1
|
Wu ZH, Zhong Y, Zhou T, Xiao HJ. miRNA biomarkers for predicting overall survival outcomes for head and neck squamous cell carcinoma. Genomics 2020; 113:135-141. [PMID: 33279650 DOI: 10.1016/j.ygeno.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor of the upper aerodigestive tract. The loss and gain of miRNA function promote cancer development through various mechanisms. RNA sequencing (RNA-seq) and miRNAs sequencing data from the Cancer Genome Atlas (TCGA) was used to show the dysfunctional miRNAs microenvironment and to provide useful biomarkers for miRNAs therapy. Seven miRNAs were found to be independent prognostic factors of HNSCC patients in the training cohort. A total of 60 target genes for these miRNAs were predicted. Nine target genes (CDCA4, CXCL14, FLNC, KLF7, NBEAL2, P4HA1, PFKM, PFN2 and SEPPINE1) were correlated with patient's overall survival (OS) outcomes. We identified novel miRNAs markers for the prognosis of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Hong-Jun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Azar MRMH, Akbari M, Mohammed HN, Asadi M, Shanehbandi D, Rezai M, Zafari V, Niknam S, Tamjidifar R, Tarzi S, Mahdavi F. Dysregulation of miR-27a and SMAD2 can be a reliable indicator in the prognosis and diagnosis of CRC as well as in response to chemotherapy drugs. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Abstract
Mesenchymal stem cells (MSCs) represent a promising source of cell-based therapies for treatment of a wide variety of injuries and diseases. Their tropism and migration to the damaged sites, which are elicited by cytokines secreted from tissues around pathology, are the prerequisite for tissue repair and regeneration. Better understanding of the elicited-migration of MSCs and discovering conditions that elevate their migration ability, will help to increase their homing to pathologies and improve therapeutic efficacy. It is increasingly recognized that microRNAs are important regulators of cell migration. Here we summarize current understanding of the microRNA-regulated migration of MSCs.
Collapse
|
4
|
Abstract
Non-communicable diseases contribute to 71% of the deaths worldwide, of which cancers rank second after cardiovascular diseases. Among all the cancers, head and neck cancers (HNC) are consequential in augmenting the global cancer incidence as well as mortality. Receptor tyrosine kinases (RTKs) are emphatic for the matter that they serve as biomarkers aiding the analysis of tumor progression and metastasis as well as diagnosis, prognosis and therapeutic progression in the patients. The extensive researches on HNC have made significant furtherance in numerous targeted therapies, but for the escalating therapeutic resistance. This review explicates RTKs in HNC, their signaling pathways involved in tumorigenesis, metastasis and stemness induction, the association of non-coding RNAs with RTKs, an overview of RTK based therapy and associated resistance in HNC, as well as a sneak peek into the HPV positive HNC and its therapy. The review extrapolates the cardinal role of RTKs and RTK based therapy as superior to other existing therapeutic interventions for HNC.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
5
|
Antony J, Thiery JP, Huang RYJ. Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys Biol 2019; 16:041004. [PMID: 30939460 DOI: 10.1088/1478-3975/ab157a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process wherein polarized epithelial cells lose their junctional architecture and apical-basal polarity to become motile mesenchymal cells, and there is emerging evidence for its role in propagating tumor dissemination. While many multifaceted nodules converge onto the EMT program, in this review we will highlight the fundamental biology of the signaling schemas that enable EMT. In many cancers, the property of tumor dissemination and metastasis is closely associated with re-enabling developmental properties such as EMT. We discuss the molecular complexity of the tumor heterogeneity in terms of EMT-based gene expression molecular subtypes, and the rewiring of critical signaling nodules in the subtypes displaying higher degrees of EMT can be therapeutically exploited. Specifically in the context of a deadly malignancy such as ovarian cancer where there are no defined mutations or limited biomarkers for developing targeted therapy or personalized medicine, we highlight the importance of identifying EMT-based subtypes that will improve therapeutic intervention. In ovarian cancer, the poor prognosis mesenchymal 'Mes' subtype presents with amplified signaling of the receptor tyrosine kinase (RTK) AXL, extensive crosstalk with other RTKs such as cMET, EGFR and HER2, and sustained temporal activation of extracellular-signal regulated kinase (ERK) leading to induction of EMT transcription factor Slug, underscoring a pathway addiction in Mes that can be therapeutically targeted. We will further examine the emergence of therapeutic modalities in these EMT subtypes and finally conclude with potential interdisciplinary biophysical methodologies to provide additional insights in deciphering the mechanistic and biochemical aspects of EMT. This review intends to provide an overview of the cellular and molecular changes accompanying epithelial-to-mesenchymal transition (EMT) in development and the requisition of this evolutionarily conserved pathway in cancer progression and metastatic disease. Specifically, in a heterogeneous disease such as ovarian cancer lacking defined targetable mutations, the identification of EMT-based subtypes has opened avenues to tailor precision personalized medicine. In particular, using the oncogenic RTK AXL as an example, we will highlight how this classification enables EMT-subtype specific identification of targets that could improve treatment options for patients and how there is a growing need for biophysical approaches to model dynamic processes such as EMT.
