P2X7R) also seems to be involved, causing pro-inflammatory cytokines and ROS release by macrophages and microglia, contributing to neuroinflammatory and neurodegenerative progression in RP. The multiple pathways analysed demonstrate that oxidative microglial activation may trigger the vicious cycle of non-resolved neuroinflammation and degeneration, suggesting that microglia may be a key therapy target of oxidative stress in RP.
Collapse
Affiliation(s)
- Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Maria Lonardi
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sofia Pacetti
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sara Silvia Violanti
- Department of Head and Neck, Section of Ophthalmology, San Paolo Hospital, 17100 Savona, Italy;
| | - Paolo Tassinari
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Paolo Perri
- Department of Neuroscience and Rehabilitation, Section of Ophthalmology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
13
|
Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst) 2021; 97:103027. [PMID: 33285475 PMCID: PMC7926032 DOI: 10.1016/j.dnarep.2020.103027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion which is prone to mispair, if left unrepaired, with 2'-deoxyadenosine during DNA replication. While unrepaired or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has recently been reported to have a role in the epigenetic regulation of gene expression. Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the epigenetic and the mutagenic nature of the 8-oxodG is still lacking. To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could cause the translocations and deletions which are associated with cancer.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy.
| |
Collapse
|
14
|
Funahashi S, Okazaki Y, Akatsuka S, Takahashi T, Sakumi K, Nakabeppu Y, Toyokuni S. Mth1 deficiency provides longer survival upon intraperitoneal crocidolite injection in female mice. Free Radic Res 2020; 54:195-205. [PMID: 32183600 DOI: 10.1080/10715762.2020.1743285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to asbestos fiber is central to mesothelial carcinogenesis. Recent sequencing studies on human and rodent malignant mesothelioma (MM) revealed frequently mutated genes, including CDKN2A, BAP1 and NF2. Crocidolite directly or indirectly catalyses the generation of hydroxyl radicals, which appears to be the major driving force for mesothelial mutations. DNA base modification is an oxidative DNA damage mechanism, where 8-hydroxy-2'-deoxyguanosine (8-OHdG) is the most abundant modification both physiologically and pathologically. Multiple distinct mechanisms work together to decrease the genomic level of 8-OHdG through the enzymatic activities of Mutyh, Ogg1 and Mth1. Knockout of one or multiple enzymes is not lethal but increases the incidence of tumors. Here, we used single knockout (KO) mice to test whether the deficiency of these three genes affects the incidence and prognosis of asbestos-induced MM. Intraperitoneal injection of 3 mg crocidolite induced MM at a fraction of 14.8% (4/27) in Mth1 KO, 41.4% (12/29) in Mutyh KO and 24.0% (6/25) in Ogg1 KO mice, whereas 31.7% (20/63) induction was observed in C57BL/6 wild-type (Wt) mice. The lifespan of female Mth1 KO mice was longer than that of female Wt mice (p = 0.0468). Whole genome scanning of MM with array-based comparative genomic hybridization revealed rare genomic alterations compared to MM in rats and humans. These results indicate that neither Mutyh deficiency nor Ogg1 deficiency promotes crocidolite-induced MM in mice, but the sanitizing nucleotide pool with Mth1 is advantageous in crocidolite-induced mesothelial carcinogenesis.
Collapse
Affiliation(s)
- Satomi Funahashi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Food and Nutritional Environment, Kinjo Gakuin University of Human Life and Environment, Nagoya, Aichi, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyusyu University, Higashi-ku, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyusyu University, Higashi-ku, Fukuoka, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Zhang X, Li L. The Significance of 8-oxoGsn in Aging-Related Diseases. Aging Dis 2020; 11:1329-1338. [PMID: 33014540 PMCID: PMC7505272 DOI: 10.14336/ad.2019.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
Aging is a common risk factor for the occurrence and development of many diseases, such as Parkinson’s disease, Alzheimer’s disease, diabetes, hypertension, atherosclerosis and coronary heart disease, and cancer, among others, and is a key problem threatening the health and life expectancy of the elderly. Oxidative damage is an important mechanism involved in aging. The latest discovery pertaining to oxidative damage is that 8-oxoGsn (8-oxo-7,8-dihydroguanosine), an oxidative damage product of RNA, can represent the level of oxidative stress. The significance of RNA oxidative damage to aging has not been fully explained, but the relationship between the accumulation of 8-oxoGsn, a marker of RNA oxidative damage, and the occurrence of diseases has been confirmed in many aging-related diseases. Studying the aging mechanism, monitoring the aging level of the body and exploring the corresponding countermeasures are of great significance for achieving healthy aging and promoting public health and social development. This article reviews the progress of research on 8-oxoGsn in aging-related diseases.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
16
|
Evaristo G, Fiset PO, Camilleri-Broët S, Vanounou T, Kavan P, Spatz A, Wang H. Molecular Analysis of a Patient With Neurofibromatosis 2 (NF2) and Peritoneal Malignant Mesothelioma. Am J Surg Pathol 2020; 44:1290-1292. [PMID: 32452871 DOI: 10.1097/pas.0000000000001483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Pierre-Oliver Fiset
- Department of Pathology.,Division of Pathology and Molecular Genetics, McGill University Health Centre
| | - Sophie Camilleri-Broët
- Department of Pathology.,Division of Pathology and Molecular Genetics, McGill University Health Centre
| | | | | | - Alan Spatz
- Department of Pathology.,Division of Pathology and Molecular Genetics, McGill University Health Centre.,Departments of Oncology.,Medicine and Lady Davis Institute Jewish General Hospital Montreal, QC, Canada
| | - Hangjun Wang
- Department of Pathology.,Division of Pathology and Molecular Genetics, McGill University Health Centre.,Medicine and Lady Davis Institute Jewish General Hospital Montreal, QC, Canada
| |
Collapse
|
17
|
Abstract
Radiotherapy-induced second malignant neoplasms (SMNs) are a severe late complication in pediatric cancer survivors. Germline mutations in tumor suppressor genes contribute to SMNs; however, the most relevant germline variants mediating susceptibility are not fully defined. The authors performed matched whole-exome sequencing analyses of germline and tumor DNA from 4 pediatric solid tumor survivors who subsequently developed radiation-associated SMNs. Pathogenic and predicted deleterious germline variants were identified for each patient and validated with Sanger sequencing. These germline variants were compared with germline variants in a cohort of 59 pediatric patients diagnosed with primary sarcomas. Pathway analysis was performed to test for similarities in the germline variant profiles between individuals diagnosed with SMNs or primary sarcomas. One index patient was found to have a pathogenic germline monoallelic mutation in the MUTYH gene, which encodes the base excision repair enzyme adenine DNA glycosylase. This specific germline mutation is associated with a form of familial adenomatous polyposis, a new diagnosis in the patient. Germline-level genetic similarity exists between SMN-developing patients and patients developing primary sarcomas, with relevant genes involved in signal transduction and DNA repair mechanisms. The authors identify a germline MUTYH mutation in a pediatric cancer survivor developing an SMN. Germline mutations involving specific pathways such as base excision repair may identify individuals at risk for developing SMNs. The composition of germline variants in individual patients may enable estimates of patient-specific risk for developing SMNs. The authors anticipate that further analyses of germline genomes and epigenomes will reveal diverse genes and mechanisms influencing cancer risk.
