1
|
Li X, Wang H, Li Z, Liu S, Chen Y, Ruan Z, Yao Z, Wei G, Cao C, Zheng W, Guan W. Full-active pharmaceutical ingredient nanosensitizer for augmented photoimmunotherapy by synergistic mitochondria targeting and immunogenic death inducing. MedComm (Beijing) 2024; 5:e756. [PMID: 39525955 PMCID: PMC11550090 DOI: 10.1002/mco2.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024] Open
Abstract
The precise and effective activation of the immune response is crucial in promising therapy curing cancer. Photoimmunotherapy (PIT) is an emerging strategy for precise regulation and highly spatiotemporal selectivity. However, this approach faces a significant challenge due to the off-target effect and the immunosuppressive microenvironment. To address this challenge, a nanoscale full-active pharmaceutical ingredient (API) photo-immune stimulator was developed. This formulation overcomes the limitations of PIT by strengthening the ability to penetrate tumors deeply and inducing precise and potent mitochondria-targeted dual-mode photodynamic therapy and photothermal therapy. Along with inhibiting overexpressed Hsp90, this nanosensitizer in turn improves the immunosuppressive microenvironment. Ultimately, this mitochondria-targeted PIT demonstrated potent antitumor efficacy, achieving a remarkable inhibition rate of ≥95% for both established primary tumors and distant abscopal tumors. In conclusion, this novel self-delivery full-API nanosystem enhances the efficacy of phototherapy and reprograms the immunosuppressive microenvironment, thereby holding great promise in the development of precise and effective immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Haoran Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingChina
| | - Zhiyan Li
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Song Liu
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yuanyuan Chen
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhuren Ruan
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhijian Yao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao Wei
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Cunwei Cao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Zheng
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenxian Guan
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
2
|
Molecular Chaperones and Thyroid Cancer. Int J Mol Sci 2021; 22:ijms22084196. [PMID: 33919591 PMCID: PMC8073690 DOI: 10.3390/ijms22084196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.
Collapse
|
3
|
Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Acta Biomater 2021; 125:1-28. [PMID: 33639310 DOI: 10.1016/j.actbio.2021.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The past several years have witnessed the blooming of emerging immunotherapy, as well as their therapeutic potential in remodeling the immune system. Nevertheless, with the development of biological mechanisms in oncology, it has been demonstrated that hypoxic tumor microenvironment (TME) seriously impairs the therapeutic outcomes of immunotherapy. Hypoxia, caused by Warburg effect and insufficient oxygen delivery, has been considered as a primary construction element of TME and drawn tremendous attention in cancer therapy. Multiple hypoxia-modulatory theranostic agents have been facing many obstacles and challenges while offering initial therapeutic effect. Inspired by versatile nanomaterials, great efforts have been devoted to design hypoxia-based nanoplatforms to preserve drug activity, reduce systemic toxicity, provide adequate oxygenation, and eventually ameliorate hypoxic-tumor management. Besides these, recently, some curative and innovative hypoxia-related nanoplatforms have been applied in synergistic immunotherapy, especially in combination with immune checkpoint blockade (ICB), immunomodulatory therapeutics, cancer vaccine therapy and immunogenic cell death (ICD) effect. Herein, the paramount impact of hypoxia on tumor immune escape was initially described and discussed, followed by a comprehensive overview on the design tactics of multimodal nanoplatforms based on hypoxia-enabled theranostic agents. A variety of nanocarriers for relieving tumor hypoxic microenvironment were also summarized. On this basis, we presented the latest progress in the use of hypoxia-modulatory nanomaterials for synergistic immunotherapy and highlighted current challenges and plausible promises in this area in the near future. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy, emerging as a novel treatment to eradicate malignant tumors, has achieved a measure of success in clinical popularity and transition. However, over the last decades, hypoxia-induced tumor immune escape has attracted enormous attention in cancer treatment. Limitations of free targeting agents have paved the path for the development of multiple nanomaterials with the hope of boosting immunotherapy. In this review, the innovative design tactics and multifunctional nanocarriers for hypoxia alleviation are summarized, and the smart nanomaterial-assisted hypoxia-modulatory therapeutics for synergistic immunotherapy and versatile biomedical applications are especially highlighted. In addition, the challenges and prospects of clinical transformation are further discussed.