Collapse
Affiliation(s)
- Jane Antony
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
6
|
Domingues CSDC, Serambeque BP, Laranjo Cândido MS, Marto CMM, Veiga FJDB, Sarmento Antunes Cruz Ribeiro AB, Figueiras ARR, Botelho MFR, Dourado MDARF. Epithelial-mesenchymal transition and microRNAs: Challenges and future perspectives in oral cancer. Head Neck 2018; 40:2304-2313. [PMID: 30120853 DOI: 10.1002/hed.25381] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Head and neck cancer is the sixth most common cancer worldwide, with oral squamous cell carcinoma (OSCC) being the most representative type. OSCC is a public health problem with high morbidity and poor survival rate. Epithelial-mesenchymal transition is emerging as a hallmark in OSCC. METHODS In this study, we described the role of microRNAs in epithelial-mesenchymal transition regulation in OSCC based on a PubMed search using articles published in English between January 1, 2010, and January 31, 2018. RESULTS MicroRNA's regulatory networks seem to be a hallmark of epithelial-mesenchymal transition in OSCC pathophysiology becoming a growing challenge to design new studies and strategies from biology to clinical applications. CONCLUSION Therefore, we propose that targeting therapies to epithelial-mesenchymal transition-type cells, namely, coordinating microRNAs and/or hydrophobic drugs, such as conventional therapy, could be a promising strategy to improve the outcomes of patients with OSCC.
Collapse
Affiliation(s)
- Cátia Sofia da Costa Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Beatriz Prazeres Serambeque
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Sofia Laranjo Cândido
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos Miguel Machado Marto
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal.,Experimental Pathology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco José de Baptista Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento Antunes Cruz Ribeiro
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Ramalho Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria Filomena Roque Botelho
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marília de Assunção Rodrigues Ferreira Dourado
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Pathophysiology Course Unit, Dentistry Area, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Sannigrahi MK, Sharma R, Panda NK, Khullar M. Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review. Oral Dis 2017; 24:1417-1427. [PMID: 28941018 DOI: 10.1111/odi.12782] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with high recurrence, metastasis, and poor treatment outcome. Recent studies have reported that non-coding RNA (ncRNA) might play critical role in regulating different types of cancer. MicroRNAs (miRs) are short ncRNAs (20-25 nucleotides) responsible for post-transcriptional regulation of gene expression and may have a role in oncogenesis by acting as oncomiRs or tumor suppressor miRs. Long non-coding RNAs (lncRNAs) are heterogenous group of ncRNAs more than 200 nucleotides long, can act in cis and/or in trans, and have been also implicated in carcinogenesis. These molecules have been suggested to be promising candidates as diagnostic and prognostic biomarkers and for development of novel therapeutic approaches. In this review, we have summarized recent findings on role of these ncRNAs in HPV-negative (HPV-ve) and HPV-positive (HPV+ve) HNSCC. The available literature supports differential expression of both microRNAs and long non-coding RNAs, which include oncogenic ncRNAs (miR-21, miR-31, miR-155, miR-211, HOTAIR, and MALAT1) and tumor suppressor ncRNAs (let7d, miR-17, miR-375, miR-139, and MEG3) in HPV+ve HNSCC tumors as compared to HPV-ve tumors and they have distinct role in the pathophysiology of these two types of HNSCCs.