Collapse
|
18
|
Murakami Y, Nakabeppu Y, Sonoda KH. Oxidative Stress and Microglial Response in Retinitis Pigmentosa. Int J Mol Sci 2020; 21:ijms21197170. [PMID: 32998461 PMCID: PMC7583782 DOI: 10.3390/ijms21197170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022] Open
Abstract
An imbalance between the production of reactive oxygen species (ROS) and anti-oxidant capacity results in oxidative injury to cellular components and molecules, which in turn disturbs the homeostasis of cells and organs. Although retinitis pigmentosa (RP) is a hereditary disease, non-genetic biological factors including oxidative stress also modulate or contribute to the disease progression. In animal models of RP, the degenerating retina exhibits marked oxidative damage in the nucleic acids, proteins, and lipids, and anti-oxidant treatments substantially suppress photoreceptor cell death and microgliosis. Although the mechanisms by which oxidative stress mediates retinal degeneration have not been fully elucidated, our group has shown that oxidative DNA damage and its defense system are key regulators of microglial activation and photoreceptor degeneration in RP. In this review, we summarize the current evidence regarding oxidative stress in animal models and patients with RP. The clinical efficacy of anti-oxidant treatments for RP has not been fully established. Nevertheless, elucidating key biological processes that underlie oxidative damage in RP will be pivotal to understanding the pathology and developing a potent anti-oxidant strategy that targets specific cell types or molecules under oxidative stress.
Collapse
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
- Correspondence: ; Tel.: +81-92-642-5648; Fax: +81-92-642-5663
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
19
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
20
|
Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis 2020; 35:221-231. [PMID: 31605533 PMCID: PMC7352099 DOI: 10.1093/mutage/gez027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
21
|
Zhou W, Sun J, Guo W, Zhuang Y, Xu L, Wang Y. AluYb8 insertion polymorphism in the MUTYH gene impairs mitochondrial DNA maintenance and affects the age of onset of IPF. Aging (Albany NY) 2020; 11:933-949. [PMID: 30716719 PMCID: PMC6382421 DOI: 10.18632/aging.101793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is an age-related fatal disease with an unknown etiology. Increased oxidative stress and mitochondrial dysfunction are thought to be involved in its pathogenesis. However, the effect of the AluYb8MUTYH polymorphism on IPF is not known. Results: The mean age of onset for IPF in patients homozygous for the AluYb8MUTYH variant (P/P) was 66.5 years old, which was significantly earlier than that in patients with the wild-type (A/A, 70.45 years old). For the 97 male IPF patients with lung function data, the FVC% of the P/P patients was lower than that of the wild-type (A/A) or heterozygous (A/P) patients. The laboratory analysis indicated that an increased mtDNA content and impaired mitochondrial quality control were associated with the P/P genotype. We also confirmed that AluYb8 insertion into MUTYH caused decreased MUTYH1 expression in lung tissues. Methods: We compared the lung function of IPF patients and observed the mtDNA content, mtDNA integrity and molecular expression of mitochondrial quality control among subjects with different AluYb8MUTYH genotypes. Additionally, immunoblotting and a reporter gene system were used to test whether altered mitochondrial MUTYH1 expression was linked to AluYb8MUTYH. Conclusions: The AluYb8 insertion polymorphism in MUTYH impairs mtDNA stability and affects the age of onset of IPF.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jiapeng Sun
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University
| | - Yi Zhuang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Department of Respirology, Medical School Affiliated Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Lizhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Landrith T, Li B, Cass AA, Conner BR, LaDuca H, McKenna DB, Maxwell KN, Domchek S, Morman NA, Heinlen C, Wham D, Koptiuch C, Vagher J, Rivera R, Bunnell A, Patel G, Geurts JL, Depas MM, Gaonkar S, Pirzadeh-Miller S, Krukenberg R, Seidel M, Pilarski R, Farmer M, Pyrtel K, Milliron K, Lee J, Hoodfar E, Nathan D, Ganzak AC, Wu S, Vuong H, Xu D, Arulmoli A, Parra M, Hoang L, Molparia B, Fennessy M, Fox S, Charpentier S, Burdette J, Pesaran T, Profato J, Smith B, Haynes G, Dalton E, Crandall JRR, Baxter R, Lu HM, Tippin-Davis B, Elliott A, Chao E, Karam R. Splicing profile by capture RNA-seq identifies pathogenic germline variants in tumor suppressor genes. NPJ Precis Oncol 2020; 4:4. [PMID: 32133419 PMCID: PMC7039900 DOI: 10.1038/s41698-020-0109-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Germline variants in tumor suppressor genes (TSGs) can result in RNA mis-splicing and predisposition to cancer. However, identification of variants that impact splicing remains a challenge, contributing to a substantial proportion of patients with suspected hereditary cancer syndromes remaining without a molecular diagnosis. To address this, we used capture RNA-sequencing (RNA-seq) to generate a splicing profile of 18 TSGs (APC, ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, NF1, PALB2, PMS2, PTEN, RAD51C, RAD51D, and TP53) in 345 whole-blood samples from healthy donors. We subsequently demonstrated that this approach can detect mis-splicing by comparing splicing profiles from the control dataset to profiles generated from whole blood of individuals previously identified with pathogenic germline splicing variants in these genes. To assess the utility of our TSG splicing profile to prospectively identify pathogenic splicing variants, we performed concurrent capture DNA and RNA-seq in a cohort of 1000 patients with suspected hereditary cancer syndromes. This approach improved the diagnostic yield in this cohort, resulting in a 9.1% relative increase in the detection of pathogenic variants, demonstrating the utility of performing simultaneous DNA and RNA genetic testing in a clinical context.