Collapse
|
4
|
Song H, Chen X, Jiao Q, Qiu Z, Shen C, Zhang G, Sun Z, Zhang H, Luo QY. HIF-1α-Mediated Telomerase Reverse Transcriptase Activation Inducing Autophagy Through Mammalian Target of Rapamycin Promotes Papillary Thyroid Carcinoma Progression During Hypoxia Stress. Thyroid 2021; 31:233-246. [PMID: 32772829 DOI: 10.1089/thy.2020.0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: It is important to properly understand the molecular mechanisms of aggressive tumors among papillary thyroid carcinomas (PTCs) that are often the most indolent. Hypoxia inducible factor-1α (HIF-1α), induced by hypoxia, plays pivotal roles in the development and metastasis of the many tumors, including PTCs. Upregulation of telomerase reverse transcriptase (TERT) activity is found in highly invasive PTCs. Further, previous studies have reported that autophagy serves as a protective mechanism to facilitate PTC cell survival. We, therefore, hypothesized that there was a link between HIF-1α, TERT, and autophagy in promoting PTC progression. Methods: Immunohistochemistry staining was conducted to evaluate the expressions of HIF-1α, TERT, and autophagy marker, LC3-II, in matched PTC tumors and corresponding nontumor tissues. Two PTC cell lines (TPC-1 and BCPAP) were used in subsequent cytological function studies. Cell viability, proliferation, apoptosis, migration, and invasion were assessed during hypoxia, genetic enhancement and inhibition of TERT, and chemical and genetic inhibition of autophagy. The protein expression levels of the corresponding biomarkers were determined by Western blotting, and autophagy flow was detected. We characterized the molecular mechanism of PTC cell progression. Results: The protein expression levels of HIF-1α, TERT, and LC3-II were upregulated in PTCs and were significantly correlated with high tumor-node-metastasis stage. Further, an in vitro study indicated that HIF-1α induced by hypoxia functioned as a transcriptional activator by binding with sequences potentially located in the TERT promoter and was positively correlated with the malignant behavior of PTC cell lines. Overexpression of TERT inhibited the kinase activity of mammalian target of rapamycin (mTOR), resulting in the activation of autophagy. Functionally, TERT-induced autophagy provided a survival advantage to PTC cells during hypoxia stress. Conclusions: We identified a novel molecular mechanism involving the HIF-1α/TERT axis, which promoted PTC progression by inducing autophagy through mTOR during hypoxia stress. These findings may provide a basis for the new treatment of aggressive PTCs.
Collapse
Affiliation(s)
- Hongjun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyue Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiong Jiao
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenkui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
5
|
López-Martín E, Jorge-Barreiro FJ, Relova-Quintero JL, Salas-Sánchez AA, Ares-Pena FJ. Exposure to 2.45 GHz radiofrequency modulates calcitonin-dependent activity and HSP-90 protein in parafollicular cells of rat thyroid gland. Tissue Cell 2021; 68:101478. [PMID: 33373917 DOI: 10.1016/j.tice.2020.101478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
In this study we analyzed the response of parafollicular cells in rat thyroid gland after exposure to radiofrequency at 2.45 GHz using a subthermal experimental diathermy model. Forty-two Sprague Dawley rats, divided into two groups of 21 rats each, were individually exposed at 0 (control), 3 or 12 W in a Gigahertz Transverse Electro-Magnetic (GTEM) chamber for 30 min. After radiation, we used simple or fluorescence immunohistochemistry to measure calcitonin cells or cellular stress levels, indicated by the presence hyperplasia of parafollicular cells, heat shock protein (HSP) 90. Immunomarking of calcitonin-positive cells was statistically significant higher in the thyroid tissue of rats exposed to 2.45 GHz radiofrequency and cell hyperplasia appeared 90 min after radiation at the SAR levels studied. At the same time, co-localized expression of HSP-90 and calcitonin in parafollicular cells was statistically significant attenuated 90 min after radiation and remained statistically significantly low 24 h after radiation, even though parafollicular cell levels normalized. These facts indicate that subthermal radiofrequency (RF) at 2.45 GHz constitutes a negative external stress stimulus that alters the activity and homeostasis of parafollicular cells in the rat thyroid gland. However, further research is needed to determine if there is toxic action in human C cells.