Collapse
Affiliation(s)
- M K Sannigrahi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - R Sharma
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - N K Panda
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M Khullar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
9
|
miRNA-expression in tonsillar squamous cell carcinomas in relation to HPV infection and expression of the antileukoproteinase SLPI. PAPILLOMAVIRUS RESEARCH 2017; 4:26-34. [PMID: 29179866 PMCID: PMC5883217 DOI: 10.1016/j.pvr.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
The aim of this study was to determine if micro-(mi-)RNAs are involved in the previously reported inverse correlation between the antileukoproteinase SLPI, HPV, and smoking habit of head and neck squamous cells carcinoma (HNSCC) patients. HPV-status and SLPI-protein expression were determined in tonsillar SCC (TSCC; n=126). Differentially expressed miRNAs dependent on HPV-status and SLPI-expression were detected by microarray; possible binding-sites in SLPI- and HPVE6-mRNAs were determined in silico. Survival rates were estimated testing prognostic values of HPV-status, SLPI- and miRNA-expression. miRNA-array identified 24 up-regulated and 10 down-regulated miRNAs in HPV-positive versus HPV-negative TSCC (p<0.01; HPV-positivity: 42.1%). HPV-positivity resulted in two up-regulated miRNAs in SLPI-positive TSCC. Of 16 further miRNAs, eight miRNAs were up- and eight were down-regulated in SLPI-negative TSCC. RT-q-PCR-validation of the four most differentially expressed miRNAs showed that miR-363 is expressed strongest in SLPI-negative/HPV-positive TSSC. In silico-analysis of all differentially expressed miRNAs identified miR-363, miR-210, miR-130a, and miR-181a with possible binding sites in the HPV16-E6-mRNA, but none were predicted in the SLPI-mRNA. HPV-positivity, low SLPI-levels and high miR-363-levels are significantly associated with better survival rates. The data presented here show that miR-363 is associated with HPV-positive/SPLI-negative TSCC. The prognostic value of miR-363 suggests a role in the assumed inverse correlation of smoking and SPLI-expression in the mode of HPV-infections in tonsillar but possibly also other HNSCC.
Collapse
|
10
|
Tchio Mantho CI, Harbuzariu A, Gonzalez-Perez RR. Histone deacetylases, microRNA and leptin crosstalk in pancreatic cancer. World J Clin Oncol 2017; 8:178-189. [PMID: 28638788 PMCID: PMC5465008 DOI: 10.5306/wjco.v8.i3.178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Because pancreatic cancer (PC) historically has had poor prognosis and five year survival rates, it has been intensely investigated. Analysis of PC incidence and biology has shown a link between different risk factors such as smoking, alcoholism, and obesity and disease progression. Important factors affecting PC include the epigenomic changes driven by DNA methylation and histone acetylation, and actions of microRNA inducing oncogenic or tumor suppressor effects. Studies have identified markers whose dysregulation seem to play important roles in PC progression. PC markers involve classical histone deacetylases (HDAC), PC stem cell (PCSC), and leptin. In this review, we discuss the role of several PC biomarkers, and the potential crosstalk between HDAC, microRNA, and leptin in PC progression. Dysregulated expression of these molecules can increase proliferation, survival, PCSC, resistance to chemotherapy and tumor angiogenesis. The potential relationships between these molecules are further analyzed using data from The Cancer Genome Atlas and crosstalk pathways generated by the Pathway Studio Platform (Ariadne Genomics, Inc.). Oncogenic miRNA21 and tumor suppressor miRNA200 have been previously linked to leptin signaling. Preliminary analysis of PC biopsies and signaling crosstalk suggests that the main adipokine leptin could affect the expression of microRNA and HDAC in PC. Data analysis suggests that HDAC-microRNA-leptin signaling crosstalk may be a new target for PC therapy.