Collapse
Affiliation(s)
| | - Bing Li
- Ambry Genetics, Aliso Viejo, CA USA
| | | | | | | | | | | | | | | | | | - Deborah Wham
- Aurora St. Luke’s Medical Center, Milwaukee, WI USA
| | | | | | - Ragene Rivera
- Texas Oncology, El Paso, Fort Worth, and Austin, TX USA
| | - Ann Bunnell
- Texas Oncology, El Paso, Fort Worth, and Austin, TX USA
| | - Gayle Patel
- Texas Oncology, El Paso, Fort Worth, and Austin, TX USA
| | | | | | | | | | | | | | - Robert Pilarski
- Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH USA
| | - Meagan Farmer
- University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | - John Lee
- Cedars-Sinai Medical Center, Los Angeles, CA USA
| | | | | | | | - Sitao Wu
- Ambry Genetics, Aliso Viejo, CA USA
| | | | - Dong Xu
- Ambry Genetics, Aliso Viejo, CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elizabeth Chao
- Ambry Genetics, Aliso Viejo, CA USA
- University of California at Irvine, Irvine, CA USA
| | | |
Collapse
|
23
|
Nowrouzi A, Sertorio MG, Akbarpour M, Knoll M, Krunic D, Kuhar M, Schwager C, Brons S, Debus J, Wells SI, Wells JM, Abdollahi A. Personalized Assessment of Normal Tissue Radiosensitivity via Transcriptome Response to Photon, Proton and Carbon Irradiation in Patient-Derived Human Intestinal Organoids. Cancers (Basel) 2020; 12:cancers12020469. [PMID: 32085439 PMCID: PMC7072449 DOI: 10.3390/cancers12020469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced normal tissue toxicity often limits the curative treatment of cancer. Moreover, normal tissue relative biological effectiveness data for high-linear energy transfer particles are urgently needed. We propose a strategy based on transcriptome analysis of patient-derived human intestinal organoids (HIO) to determine molecular surrogates for radioresponse of gastrointestinal (GI) organs at risk in a personalized manner. HIO were generated from induced pluripotent stem cells (iPSC), which were derived from skin biopsies of three patients, including two patients with FANCA deficiency as a paradigm for enhanced radiosensitivity. For the two Fanconi anemia (FA) patients (HIO-104 and 106, previously published as FA-A#1 IND-iPS1 and FA-A#2 IND-iPS3), FANCA expression was reconstituted as a prerequisite for generation of HIO via lentiviral expression of a doxycycline inducible construct. For radiosensitivity analysis, FANCA deficient and FANCA rescued as well as wtHIO were sham treated or irradiated with 4Gy photon, proton or carbon ions at HIT, respectively. Immunofluorescence staining of HIO for 53BP1-foci was performed 1 h post IR and gene expression analyses was performed 12 and 48 h post IR. 53BP1-foci numbers and size correlated with the higher RBE of carbon ions. A FANCA dependent differential gene expression in response to radiation was found (p < 0.01, ANOVA; n = 1071 12 h; n = 1100 48 h). Pathways associated with FA and DNA-damage repair i.e., transcriptional coupled nucleotide excision repair, homology-directed repair and translational synthesis were found to be differentially regulated in FANCA deficient HIO. Next, differential regulated genes were investigated as a function of radiation quality (RQ, p < 0.05, ANOVA; n = 742 12 h; n = 553 48 h). Interestingly, a gradual increase or decrease of gene expression was found to correlate with the three main qualities, from photon to proton and carbon irradiation. Clustering separated high-linear energy transfer irradiation with carbons from proton and photon irradiation. Genes associated with dual incision steps of TC-NER were differentially regulated in photon vs. proton and carbon irradiation. Consequently, SUMO3, ALC1, POLE4, PCBP4, MUTYH expression correlated with the higher RBE of carbon ions. An interaction between the two studied parameters FA and RQ was identified (p < 0.01, 2-way ANOVA n = 476). A comparison of genes regulated as a function of FA, RQ and RBE suggest a role for p53 interacting genes BRD7, EWSR1, FBXO11, FBXW8, HMGB1, MAGED2, PCBP4, and RPS27 as modulators of FA in response to radiation. This proof of concept study demonstrates that patient tailored evaluation of GI response to radiation is feasible via generation of HIO and comparative transcriptome profiling. This methodology can now be further explored for a personalized assessment of GI radiosensitivity and RBE estimation.
Collapse
Affiliation(s)
- Ali Nowrouzi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-34638
| | - Mathieu G. Sertorio
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.G.S.); (S.I.W.)
| | - Mahdi Akbarpour
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Maximillian Knoll
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Matthew Kuhar
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.K.); (J.M.W.)
| | - Christian Schwager
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.G.S.); (S.I.W.)
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.K.); (J.M.W.)
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Raetz AG, Banda DM, Ma X, Xu G, Rajavel AN, McKibbin PL, Lebrilla CB, David SS. The DNA repair enzyme MUTYH potentiates cytotoxicity of the alkylating agent MNNG by interacting with abasic sites. J Biol Chem 2020; 295:3692-3707. [PMID: 32001618 DOI: 10.1074/jbc.ra119.010497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
Higher expression of the human DNA repair enzyme MUTYH has previously been shown to be strongly associated with reduced survival in a panel of 24 human lymphoblastoid cell lines exposed to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The molecular mechanism of MUTYH-enhanced MNNG cytotoxicity is unclear, because MUTYH has a well-established role in the repair of oxidative DNA lesions. Here, we show in mouse embryonic fibroblasts (MEFs) that this MNNG-dependent phenotype does not involve oxidative DNA damage and occurs independently of both O6-methyl guanine adduct cytotoxicity and MUTYH-dependent glycosylase activity. We found that blocking of abasic (AP) sites abolishes higher survival of Mutyh-deficient (Mutyh -/-) MEFs, but this blockade had no additive cytotoxicity in WT MEFs, suggesting the cytotoxicity is due to MUTYH interactions with MNNG-induced AP sites. We found that recombinant mouse MUTYH tightly binds AP sites opposite all four canonical undamaged bases and stimulated apurinic/apyrimidinic endonuclease 1 (APE1)-mediated DNA incision. Consistent with these observations, we found that stable expression of WT, but not catalytically-inactive MUTYH, enhances MNNG cytotoxicity in Mutyh -/- MEFs and that MUTYH expression enhances MNNG-induced genomic strand breaks. Taken together, these results suggest that MUTYH enhances the rapid accumulation of AP-site intermediates by interacting with APE1, implicating MUTYH as a factor that modulates the delicate process of base-excision repair independently of its glycosylase activity.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, California 95616
| | - Douglas M Banda
- Department of Chemistry, University of California, Davis, California 95616
| | - Xiaoyan Ma
- Department of Chemistry, University of California, Davis, California 95616
| | - Gege Xu
- Department of Chemistry, University of California, Davis, California 95616
| | - Anisha N Rajavel
- Department of Chemistry, University of California, Davis, California 95616
| | - Paige L McKibbin
- Department of Chemistry, University of California, Davis, California 95616
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, California 95616
| | - Sheila S David
- Department of Chemistry, University of California, Davis, California 95616.