Collapse
Affiliation(s)
- E López-Martín
- CRETUS Institute, Morphological Sciences Department, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain; Morphological Sciences Department, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - F J Jorge-Barreiro
- Morphological Sciences Department, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J L Relova-Quintero
- Physiology Department, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A A Salas-Sánchez
- CRETUS Institute, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain; ELEDIA@UniTN - DISI - University of Trento, 38123, Trentino-Alto Adige, Italy
| | - F J Ares-Pena
- CRETUS Institute, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
7
|
Kim MH, Lee TH, Lee JS, Lim DJ, Lee PCW. Hif-1α Inhibitors Could Successfully Inhibit the Progression of Differentiated Thyroid Cancer in Vitro. Pharmaceuticals (Basel) 2020; 13:ph13090208. [PMID: 32847004 PMCID: PMC7558478 DOI: 10.3390/ph13090208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α plays an important role in cancer progression. In various cancers, including thyroid cancer, overexpression of HIF-1α is related to poor prognosis or treatment response. However, few studies have investigated the role of HIF-1α inhibition in thyroid cancer progression. We evaluated the utility of the HIF-1α inhibitor IDF-11774 in vitro utilizing two thyroid cancer cell lines, K1 and BCPAP. Both cell lines were tested to elucidate the effects of IDF-11774 on cell proliferation and migration using soft agar and invasion assays. Here, we found that a reduction of HIF-1α expression in BCPAP cells was observed after treatment with IDF-11774 in a dose-dependent manner. Moreover, cell proliferation, migration, and anchorage-independent growth were effectively inhibited by IDF-11774 in BCPAP cells but not in K1 cells. Additionally, invasion of BCPAP but not K1 cells was controlled with IDF-11774 in a dose-dependent manner. Our findings suggest that promoting the degradation of HIF-1α could be a strategy to manage progression and that HIF-1α inhibitors are potent drugs for thyroid cancer treatment.
Collapse
Affiliation(s)
- Min-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (M.-H.K.); (J.S.L.)
| | - Tae Hyeong Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jin Soo Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (M.-H.K.); (J.S.L.)
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (D.-J.L.); (P.C.-W.L.); Tel.: +82-2-2045-4249 (P.C.-W.L.)
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (D.-J.L.); (P.C.-W.L.); Tel.: +82-2-2045-4249 (P.C.-W.L.)
| |
Collapse
|
8
|
The Potential of Metabolomics in the Diagnosis of Thyroid Cancer. Int J Mol Sci 2020; 21:ijms21155272. [PMID: 32722293 PMCID: PMC7432278 DOI: 10.3390/ijms21155272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer is the most common endocrine system malignancy. However, there is still a lack of reliable and specific markers for the detection and staging of this disease. Fine needle aspiration biopsy is the current gold standard for diagnosis of thyroid cancer, but drawbacks to this technique include indeterminate results or an inability to discriminate different carcinomas, thereby requiring additional surgical procedures to obtain a final diagnosis. It is, therefore, necessary to seek more reliable markers to complement and improve current methods. "Omics" approaches have gained much attention in the last decade in the field of biomarker discovery for diagnostic and prognostic characterisation of various pathophysiological conditions. Metabolomics, in particular, has the potential to identify molecular markers of thyroid cancer and identify novel metabolic profiles of the disease, which can, in turn, help in the classification of pathological conditions and lead to a more personalised therapy, assisting in the diagnosis and in the prediction of cancer behaviour. This review considers the current results in thyroid cancer biomarker research with a focus on metabolomics.