Collapse
|
11
|
Ding L, Ni J, Yang F, Huang L, Deng H, Wu Y, Ding X, Tang J. Promising therapeutic role of miR-27b in tumor. Tumour Biol 2017; 39:1010428317691657. [PMID: 28351320 DOI: 10.1177/1010428317691657] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small nonprotein-encoding RNAs ranging from 18 to 25 nucleotides in size and regulate multiple biological pathways via directly targeting a variety of associated genes in cancers. MicroRNA-27b is a highly conserved MicroRNA throughout vertebrates and there are two homologs (hsa-miR-27a and hsa-miR-27b) in humans. MicroRNA-27b is an intragenic microRNA located on chromosome 9q22.1 within the C9orf3 gene, clustering with miR-23b and miR-24-1 in human. As a frequently dysregulated microRNA in human cancers, microRNA-27b could function as a tumor suppressor or an oncogenic microRNA. More and more studies indicate that microRNA-27b is involved in affecting various biological processes, such as angiogenesis, proliferation, metastasis, and drug resistance, and thus may act as a promising therapeutic target in human cancers. In this review, we discuss the role of microRNA-27b in detail and offer novel insights into molecular targeting therapy for cancers.
Collapse
Affiliation(s)
- Li Ding
- 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Jie Ni
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,3 The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Fan Yang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Lingli Huang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Heng Deng
- 4 The Graduate School, AnHui University of Traditional Chinese Medicine, Hefei, P.R. China
| | - Yang Wu
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xuansheng Ding
- 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jinhai Tang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,5 Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
12
|
Epigenetic regulation of HGF/Met receptor axis is critical for the outgrowth of bone metastasis from breast carcinoma. Cell Death Dis 2017; 8:e2578. [PMID: 28151481 PMCID: PMC5386451 DOI: 10.1038/cddis.2016.403] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/03/2023]
Abstract
Our translational research deals with the influence of microenvironment on the phenotype and colonization of bone metastases from breast carcinoma, and on pre-metastatic niche formation. The aim of the present study was to clarify the origin of hepatocyte growth factor (HGF), ligand of Met receptor, the control of the axis HGF/Met by DNA methylation, and its importance for the nexus supportive cells-metastatic cells and for metastasis outgrowth. In bone metastasis of the 1833-xenograft model, DNA methyltransferase blockade using the chemotherapic drug 5-aza-2′-deoxycytidine (decitabine) strongly reduced the expression of HGF/Met receptor axis and of E-cadherin, with decrease of metastasis wideness and osteolysis, prolonging mice survival. Thus, DNA methylation events acted as commanders of breast carcinoma cells metastatizing to bone influencing the epithelial phenotype. HGF emerged as a bone-marrow stimulus, and the exosomes seemed to furnish HGF to metastatic cells. In fact, decitabine treatment similarly affected some markers of these microvesicles and HGF, indicating that its supply to recipient cells was prevented. Notably, in bone metastasis the hypomethylation of HGF, Met and E-cadherin promoters did not appear responsible for their elevated expression, but we suggest the involvement of hypermethylated regulators and of Wwox oncosuppressor, the latter being affected by decitabine. Wwox expression increased under decitabine strongly localizing in nuclei of bone metastases. We hypothesize a role of Wwox in Met activity since in vitro Wwox overexpression downregulated the level of nuclear-Met protein fragment and Met stability, also under long exposure of 1833 cells to decitabine. HGF enhanced phosphoMet and the activity in nuclei, an effect partially prevented by decitabine. Altogether, the data indicated the importance to target the tumor microenvironment by blocking epigenetic mechanisms, which control critical events for colonization such as HGF/Met axis and Wwox, as therapy of bone metastasis.
Collapse
|
13
|
Yao J, Deng B, Zheng L, Dou L, Guo Y, Guo K. miR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial-mesenchymal transition. Oncol Rep 2015; 35:1645-51. [PMID: 26706910 DOI: 10.3892/or.2015.4500] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/05/2015] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) occurs frequently in cervical carcinogenesis. miRNAs function as tumor-suppressors or oncogenes and are involved in tumor behavior. However, the expression and function of miR-27b in cervical carcinogenesis remain unknown. In the present study, we observed that miR-27b was significantly increased in cervical cancer cells and tissues, and upregulation of miR-27b was negatively associated with its direct target, cadherin 11 (CDH11). Upregulation of miR-27b significantly accelerated the proliferation, cell cycle transition from G1 to S phase, migration and invasion of C33A cells, while downregulation of miR-27b suppressed the proliferation and invasion of HeLa cells. Moreover, CDH11 cDNA transfection impaired the oncogenic effect of miR-27b on cancer cells. Knockdown of CDH11 attenuated the suppressive effect of an miR-27b inhibitor on cervical cancer cells. In addition, we found that CDH11 was involved in miR-27b-induced epithelial-mesenchymal transition (EMT) by regulating expression of E-cadherin, vimentin and N-cadherin. Our results for the first time indicate that miR-27b acting as an oncogene may play an important role in the progression of cervical cancer by modulating CDH11 and EMT.