| |
Collapse
|
25
|
Amente S, Di Palo G, Scala G, Castrignanò T, Gorini F, Cocozza S, Moresano A, Pucci P, Ma B, Stepanov I, Lania L, Pelicci PG, Dellino GI, Majello B. Genome-wide mapping of 8-oxo-7,8-dihydro-2'-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells. Nucleic Acids Res 2019; 47:221-236. [PMID: 30462294 PMCID: PMC6326803 DOI: 10.1093/nar/gky1152] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is one of the major DNA modifications and a potent pre-mutagenic lesion prone to mispair with 2′-deoxyadenosine (dA). Several thousand residues of 8-oxodG are constitutively generated in the genome of mammalian cells, but their genomic distribution has not yet been fully characterized. Here, by using OxiDIP-Seq, a highly sensitive methodology that uses immuno-precipitation with efficient anti–8-oxodG antibodies combined with high-throughput sequencing, we report the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A), and mouse embryonic fibroblasts (MEFs). OxiDIP-Seq revealed sites of 8-oxodG accumulation overlapping with γH2AX ChIP-Seq signals within the gene body of transcribed long genes, particularly at the DNA replication origins contained therein. We propose that the presence of persistent single-stranded DNA, as a consequence of transcription-replication clashes at these sites, determines local vulnerability to DNA oxidation and/or its slow repair. This oxidatively-generated damage, likely in combination with other kinds of lesion, might contribute to the formation of DNA double strand breaks and activation of DNA damage response.
Collapse
Affiliation(s)
- Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giacomo Di Palo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | | | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Angela Moresano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
26
|
Raetz AG, David SS. When you're strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair (Amst) 2019; 80:16-25. [PMID: 31203172 DOI: 10.1016/j.dnarep.2019.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Molecular Pathophysiology of Insulin Depletion, Mitochondrial Dysfunction, and Oxidative Stress in Alzheimer’s Disease Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:27-44. [DOI: 10.1007/978-981-13-3540-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Variation in MUTYH expression in Arabian horses with Cerebellar Abiotrophy. Brain Res 2017; 1678:330-336. [PMID: 29103988 DOI: 10.1016/j.brainres.2017.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022]
Abstract
Cerebellar Abiotrophy (CA) is a neurodegenerative disease in Arabian horses affecting the cerebellum, more specifically the Purkinje neurons. Although CA occurs in several domestic species, CA in Arabian horses is unique in that a single nucleotide polymorphism (SNP) has been associated with the disease. Total RNA sequencing (RNA-seq) was performed on CA-affected horses to address the molecular mechanism underlying the disease. This research expands upon the RNA-seq work by measuring the impact of the CA-associated SNP on the candidate gene MutY homolog (MUTYH) and its regulation, isoform-specific expression and protein localization. We hypothesized that the CA-associated SNP compromises the promoter region of MUTYH, leading to differential expression of its isoforms. Our research demonstrates that the CA-associated SNP introduces a new binding site for a novel transcription factor (Myelin Transcription Factor-1 Like protein, MYT1L). In addition, CA-affected horses show differential expression of a specific isoform of MUTYH as well as different localization in the Purkinje and granular neurons of the cerebellum.
Collapse
|
29
|
Kunrath-Lima M, Repolês BM, Alves CL, Furtado C, Rajão MA, Macedo AM, Franco GR, Pena SDJ, Valenzuela L, Wisnovsky S, Kelley SO, Galanti N, Cabrera G, Machado CR. Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response. INFECTION GENETICS AND EVOLUTION 2017; 55:332-342. [PMID: 28970112 DOI: 10.1016/j.meegid.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi is a protozoan parasite and the causative agent of Chagas disease. Like most living organisms, it is susceptible to oxidative stress, and must adapt to distinct environments. Hence, DNA repair is essential for its survival and the persistence of infection. Therefore, we studied whether T. cruzi has a homolog counterpart of the MutY enzyme (TcMYH), important in the DNA Base Excision Repair (BER) mechanism. Analysis of T. cruzi genome database showed that this parasite has a putative MutY DNA glycosylase sequence. We performed heterologous complementation assays using this genomic sequence. TcMYH complemented the Escherichia coli MutY- strain, reducing the mutation rate to a level similar to wild type. In in vitro assays, TcMYH was able to remove an adenine that was opposite to 8-oxoguanine. We have also constructed a T. cruzi lineage that overexpresses MYH. Although in standard conditions this lineage has similar growth to control cells, the overexpressor is more sensitive to hydrogen peroxide and glucose oxidase than the control, probably due to accumulation of AP sites in its DNA. Localization experiments with GFP-fused TcMYH showed this enzyme is present in both nucleus and mitochondrion. QPCR and MtOX results reinforce the presence and function of TcMYH in these two organelles. Our data suggest T. cruzi has a functional MYH DNA glycosylase, which participates in nuclear and mitochondrial DNA Base Excision Repair.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Ceres Luciana Alves
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Carolina Furtado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Matheus Andrade Rajão
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Simon Wisnovsky
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| |
Collapse
|
30
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
31
|
Nakabeppu Y, Ohta E, Abolhassani N. MTH1 as a nucleotide pool sanitizing enzyme: Friend or foe? Free Radic Biol Med 2017; 107:151-158. [PMID: 27833032 DOI: 10.1016/j.freeradbiomed.2016.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
8-Oxo-7,8-dihydroguanine (GO) can originate as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), an oxidized form of dGTP in the nucleotide pool, or by direct oxidation of guanine base in DNA. Accumulation of GO in cellular genomes can result in mutagenesis or programmed cell death, and is thus minimized by the actions of MutT homolog-1 (MTH1) with 8-oxo-dGTPase, OGG1 with GO DNA glycosylase and MutY homolog (MUTYH) with adenine DNA glycosylase. Studies on Mth1/Ogg1/Mutyh-triple knockout mice demonstrated that the defense systems efficiently minimize GO accumulation in cellular genomes, and thus maintain low incidences of spontaneous mutagenesis and tumorigenesis. Mth1/Ogg1-double knockout mice increased GO accumulation in the genome, but exhibited little susceptibility to spontaneous tumorigenesis, thus revealing that accumulation of GO in cellular genomes induces MUTYH-dependent cell death. Cancer cells are exposed to high oxidative stress levels and accumulate a high level of 8-oxo-dGTP in their nucleotide pools; cancer cells consequently express increased levels of MTH1 to eliminate 8-oxo-dGTP, indicating that increased expression of MTH1 in cancer cells may be detrimental for cancer patients. Mth1/Ogg1-double knockout mice are highly vulnerable to neurodegeneration under oxidative conditions, while transgenic expression of human MTH1 efficiently prevents neurodegeneration by avoiding GO accumulation in mitochondrial genomes of neurons and/or nuclear genomes of microglia, indicating that increased expression of MTH1 may be beneficial for neuronal tissues.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Eiko Ohta
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