Collapse
|
9
|
Liu Y, Qiu N, Shen L, Liu Q, Zhang J, Cheng YY, Lee KH, Huang L. Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. J Control Release 2020; 323:431-441. [DOI: 10.1016/j.jconrel.2020.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
|
10
|
Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, Caliskan Kurt C, Shademan B, Gunduz C, Erdogan M. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol 2020; 34:e22547. [PMID: 32589349 DOI: 10.1002/jbt.22547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Anaplastic cancer constitutes 1% of thyroid cancers, and it is one of the most aggressive cancers. Treatment options are external radiation therapy and/or chemotherapy. The success rate with these treatment modalities is not satisfactory. We aimed to evaluate the effects of metformin (MET) and pioglitazone (PIO) combination on apoptosis and AMP-activated protein kinase/mammalian target of rapamycin (mTOR) signaling pathway in human anaplastic thyroid cancer cells. In this study, we evaluated the effects of MET and PIO individually and the combination of the two drugs on the cellular lines SW1736 and C643 ATC. Genes contained in the mTOR signaling pathway were examined using human mTOR Signalization RT2 Profiler PCR Array. In C643 and SW1736 cell lines, IC50 doses of MET and PIO were found out as 17.69 mM, 11.64 mM, 27.12 µM, and 23.17 µM. Also, the combination of MET and PIO was determined as an additive according to isobologram analyses. We have found the downregulation of the expression levels of oncogenic genes: AKT3, CHUK, CDC42, EIF4E, HIF1A, IKBKB, ILK, MTOR, PIK3CA, PIK3CG, PLD1, PRKCA, and RICTOR genes, in the MET and PIO combination-treated cells. In addition, expression levels of tumor suppressor genes, DDIT4, DDIT4L, EIF4EBP1, EIF4EBP2, FKBP1A, FKBP8, GSK3B, MYO1C, PTEN, ULK1, and ULK2, were found to have increased significantly. The MET + PIO combination was first applied to thyroid cancer cells, and significant reductions in the level of oncogenic genes were detected. The decreases, particularly, in AKT3, DEPTOR, EIF4E, ILK, MTOR, PIK3C, and PRKCA expressions indicate that progression can be prevented in thyroid cancer cells and these genes could be selected as therapeutic targets.
Collapse
Affiliation(s)
- Nilufer Ozdemir Kutbay
- Department of Endocrinology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Banu Sarer Yurekli
- Department of Endocrinology, Ege University Medical School, Izmir, Turkey
| | | | - Behrouz Shademan
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Mehmet Erdogan
- Department of Endocrinology, Ege University Medical School, Izmir, Turkey
| |
Collapse
|
11
|
Lettini G, Pietrafesa M, Lepore S, Maddalena F, Crispo F, Sgambato A, Esposito F, Landriscina M. Heat shock proteins in thyroid malignancies: Potential therapeutic targets for poorly-differentiated and anaplastic tumours? Mol Cell Endocrinol 2020; 502:110676. [PMID: 31812782 DOI: 10.1016/j.mce.2019.110676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy, with well-differentiated subtypes characterized by an excellent prognosis due to their optimal sensitivity to standard therapies whereas poorly differentiated and anaplastic tumours by chemo/radio-resistance and unfavourable outcome. Heat Shock Proteins (HSPs) are molecular chaperones overexpressed in thyroid malignancies and involved in crucial functions responsible for thyroid carcinogenesis, as protection from apoptosis, drug resistance and cell migration. Thus, HSPs inhibitors have been proposed as novel therapeutic agents in thyroid cancer to revert molecular mechanisms of tumour progression. In this review, we report an overview on the biological role of HSPs, and specifically HSP90s, in thyroid cancer and their potential involvement as biomarkers. We discuss the rationale to evaluate HSPs inhibitors as innovative anticancer agents in specific subtypes of thyroid cancer characterized by poor response to therapies with the objective to target single family chaperones to reduce, simultaneously, the expression/stability of multiple client proteins.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy; Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
12
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
13
|
Greco A, Auletta L, Orlandella FM, Iervolino PLC, Klain M, Salvatore G, Mancini M. Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer. Int J Mol Sci 2017; 18:E2731. [PMID: 29258188 PMCID: PMC5751332 DOI: 10.3390/ijms18122731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology; other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types. Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer.
Collapse
Affiliation(s)
- Adelaide Greco
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy.
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche-IBB, CNR, 80145 Napoli, Italy.