Collapse
Affiliation(s)
- Jihang Yao
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Boya Deng
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Le Zheng
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Dou
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Guo
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kejun Guo
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
14
|
Preca BT, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, Wellner U, Hopt UT, Brummer T, Brabletz S, Brabletz T, Stemmler MP. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer 2015; 137:2566-77. [PMID: 26077342 DOI: 10.1002/ijc.29642] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis.
Collapse
Affiliation(s)
- Bogdan-Tiberius Preca
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Karolina Bajdak
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Kerstin Mock
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Vignesh Sundararajan
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Jessica Pfannstiel
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany
| | - Jochen Maurer
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Ulrich T Hopt
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany
| | - Tilman Brummer
- Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Germany
| | - Simone Brabletz
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Marc P Stemmler
- Department of Visceral Surgery, University Medical Center Freiburg, D-79106, Freiburg, Germany.,Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054, Erlangen, Germany
| |
Collapse
|
15
|
miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp Mol Med 2014; 46:e123. [PMID: 25431021 PMCID: PMC4261914 DOI: 10.1038/emm.2014.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3′-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.
Collapse
|
16
|
Nisa L, Aebersold DM, Giger R, Zimmer Y, Medová M. Biological, diagnostic and therapeutic relevance of the MET receptor signaling in head and neck cancer. Pharmacol Ther 2014; 143:337-49. [DOI: 10.1016/j.pharmthera.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
|
17
|
Abel Y, Clerget G, Bourguignon-Igel V, Salone V, Rederstorff M. Les petits ARN nucléolaires nous surprennent encore ! Med Sci (Paris) 2014; 30:297-302. [DOI: 10.1051/medsci/20143003018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
18
|
Cheng MF, Huang MS, Lin CS, Lin LH, Lee HS, Jiang JC, Hsia KT. Expression of matriptase correlates with tumour progression and clinical prognosis in oral squamous cell carcinoma. Histopathology 2014; 65:24-34. [PMID: 24382204 DOI: 10.1111/his.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022]
Abstract
AIMS To investigate the relationship of matriptase expression in oral squamous cell carcinoma (OSCC) to clinicopathological characteristics, patient survival and cell-invasive properties. METHODS AND RESULTS Matriptase expression in OSCC was evaluated by immunohistochemical staining, and its relationship to clinicopathological features and outcomes was assessed statistically. The shRNA-mediated stable knockdown of matriptase in OSCC cells was used to analyse cell proliferation, migration and invasion in vitro. Matriptase immunostaining score was correlated with histopathological grade, clinical stage, positive lymph node and distant metastasis, and higher matriptase immunostaining score was associated significantly with poor prognosis. Elevated matriptase expression in oral cancer cell lines was a significant promoter of oral cancer cell migration and invasion. CONCLUSIONS Matriptase expression correlates with tumour progression and invasive capability in OSCC and may be an adverse prognostic marker for this cancer.
Collapse
Affiliation(s)
- Ming-Fang Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Histological and Clinical Pathology, Hualien Armed Forced General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Yang J, Du X, Wang G, Sun Y, Chen K, Zhu X, Lazar AJF, Hunt KK, Pollock RE, Zhang W. Mesenchymal to epithelial transition in sarcomas. Eur J Cancer 2014; 50:593-601. [PMID: 24291235 DOI: 10.1016/j.ejca.2013.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 11/10/2013] [Indexed: 02/03/2023]
Abstract
Mesenchymal to epithelial transition (MET) in carcinomas has been proposed to promote the growth of epithelial tumour cells at distant sites during metastasis. MET has also been suggested as an important biological and clinical process in mesenchymal tumors, sarcomas. Here we review studies on MET in sarcomas, including molecular markers, signalling mechanisms, regulation by micro RNAs and therapeutic implications. Accumulating evidences suggest that deeper investigation and understanding of MET in sarcomas would shed light on the pathogenesis of sarcomas and might lead to identification of potential clinical biomarkers for prognosis and targets for sarcoma therapeutics.