Banda DM, Nuñez NN, Burnside MA, Bradshaw KM, David SS. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic Biol Med 2017; 107:202-215. [PMID: 28087410 PMCID: PMC5457711 DOI: 10.1016/j.freeradbiomed.2017.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) may infringe on the passing of pristine genetic information by inducing DNA inter- and intra-strand crosslinks, protein-DNA crosslinks, and chemical alterations to the sugar or base moieties of DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most prevalent DNA lesions formed by RONS and is repaired through the base excision repair (BER) pathway involving the DNA repair glycosylases OGG1 and MUTYH in eukaryotes. MUTYH removes adenine (A) from 8-oxoG:A mispairs, thus mitigating the potential of G:C to T:A transversion mutations from occurring in the genome. The paramount role of MUTYH in guarding the genome is well established in the etiology of a colorectal cancer predisposition syndrome involving variants of MUTYH, referred to as MUTYH-associated polyposis (MAP). In this review, we highlight recent advances in understanding how MUTYH structure and related function participate in the manifestation of human disease such as MAP. Here we focus on the importance of MUTYH's metal cofactor sites, including a recently discovered "Zinc linchpin" motif, as well as updates to the catalytic mechanism. Finally, we touch on the insight gleaned from studies with MAP-associated MUTYH variants and recent advances in understanding the multifaceted roles of MUTYH in the cell, both in the prevention of mutagenesis and tumorigenesis.
Collapse
Affiliation(s)
- Douglas M Banda
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Nicole N Nuñez
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Michael A Burnside
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Katie M Bradshaw
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
33
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Chen SY, Chen HH, Huang YC, Liu SP, Lin YJ, Lo SF, Chang YY, Lin HW, Huang CM, Tsai FJ. Polymorphism and protein expression of MUTYH gene for risk of rheumatoid arthritis. BMC Musculoskelet Disord 2017; 18:69. [PMID: 28173856 PMCID: PMC5297156 DOI: 10.1186/s12891-017-1437-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Background We have previously described the association between rheumatoid arthritis (RA) prevalence and the two mutY Homolog (E. coli) (MUTYH) SNPs (rs3219463 and rs3219476) among the Taiwanese population. This present study will aim to elucidate whether the SNPs can alter the expression of EGFR in the progression of RA. Methods The cohort study included 368 Taiwan’s Han Chinese RA patients and 364 healthy controls. Blood samples collected from the participants were analyzed to determine their serum MUTYH levels and to identify rs3219463 SNP of MUTYH from their genomic DNA. Results Our data resulted in a statistically significant difference in genotype frequency distributions at rs3219463 for RA patients and controls (p < 0.0002). Also, the patients with G carrier at rs3219463 were less likely to suffer from painful joints (p < 0.006) and DAS28 scores (p < 0.003). Furthermore, the increase in serum level of MUTYH was also observed in RA patients (p < 0.005). Conclusions Our study showed that RA is associated with rs3219463 SNP in EGFR gene and an increased serum level of the MUTYH protein. These findings suggest MUTYH is worthy of further investigation as a therapeutic target for RA.
Collapse
Affiliation(s)
- Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.,Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.,Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, 404, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.,Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
| | - Sui-Foon Lo
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, and Institute of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, 413, Taiwan
| | - Chung-Ming Huang
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan. .,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan. .,Department of Pediatrics, China Medical University Hospital, Taichung, 404, Taiwan. .,Department of Medical Genetics, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
35
|
Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mech Ageing Dev 2017; 161:95-104. [DOI: 10.1016/j.mad.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023]
|
36
|
Hou Y, Song H, Croteau DL, Akbari M, Bohr VA. Genome instability in Alzheimer disease. Mech Ageing Dev 2017; 161:83-94. [PMID: 27105872 PMCID: PMC5195918 DOI: 10.1016/j.mad.2016.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis of sporadic AD (sAD) is more complex and variants of several genes are associated with an increased lifetime risk of AD. Nuclear and mitochondrial DNA integrity is pivotal during neuronal development, maintenance and function. DNA damage and alterations in cellular DNA repair capacity have been implicated in the aging process and in age-associated neurodegenerative diseases, including AD. These findings are supported by research using animal models of AD and in DNA repair deficient animal models. In recent years, novel mechanisms linking DNA damage to neuronal dysfunction have been identified and have led to the development of noninvasive treatment strategies. Further investigations into the molecular mechanisms connecting DNA damage to AD pathology may help to develop novel treatment strategies for this debilitating disease. Here we provide an overview of the role of genome instability and DNA repair deficiency in AD pathology and discuss research strategies that include genome instability as a component.
Collapse
Affiliation(s)
- Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hyundong Song
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mansour Akbari
- Center for Healthy Aging, SUND, University of Copenhagen, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
37
|
Sollazzo A, Shakeri-Manesh S, Fotouhi A, Czub J, Haghdoost S, Wojcik A. Interaction of low and high LET radiation in TK6 cells-mechanistic aspects and significance for radiation protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:721-735. [PMID: 27631423 DOI: 10.1088/0952-4746/36/4/721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most environmental, occupational and medical exposures to ionising radiation are associated with a simultaneous action of different radiation types. An open question remains whether radiations of different qualities interact with each other to yield effects stronger than expected based on the assumption of additivity. It is possible that DNA damage induced by high linear energy transfer (LET) radiation will lead to an opening of the chromatin structure making the DNA more susceptible to attack by reactive oxygen species (ROS) generated by the low LET radiation. In such case, the effect of mixed beams should be strongly expressed in cells that are sensitive to ROS. The present investigation was carried out to test if cells with an impaired capacity to handle oxidative stress are particularly sensitive to the effect of mixed beams of alpha particles and x-rays. Clonogenic cell survival curves and mutant frequencies were analysed in TK6 wild type (wt) cells and in TK6 cells with a knocked down hMYH glycosylase. The results showed a synergistic effect of mixed beams on clonogenic cell survival of TK6wt but not TK6MYH- cells. The frequencies of mutants showed a high degree of interexperimental variability without any indications for synergistic effects of mixed beams. TK6MYH- cells were generally more tolerant to radiation exposure with respect to clonogenic cell survival but showed a strong increase in mutant frequency. The results demonstrate that exposure of wt cells to a mixed beam of alpha particles and x-rays leads to a detrimental effect which is stronger than expected based on the assumption of additivity. The role of oxidative stress in the reaction of cells to mixed beams remains unclear.