- CEINGE Biotecnologie Avanzate s.c.ar.l., 80131 Napoli, Italy.
| | | | | | | | - Michele Klain
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy.
| | - Giuliana Salvatore
- IRCCS S.D.N., 80134 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy.
| | - Marcello Mancini
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche-IBB, CNR, 80145 Napoli, Italy.
| |
Collapse
|
14
|
Xu F, Wang X, Wu N, He S, Yi W, Xiang S, Zhang P, Xie X, Ying C. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1609-1620. [PMID: 28964603 DOI: 10.1016/j.envpol.2017.09.069] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds/toxicity
- Cattle
- Caveolin 1/biosynthesis
- Cell Culture Techniques
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Culture Media, Serum-Free
- Endocrine Disruptors/toxicity
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- HSP90 Heat-Shock Proteins/biosynthesis
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mice, SCID
- Phenols/toxicity
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Fangyi Xu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Xiaoning Wang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Nannan Wu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shuiqing He
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Weijie Yi
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Siyun Xiang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Piwei Zhang
- Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Xie
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China.
| |
Collapse
|
15
|
Role of HSPA1L as a cellular prion protein stabilizer in tumor progression via HIF-1α/GP78 axis. Oncogene 2017; 36:6555-6567. [PMID: 28759037 DOI: 10.1038/onc.2017.263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
The cellular prion protein (PrPC) is associated with metastasis, tumor progression and recurrence; however, the precise mechanisms underlying its action is not well understood. Our study found that PrPC degradation decreased tumor progression in colorectal cancer (CRC). In a CRC cell line and human CRC tissue exposed to hypoxia, induced heat-shock 70-kDa protein-1-like (HSPA1L) expression stabilized hypoxia-inducible factor-1α (HIF-1α) protein and promoted PrPC accumulation and tumorigenicity in vivo. PrPC was degraded via the proteasome pathway mediated by the ubiquitin-protein E3 ligase glycoprotein 78 (GP78), which interacts directly with PrPC. However, hypoxia-induced HSPA1L interacted with GP78 and inhibited its functions. HSPA1L knockdown facilitated the interaction of GP78 and PrPC, thereby increasing PrPC ubiquitination. Thus, GP78 was identified as the ubiquitinase for PrPC, thereby revealing an essential mechanism that controls PrPC levels in CRC. Our results suggest that the HSPA1L/HIF-1α/GP78 axis has a crucial role in PrPC accumulation during tumor progression.
Collapse
|
16
|
Abstract
Endocrine is an important and tightly regulated system for maintaining body homeostasis. Endocrine glands produce hormones, which are released into blood stream to guide the target cells responding to all sorts of stimulations. For maintaining body homeostasis, the secretion and activity of a particular hormone needs to be adjusted in responding to environmental challenges such as changes in nutritional status or chronic stress. Hypoxia, a status caused by reduced oxygen availability or imbalance of oxygen consumption/supply in an organ or within a cell, is a stress that affects many physiological and pathological processes. Hypoxic stress in endocrine organs is especially critical because endocrine glands control body homeostasis. Local hypoxia affects not only the particular gland but also the downstream cells/organs regulated by hormones secreted from this gland. Hypoxia-inducible factors (HIFs) are transcription factors that function as master regulators of oxygen homeostasis. Recent studies report that aberrant expression of HIFs in endocrine organs may result in the development and/or progression of diseases including diabetes, endometriosis, infertility and cancers. In this article, we will review recent findings in HIF-mediated endocrine organ dysfunction and the systemic syndromes caused by these disorders.