Collapse
Affiliation(s)
- Jilong Yang
- Department of Bone and Soft Tissue Tumors, National Clinical Cancer Research Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300060, China.
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Xiongzeng Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Alexander J F Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Raphael E Pollock
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One 2013; 8:e83991. [PMID: 24391862 PMCID: PMC3877136 DOI: 10.1371/journal.pone.0083991] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022] Open
Abstract
miRNA regulate gene expression at post-transcriptional level and fine-tune the key biological processes, including cancer progression. Here, we demonstrate the involvement of miR-200 b in the metastatic spread of prostate cancer. We identified miR-200 b as a downstream target of androgen receptor and linked its expression to decreased tumorigenicity and metastatic capacity of the prostate cancer cells. Overexpression of miR-200 b in PC-3 cells significantly inhibited their proliferation and the formation of subcutaneous tumors. Moreover, in an orthotopic model, miR-200 b blocked spontaneous metastasis and angiogenesis by PC-3 cells. This decreased metastatic potential was likely due to the reversal of the epithelial-to-mesenchymal transition, as was evidenced by increased pan-epithelial marker E-cadherin and specific markers of prostate epithelium, cytokeratins 8 and 18. In contrast, mesenchymal markers, fibronectin and vimentin, were significantly downregulated by miR-200 b. Our results suggest an important role for miR-200 b in prostate cancer progression and indicate its potential utility for prostate cancer therapy.
Collapse
|
21
|
MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance. Curr Opin Otolaryngol Head Neck Surg 2013; 21:104-11. [PMID: 23340306 DOI: 10.1097/moo.0b013e32835e1d6e] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) play crucial roles in modulating the neoplastic process of cancers including head and neck squamous cell carcinoma (HNSCC). miRNAs modulate pathogenesis by inhibiting target genes. Understanding how aberrant miRNAs are involved in HNSCC pathogenesis should help to validate potential clinical applications that target these entities. RECENT FINDINGS miR-21, miR-31, miR-504 and miR-10b are important oncogenic miRNAs that are involved in HNSCC and target tumour suppressor genes. The tumour suppressor roles of the let-7 family, the miR-99 family, miR-107, miR-133a, miR-137, miR-138 and miR-375 with respect to their targeting of oncogenes are unequivocal and have been confirmed by many studies. In addition, miR-21, let-7, miR-107, miR-138 and miR-200c seem to play complicated roles in regulating stemness or the epithelial-mesenchymal transition of tumour cells. The clinical implications of these tumour-associated miRNAs are generally in agreement with their functional roles. SUMMARY A number of pathways that become disregulated by aberrant miRNAs have been identified specifically for HNSCC. Analysis of these networks and their therapeutic interception might facilitate the prediction of disease status and help with the design of therapeutic trials.
Collapse
|
22
|
Janiszewska J, Szaumkessel M, Szyfter K. microRNAs are important players in head and neck carcinoma: a review. Crit Rev Oncol Hematol 2013; 88:716-28. [PMID: 23948550 DOI: 10.1016/j.critrevonc.2013.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 12/25/2022] Open
Abstract
The results of treatment of head and neck tumors remain poor for decades. It means that after surgery, chemotherapy is not a proper choice, as tumors of this region are relatively resistant to cytotoxic drugs. A little progress was noted only for radiotherapy outcome. Consequently, clinicians and researchers' expectations are focused on targeted therapy, where microRNAs (miRNAs, miRs) seem to be the most promising target. After the year 2000, miRNAs became new players on the scene of cancer science. Since then, extensive investigations have been performed with a hope of finding a new prognostic and diagnostic tool and bridging them with a bright new way of understanding the basis of molecular carcinogenesis. miRNAs display astonishing specificity and thus are associated with pathoclinical parameters of the disease. After more than a decade of ongoing studies, in this review we attempt to summarize the current knowledge of miRNAs in malignancies arising in head and neck sites and with a majority of squamous cells of the epithelium.
Collapse
Affiliation(s)
- Joanna Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Environmental Mutagenesis, 60-479 Poznań, Poland
| | | | | |
Collapse
|