Collapse
Affiliation(s)
- Alice Sollazzo
- MBW Department, Centre for Radiation Protection Research, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Wickramaratne S, Banda DM, Ji S, Manlove AH, Malayappan B, Nuñez NN, Samson L, Campbell C, David SS, Tretyakova N. Base Excision Repair of N 6-Deoxyadenosine Adducts of 1,3-Butadiene. Biochemistry 2016; 55:6070-6081. [PMID: 27552084 DOI: 10.1021/acs.biochem.6b00553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The important industrial and environmental carcinogen 1,3-butadiene (BD) forms a range of adenine adducts in DNA, including N6-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine (N6-HB-dA), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N6-HMHP-dA), and N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N6,N6-DHB-dA). If not removed prior to DNA replication, these lesions can contribute to A → T and A → G mutations commonly observed following exposure to BD and its metabolites. In this study, base excision repair of BD-induced 2'-deoxyadenosine (BD-dA) lesions was investigated. Synthetic DNA duplexes containing site-specific and stereospecific (S)-N6-HB-dA, (R,S)-1,N6-HMHP-dA, and (R,R)-N6,N6-DHB-dA adducts were prepared by a postoligomerization strategy. Incision assays with nuclear extracts from human fibrosarcoma (HT1080) cells have revealed that BD-dA adducts were recognized and cleaved by a BER mechanism, with the relative excision efficiency decreasing in the following order: (S)-N6-HB-dA > (R,R)-N6,N6-DHB-dA > (R,S)-1,N6-HMHP-dA. The extent of strand cleavage at the adduct site was decreased in the presence of BER inhibitor methoxyamine and by competitor duplexes containing known BER substrates. Similar strand cleavage assays conducted using several eukaryotic DNA glycosylases/lyases (AAG, Mutyh, hNEIL1, and hOGG1) have failed to observe correct incision products at the BD-dA lesion sites, suggesting that a different BER enzyme may be involved in the removal of BD-dA adducts in human cells.
Collapse
Affiliation(s)
- Susith Wickramaratne
- Masonic Cancer Center and Departments of Chemistry and Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Douglas M Banda
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Shaofei Ji
- Masonic Cancer Center and Departments of Chemistry and Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Bhaskar Malayappan
- Masonic Cancer Center and Departments of Chemistry and Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Nicole N Nuñez
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Leona Samson
- Division of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sheila S David
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Natalia Tretyakova
- Masonic Cancer Center and Departments of Chemistry and Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Nakatake S, Murakami Y, Ikeda Y, Morioka N, Tachibana T, Fujiwara K, Yoshida N, Notomi S, Hisatomi T, Yoshida S, Ishibashi T, Nakabeppu Y, Sonoda KH. MUTYH promotes oxidative microglial activation and inherited retinal degeneration. JCI Insight 2016; 1:e87781. [PMID: 27699246 DOI: 10.1172/jci.insight.87781] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog-mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.
Collapse
Affiliation(s)
- Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Noriko Morioka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Akita University, Hondo, Akita, Japan
| | - Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| |
Collapse
|
40
|
Sati J, Mohanty BP, Garg ML, Koul A. Pro-Oxidant Role of Silibinin in DMBA/TPA Induced Skin Cancer: 1H NMR Metabolomic and Biochemical Study. PLoS One 2016; 11:e0158955. [PMID: 27414401 PMCID: PMC4944989 DOI: 10.1371/journal.pone.0158955] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/23/2016] [Indexed: 01/08/2023] Open
Abstract
Silibinin, a major bioactive flavonolignan in Silybum marianum, has received considerable attention in view of its anticarcinogenic activity. The present study examines its anticancer potential against 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin cancer. Male LACA mice were randomly segregated into 4 groups: Control, DMBA/TPA, Silibinin and Silibinin+DMBA/TPA. Tumors in DMBA/TPA and Silibinin+DMBA/TPA groups were histologically graded as squamous cell carcinoma. In the Silibinin+DMBA/TPA group, significant reduction in tumor incidence (23%), tumor volume (64.4%), and tumor burden (84.8%) was observed when compared to the DMBA/TPA group. The underlying protective mechanism of Silibinin action was studied at pre-initiation (2 weeks), post-initiation (10 weeks) and promotion (22 weeks) stages of the skin carcinogenesis. The antioxidant nature of Silibinin was evident at the end of 2 weeks of its treatment. However, towards the end of 10 and 22 weeks, elevated lipid peroxidation (LPO) levels indicate the pro-oxidative nature of Silibinin in the cancerous tissue. TUNEL assay revealed enhanced apoptosis in the Silibinin+DMBA/TPA group with respect to the DMBA/TPA group. Therefore, it may be suggested that raised LPO could be responsible for triggering apoptosis in the Silibinin+DMBA/TPA group. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to determine the metabolic profile of the skin /skin tumors. Dimethylamine (DMA), glycerophosphocholine (GPC), glucose, lactic acid, taurine and guanine were identified as the major contributors for separation between the groups from the Principal Component Analysis (PCA) of the metabolite data. Enhanced DMA levels with no alteration in GPC, glucose and lactate levels reflect altered choline metabolism with no marked Warburg effect in skin tumors. However, elevated guanine levels with potent suppression of taurine and glucose levels in the Silibinin+DMBA/TPA group are suggestive of the pro-oxidative nature of Silibinin in regressing tumors. Thus, supporting the theory of augmented LPO levels resulting in increased apoptosis in the skin tumors treated with Silibinin.