Collapse
Affiliation(s)
- Hsiu-Chi Lee
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of PhysiologyCollege of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Pan S, Zhang T, Rong Z, Hu L, Gu Z, Wu Q, Dong S, Liu Q, Lin Z, Deutschova L, Li X, Dixon A, Bruford MW, Zhan X. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird. Mol Ecol 2017; 26:2993-3010. [PMID: 28277617 DOI: 10.1111/mec.14090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/04/2023]
Abstract
Low oxygen and temperature pose key physiological challenges for endotherms living on the Qinghai-Tibetan Plateau (QTP). Molecular adaptations to high-altitude living have been detected in the genomes of Tibetans, their domesticated animals and a few wild species, but the contribution of transcriptional variation to altitudinal adaptation remains to be determined. Here we studied a top QTP predator, the saker falcon, and analysed how the transcriptome has become modified to cope with the stresses of hypoxia and hypothermia. Using a hierarchical design to study saker populations inhabiting grassland, steppe/desert and highland across Eurasia, we found that the QTP population is already distinct despite having colonized the Plateau <2000 years ago. Selection signals are limited at the cDNA level, but of only seventeen genes identified, three function in hypoxia and four in immune response. Our results show a significant role for RNA transcription: 50% of upregulated transcription factors were related to hypoxia responses, differentiated modules were significantly enriched for oxygen transport, and importantly, divergent EPAS1 functional variants with a refined co-expression network were identified. Conservative gene expression and relaxed immune gene variation may further reflect adaptation to hypothermia. Our results exemplify synergistic responses between DNA polymorphism and RNA expression diversity in coping with common stresses, underpinning the successful rapid colonization of a top predator onto the QTP. Importantly, molecular mechanisms underpinning highland adaptation involve relatively few genes, but are nonetheless more complex than previously thought and involve fine-tuned transcriptional responses and genomic adaptation.
Collapse
Affiliation(s)
- Shengkai Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | | | - Li Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China.,BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Qi Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China
| | - Shanshan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiong Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,State Key Laboratory of Earth Surface Processes and Resource Ecology & MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhenzhen Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China
| | - Lucia Deutschova
- Raptor Protection of Slovakia, Kuklovská 5, SK-841 04, Bratislava 4, Slovakia
| | - Xinhai Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China
| | - Andrew Dixon
- Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China.,International Wildlife Consultants Ltd., PO Box 19, Carmarthen, SA33 5YL, UK.,Environment Agency-Abu Dhabi, PO Box 45553, Al Mamoura Building (A), Muroor Road, Abu Dhabi, United Arab Emirates
| | - Michael W Bruford
- Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China.,Organisms and Environment Division, Cardiff School of Bioscience, Cardiff University, Cardiff, CF10 3AX, UK
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China
| |
Collapse
|
18
|
Jung YH, Lee DY, Cha W, Kim BH, Sung MW, Kim KH, Ahn SH. Antitumor effect of CXCR4 antagonist AMD3100 on the tumorigenic cell line of BHP10-3 papillary thyroid cancer cells. Head Neck 2016; 38:1479-86. [DOI: 10.1002/hed.24461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Young Ho Jung
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Doh Young Lee
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Wonjae Cha
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Bo Hae Kim
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Myung-Whun Sung
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University College of Medicine; Seoul South Korea
| | - Kwang Hyun Kim
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Boramae Hospital; Seoul South Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology - Head and Neck Surgery; Seoul National University Bundang Hospital; Seongnam South Korea
| |
Collapse
|
19
|
Ichikawa T, Nakahata S, Tamura T, Manachai N, Morishita K. The loss of NDRG2 expression improves depressive behavior through increased phosphorylation of GSK3β. Cell Signal 2015. [PMID: 26208882 DOI: 10.1016/j.cellsig.2015.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tomohiro Tamura
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Nawin Manachai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
20
|
Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models. Discov Oncol 2015; 6:87-99. [PMID: 25800363 DOI: 10.1007/s12672-015-0219-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/27/2015] [Indexed: 01/29/2023] Open
Abstract
Thyroid cancer incidence has been increasing over time, and it is estimated that ∼1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models-an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84-214 mm(3) over 4-5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ≥70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.
Collapse
|
21
|
Ahn SH, Choi JY, Kim DW, Lee DY, Jeon EH, Jeong WJ, Paik JH. Targeting HIF1α Peri-operatively Increased Post-surgery Survival in a Tongue Cancer Animal Model. Ann Surg Oncol 2015; 22:3041-8. [DOI: 10.1245/s10434-014-4323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/22/2022]
|
22
|
Cho SW, Yi KH, Han SK, Sun HJ, Kim YA, Oh BC, Park YJ, Park DJ. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol Cell Endocrinol 2014; 393:24-9. [PMID: 24905037 DOI: 10.1016/j.mce.2014.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/07/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023]
Abstract
Metformin, an anti-diabetic drug used in type 2 diabetes treatment, is reported to have oncopreventive or therapeutic roles in several human cancers. The present study investigated the therapeutic potential of physiologic dose of metformin in PTC. Metformin inhibited PTC cell viability and increased cell apoptosis in various doses (0.5-20mM) in BCPAP and BHP10-3SC cells. Western blot analysis demonstrated that the p-AMPK/AMPK ratio increased with increased metformin treatment. The ectopic tumor experiment was performed using BHP10-3SC cells and athymic nude mice. Oral metformin treatment via drinking water significantly delayed tumor growth in both tumor development model and established tumor models. Necrotic area in tumors significantly increased with metformin treatment. Western blot analysis revealed an increase in p-AMPK/AMPK ratio and suppressions of mTOR and Akt expressions in metformin-treated mice compared to the results in mock-treated control mice. Our results indicate that a physiologic dose of metformin has anti-tumorigenic effects that result from activation of AMPK signaling and inhibition of Akt signaling.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Ka Hee Yi
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sun Kyoung Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Sun
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Ye An Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 2014; 90:233-52. [DOI: 10.1016/j.critrevonc.2013.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/27/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
|
24
|
Perspectives of the AMP-activated kinase (AMPK) signalling pathway in thyroid cancer. Biosci Rep 2014; 34:BSR20130134. [PMID: 27919039 PMCID: PMC3986867 DOI: 10.1042/bsr20130134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Approximately 90% of non-medullary thyroid malignancies originate from the follicular cell and are classified as papillary or follicular (well-differentiated) thyroid carcinomas, showing an overall favourable prognosis. However, recurrence or persistence of the disease occurs in some cases associated with the presence of loco-regional or distant metastatic lesions that generally become resistant to radioiodine therapy, while glucose uptake and metabolism are increased. Recent advances in the field of tumor progression have shown that CTC (circulating tumour cells) are metabolic and genetically heterogeneous. There is now special interest in unravelling the mechanisms that allow the reminiscence of dormant tumour lesions that might be related to late disease progression and increased risk of recurrence. AMPK (AMP-activated protein kinase) is activated by the depletion in cellular energy levels and allows adaptive changes in cell metabolism that are fundamental for cell survival in a stressful environment; nevertheless, the activation of this kinase also decreases cell proliferation rate and induces tumour cell apoptosis. In the thyroid field, AMPK emerged as a novel important intracellular pathway, since it regulates both iodide and glucose uptakes in normal thyroid cells. Furthermore, it has recently been demonstrated that the AMPK pathway is highly activated in papillary thyroid carcinomas, although the clinical significance of these findings remains elusive. Herein we review the current knowledge about the role of AMPK activation in thyroid physiology and pathophysiology, with special focus on thyroid cancer. Recurrence or persistence of differentiated thyroid cancer can be associated with resistance to radioiodine therapy, which is associated with higher glucose uptake and metabolism by the remnant lesions. The possible role of AMPK activation in this phenomenon is discussed.
Collapse
|
25
|
Ho N, Li A, Li S, Zhang H. Heat shock protein 90 and role of its chemical inhibitors in treatment of hematologic malignancies. Pharmaceuticals (Basel) 2012; 5:779-801. [PMID: 24280675 PMCID: PMC3763672 DOI: 10.3390/ph5080779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a conserved and constitutively expressed molecular chaperone and it has been shown to stabilize oncoproteins and facilitate cancer development. Hsp90 has been considered as a therapeutic target for cancers and three classes of Hsp90 inhibitors have been developed: (1) benzoquinone ansamycin and its derivatives, (2) radicicol and its derivates, and (3) small synthetic inhibitors. The roles of these inhibitors in cancer treatment have been studied in laboratories and clinical trials, and some encouraging results have been obtained. Interestingly, targeting of Hsp90 has been shown to be effective in inhibition of cancer stem cells responsible for leukemia initiation and progression, providing a strategy for finding a cure. Because cancer stem cells are well defined in some human leukemias, we will focus on hematologic malignancies in this review.
Collapse
Affiliation(s)
- Ngoc Ho
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|