Collapse
Affiliation(s)
- Jasmine Sati
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Biraja Prasad Mohanty
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Mohan Lal Garg
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Ashwani Koul
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
- * E-mail:
| |
Collapse
|
41
|
Prakash A, Doublié S. Base Excision Repair in the Mitochondria. J Cell Biochem 2016; 116:1490-9. [PMID: 25754732 DOI: 10.1002/jcb.25103] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
The 16.5 kb human mitochondrial genome encodes for 13 polypeptides, 22 tRNAs and 2 rRNAs involved in oxidative phosphorylation. Mitochondrial DNA (mtDNA), unlike its nuclear counterpart, is not packaged into nucleosomes and is more prone to the adverse effects of reactive oxygen species (ROS) generated during oxidative phosphorylation. The past few decades have witnessed an increase in the number of proteins observed to translocate to the mitochondria for the purposes of mitochondrial genome maintenance. The mtDNA damage produced by ROS, if not properly repaired, leads to instability and can ultimately manifest in mitochondrial dysfunction and disease. The base excision repair (BER) pathway is employed for the removal and consequently the repair of deaminated, oxidized, and alkylated DNA bases. Specialized enzymes called DNA glycosylases, which locate and cleave the damaged base, catalyze the first step of this highly coordinated repair pathway. This review focuses on members of the four human BER DNA glycosylase superfamilies and their subcellular localization in the mitochondria and/or the nucleus, as well as summarizes their structural features, biochemical properties, and functional role in the excision of damaged bases.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, Vermont
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, Vermont
| |
Collapse
|
42
|
Regulation of MUTYH, a DNA Repair Enzyme, in Renal Proximal Tubular Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:682861. [PMID: 26576226 PMCID: PMC4630661 DOI: 10.1155/2015/682861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/10/2015] [Accepted: 01/17/2015] [Indexed: 12/30/2022]
Abstract
MUTYH is a DNA repair enzyme that initiates a base excision repair (BER) by recognizing and removing 8-Oxoguanine (8-oxoG) and its paired adenine. We demonstrated that both TGF-β1 and H2O2 treatment led to an increased 8-oxoG in cultured human proximal tubule epithelial (HK-2) cells, while the former induced epithelial-mesenchymal transition and the latter caused cell apoptosis. Without stimulation, HK-2 cells showed MUTYH expression in mitochondria. TGF-β1 triggered a transient upregulation of mitochondrial MUTYH and induced the expression of nuclear isoforms, while H2O2 showed no role on MUTYH expression. Ureteral obstruction (UUO) mice exhibited high 8-oxoG reactivity with tubulointerstitial lesions. After obstruction, the MUTYH expression was increased only in tubules at day 3 and decreased with obvious tubular atrophy at day 10. Particularly, MUTYH was primarily located in normal tubular cytoplasm with a dominant mitochondrial form. A few cells with nuclear MUTYH expression were observed in the fibrotic interstitium. We confirmed that increased MUTYH expression was upregulated and positively correlated with the severity of kidney fibrosis. Thus, renal fibrosis caused a cell-type-specific and time-dependent response of oxidative DNA repairs, even within the same tissues. It suggests that intervention of MUTYH might be effective for therapies.
Collapse
|
43
|
Distinct functional consequences of MUTYH variants associated with colorectal cancer: Damaged DNA affinity, glycosylase activity and interaction with PCNA and Hus1. DNA Repair (Amst) 2015; 34:39-51. [PMID: 26377631 DOI: 10.1016/j.dnarep.2015.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9-Hus1-Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.
Collapse
|
44
|
Guo W, Zheng B, Guo D, Cai Z, Wang Y. Association of AluYb8 insertion/deletion polymorphism in the MUTYH gene with mtDNA maintain in the type 2 diabetes mellitus patients. Mol Cell Endocrinol 2015; 409:33-40. [PMID: 25829257 DOI: 10.1016/j.mce.2015.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022]
Abstract
A common AluYb8-element insertion/deletion polymorphism of the MUTYH gene (AluYb8MUTYH) is a novel genetic risk factor for type 2 diabetes mellitus (T2DM). In the present study, mtDNA sequencing analysis indicated that the mtDNA sequence heteroplasmy was not associated with AluYb8MUTYH polymorphism. To better understand the genetic risk for T2DM, we investigated the association of this polymorphism with mtDNA content, mtDNA breakage and mtDNA transcription in the leukocytes of T2DM patients. The mtDNA content and unbroken mtDNA were significantly increased in the mutant patients than in the wild-type patients (P <0.05, respectively). However, no association between mtDNA transcription and AluYb8MUTYH variant was observed. The results suggested that the AluYb8MUTYH variant was associated with an altered mtDNA maintain in T2DM patients. The high level of mtDNA content observed in the mutant patients may have resulted from inefficient base excision repair of mitochondrial MUTYH and a compensatory mechanism that is triggered by elevated oxidative stress.
Collapse
Affiliation(s)
- Wenwen Guo
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China; Department of Medical Genetics, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China; Clinical Molecular Diagnostic Center, Second Hospital, Nanjing Medical University, No.121 Jiangjiayuan Road, Nanjing 210011, China
| | - Bixia Zheng
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China; Department of Medical Genetics, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China
| | - Dong Guo
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China; Department of Medical Genetics, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China
| | - Zhenming Cai
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China; Department of Medical Genetics, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China; Department of Medical Genetics, Nanjing University School of Medicine, No.22 HanKou Road, Nanjing 210093, China.
| |
Collapse
|
45
|
Grasso F, Ruggieri V, De Luca G, Leopardi P, Mancuso MT, Casorelli I, Pichierri P, Karran P, Bignami M. MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation. Oncotarget 2015; 6:7481-92. [PMID: 25638157 PMCID: PMC4480694 DOI: 10.18632/oncotarget.3037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/01/2014] [Indexed: 12/22/2022] Open
Abstract
The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized DNA bases. Using Mutyh-nullmouse fibroblasts (MEFs) we examined whether MUTYH provides protection against the lethal effects of combined DNA 6-TG/UVA. Surprisingly, Mutyh-null MEFs were more resistant than wild-type MEFs, despite accumulating higher levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG).Their enhanced 6-TG/UVA resistance reflected the absence of the MUTYH protein and MEFs expressing enzymatically-dead human variants were as sensitive as wild-type cells. Consistent with their enhanced resistance, Mutyh-null cells sustained fewer DNA strand breaks and lower levels of chromosomal damage after 6-TG/UVA. Although 6-TG/UVA treatment caused early checkpoint activation irrespective of the MUTYH status, Mutyh-null cells failed to arrest in S-phase at late time points. MUTYH-dependent toxicity was also apparent in vivo. Mutyh-/- mice survived better than wild-type during a 12-month chronicexposure to Aza/UVA treatments that significantly increased levels of skin DNA 8-oxoG. Two squamous cell skin carcinomas arose in Aza/UVA treated Mutyh-/- mice whereas similarly treated wild-type animals remained tumor-free.
Collapse
Affiliation(s)
- Francesca Grasso
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Gabriele De Luca
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Leopardi
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa Mancuso
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) CR-Casaccia, Rome, Italy
| | - Ida Casorelli
- Department of Immunohematology and Transfusion Unit, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Pietro Pichierri
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Peter Karran
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Fukuyo M, Nakano T, Zhang Y, Furuta Y, Ishikawa K, Watanabe-Matsui M, Yano H, Hamakawa T, Ide H, Kobayashi I. Restriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities. Nucleic Acids Res 2015; 43:2841-52. [PMID: 25697504 PMCID: PMC4357717 DOI: 10.1093/nar/gkv116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently reported that a restriction enzyme (R.PabI) of the PabI superfamily with half-pipe fold has DNA glycosylase activity that excises an adenine base in the recognition sequence (5′-GTAC). We now found a second activity in this enzyme: at the resulting apurinic/apyrimidinic (AP) (abasic) site (5′-GT#C, # = AP), its AP lyase activity generates an atypical strand break. Although the lyase activity is weak and lacks sequence specificity, its covalent DNA–R.PabI reaction intermediates can be trapped by NaBH4 reduction. The base excision is not coupled with the strand breakage and yet causes restriction because the restriction enzyme action can impair transformation ability of unmethylated DNA even in the absence of strand breaks in vitro. The base excision of R.PabI is inhibited by methylation of the target adenine base. These findings expand our understanding of genetic and epigenetic processes linking those in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Masaki Fukuyo
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Yingbiao Zhang
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| | - Miki Watanabe-Matsui
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hirokazu Yano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Hamakawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
47
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
48
|
Oka S, Leon J, Tsuchimoto D, Sakumi K, Nakabeppu Y. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death. Oncogenesis 2014; 3:e121. [PMID: 25310643 PMCID: PMC4216901 DOI: 10.1038/oncsis.2014.35] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
p53-regulated caspase-independent cell death has been implicated in suppression of tumorigenesis, however, the regulating mechanisms are poorly understood. We previously reported that 8-oxoguanine (8-oxoG) accumulation in nuclear DNA (nDNA) and mitochondrial DNA triggers two distinct caspase-independent cell death through buildup of single-strand DNA breaks by MutY homolog (MUTYH), an adenine DNA glycosylase. One pathway depends on poly-ADP-ribose polymerase (PARP) and the other depends on calpains. Deficiency of MUTYH causes MUTYH-associated familial adenomatous polyposis. MUTYH thereby suppresses tumorigenesis not only by avoiding mutagenesis, but also by inducing cell death. Here, we identified the functional p53-binding site in the human MUTYH gene and demonstrated that MUTYH is transcriptionally regulated by p53, especially in the p53/DNA mismatch repair enzyme, MLH1-proficient colorectal cancer-derived HCT116+Chr3 cells. MUTYH-small interfering RNA, an inhibitor for p53 or PARP suppressed cell death without an additive effect, thus revealing that MUTYH is a potential mediator of p53 tumor suppression, which is known to be upregulated by MLH1. Moreover, we found that the p53-proficient, mismatch repair protein, MLH1-proficient colorectal cancer cell line express substantial levels of MUTYH in nuclei but not in mitochondria, suggesting that 8-oxoG accumulation in nDNA triggers MLH1/PARP-dependent cell death. These results provide new insights on the molecular mechanism of tumorigenesis and potential new strategies for cancer therapies.
Collapse
Affiliation(s)
- S Oka
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - J Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - D Tsuchimoto
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - K Sakumi
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - Y Nakabeppu
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
de Oliveira AHS, da Silva AE, de Oliveira IM, Henriques JAP, Agnez-Lima LF. MutY-glycosylase: an overview on mutagenesis and activities beyond the GO system. Mutat Res 2014; 769:119-31. [PMID: 25771731 DOI: 10.1016/j.mrfmmm.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
MutY is a glycosylase known for its role in DNA base excision repair (BER). It is critically important in the prevention of DNA mutations derived from 7,8-dihydro-8-oxoguanine (8-oxoG), which are the major lesions resulting from guanine oxidation. MutY has been described as a DNA repair enzyme in the GO system responsible for removing adenine residues misincorporated in 8-oxoG:A mispairs, avoiding G:C to T:A mutations. Further studies have shown that this enzyme binds to other mispairs, interacts with several enzymes, avoids different transversions/transitions in DNA, and is involved in different repair pathways. Additional activities have been reported for MutY, such as the repair of replication errors in newly synthesized DNA strands through its glycosylase activity. Moreover, MutY is a highly conserved enzyme present in several prokaryotic and eukaryotic organisms. MutY defects are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). Here, we have reviewed the roles of MutY in the repair of mispaired bases in DNA as well as its activities beyond the GO system.
Collapse
Affiliation(s)
- Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Acarízia Eduardo da Silva
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Iuri Marques de Oliveira
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Antônio Pegas Henriques
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
50
|
Nakabeppu Y. Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival of cancer cells. Int J Mol Sci 2014; 15:12543-57. [PMID: 25029543 PMCID: PMC4139859 DOI: 10.3390/ijms150712543] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
Abstract
8-Oxoguanine, a major oxidized base lesion formed by reactive oxygen species, causes G to T transversion mutations or leads to cell death in mammals if it accumulates in DNA. 8-Oxoguanine can originate as 8-oxo-dGTP, formed in the nucleotide pool, or by direct oxidation of the DNA guanine base. MTH1, also known as NUDT1, with 8-oxo-dGTP hydrolyzing activity, 8-oxoguanine DNA glycosylase (OGG1) an 8-oxoG DNA glycosylase, and MutY homolog (MUTYH) with adenine DNA glycosylase activity, minimize the accumulation of 8-oxoG in DNA; deficiencies in these enzymes increase spontaneous and induced tumorigenesis susceptibility. However, different tissue types have different tumorigenesis susceptibilities. These can be reversed by combined deficiencies in the defense systems, because cell death induced by accumulation of 8-oxoG in DNA is dependent on MUTYH, which can be suppressed by MTH1 and OGG1. In cancer cells encountering high oxidative stress levels, a high level of 8-oxo-dGTP accumulates in the nucleotide pool, and cells therefore express increased levels of MTH1 in order to eliminate 8-oxo-dGTP. Suppression of MTH1 may be an efficient strategy for killing cancer cells; however, because MTH1 and OGG1 protect normal tissues from oxidative-stress-induced cell death, it is important that MTH1 inhibition does not increase the risk of healthy tissue degeneration.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and Research Center for Nucleotide Pool, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| |
Collapse
|