1
|
Li L, Zhang W, Sun Y, Zhang W, Lu M, Wang J, Jin Y, Xi Q. A clinical prognostic model of oxidative stress-related genes linked to tumor immune cell infiltration and the prognosis of ovarian cancer patients. Heliyon 2024; 10:e28442. [PMID: 38560253 PMCID: PMC10981114 DOI: 10.1016/j.heliyon.2024.e28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background According to statistics, ovarian cancer (OV) is the most prevalent type of gynecologic malignancy and has the highest mortality rate of all gynecologic tumors. Although several studies have shown that oxidative stress (OS) contributes significantly to the onset and progression of cancer, the role of OS in OV needs to be investigated further. Thus, it is critical to comprehend the function of OS-related genes in OV. Methods In this study, all data related to the transcriptome and clinical status of the patients were retrieved from "The Cancer Genome Atlas" (TCGA) and "Gene Expression Omnibus" (GEO) databases. Using the unsupervised cluster analysis technique, all patients with OV were classified into two different subtypes (categories) based on the OS gene. All hub genes were screened using the weighted gene co-expression network analysis (WGCNA). Since the hub genes and the differentially expressed genes (DEGs) in both categories were found to intersect, the univariate Cox regression analysis was implemented. A multivariate Cox analysis was also performed to construct a novel clinical prognosis model, which was validated using data from the GEO cohort. In addition, the relationship between risk score and immune cell infiltration level was evaluated using CIBERSORT. Finally, qRT-PCR was used to confirm the expression of the genes used to construct the model. Results Two subtypes of OS were obtained. The findings indicated that OS-C1 had a better survival outcome than OS-C2. The results of WGCNA yielded 112 hub genes. For univariate COX regression analyses, 49 OS-related trait genes were obtained. Finally, a clinical prognostic model containing two genes was constructed. This model could differentiate between patients with OV having varying years of survival in the TCGA and GEO cohorts. The model risk score was verified as an independent prognostic indicator. According to the results of CIBERSORT, many tumor-infiltrating immune cells were found to be significantly related to the risk score. Furthermore, the results revealed that patients with low-risk OV in the CTLA4 treatment group had a high likelihood of benefiting from immunotherapy. qRT-PCR results also showed that the expression of MARVELD1 and VSIG4 was high in the OV samples. Conclusions Analysis of the results suggested that the newly developed model, which contained two characteristic OS-related genes, could successfully predict the survival outcomes of all patients with OV. The findings of this study could offer valuable information and insights into the refinement of personalized therapy and immunotherapy for OV in the future.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiwei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yanjun Sun
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiling Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Gynecology, Nantong Geriatric Rehabilitation Hospital, Nantong, Jiangsu, 226001, China
| | - Mengmeng Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, Yancheng, Jiangsu, 224599, China
| | - Jiaqian Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Obstetrics and Gynecology, Qidong Maternal and Child Health Hospital, Nantong, Jiangsu, 226200, China
| | - Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
2
|
Zhang J, Li Q, Sun Q, Wang B, Cui Y, Lou C, Yao Y, Zhang Y. Epigenetic modifications inhibit the expression of MARVELD1 and in turn tumorigenesis by regulating the Wnt/β-catenin pathway in pan-cancer. J Cancer 2022; 13:225-242. [PMID: 34976185 PMCID: PMC8692698 DOI: 10.7150/jca.63608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
MARVEL domain-containing 1 (MARVELD1) is one of the MARVEL domain-containing proteins. Expression of MARVELD1 in tumor and non-tumor tissues, the relationship between its expression and cancer prognosis, and upstream regulation of MARVELD1 were examined using pan-cancer data from The Cancer Genome Atlas. MARVELD1 expression was significantly downregulated in tissues used for pan-cancer analysis compared to that in normal tissues. Low expression of MARVELD1 was associated with poor disease outcomes in pan-cancer. Colon cancer patients with low expression of MARVELD1 had worse progression free survival and overall survival than those with high expression levels in our cohort. Hypermethylation and histone modification in the MARVELD1 promoter locus synergistically affected its expression in pan-cancer. The function of MARVELD1 in colon cancer remains to be studied. Gene Ontology enrichment analysis revealed that MARVELD1 may modulate processes associated with inhibition of tumorigenesis in colon cancer. Both upstream transcription factors and downstream functional enrichment of MARVELD1 were related to the Wnt/β-catenin signaling pathway. Overexpression of MARVELD1 inhibited the expression of β-catenin and its entry into the nucleus. MARVELD1 also inhibited the proliferation, migration, and invasion of colon cancer cells. With Wnt/β-catenin activator LiCl treatment, rescue experiments demonstrated that the role of MARVELD1 in colon cancer progression was dependent on the Wnt/β-catenin pathway. These results indicate that MARVELD1 acts as a tumor suppressor and inhibits tumorigenesis via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jingchun Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qinliang Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Ying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Song ZB, Yu Y, Zhang GP, Li SQ. Genomic Instability of Mutation-Derived Gene Prognostic Signatures for Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:728574. [PMID: 34676211 PMCID: PMC8523793 DOI: 10.3389/fcell.2021.728574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major cancer-related deaths worldwide. Genomic instability is correlated with the prognosis of cancers. A biomarker associated with genomic instability might be effective to predict the prognosis of HCC. In the present study, data of HCC patients from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were used. A total of 370 HCC patients from the TCGA database were randomly classified into a training set and a test set. A prognostic signature of the training set based on nine overall survival (OS)–related genomic instability–derived genes (SLCO2A1, RPS6KA2, EPHB6, SLC2A5, PDZD4, CST2, MARVELD1, MAGEA6, and SEMA6A) was constructed, which was validated in the test and TCGA and ICGC sets. This prognostic signature showed more accurate prediction for prognosis of HCC compared with tumor grade, pathological stage, and four published signatures. Cox multivariate analysis revealed that the risk score could be an independent prognostic factor of HCC. A nomogram that combines pathological stage and risk score performed well compared with an ideal model. Ultimately, paired differential expression profiles of genes in the prognostic signature were validated at mRNA and protein level using HCC and paratumor tissues obtained from our institute. Taken together, we constructed and validated a genomic instability–derived gene prognostic signature, which can help to predict the OS of HCC and help us to explore the potential therapeutic targets of HCC.
Collapse
Affiliation(s)
- Ze-Bing Song
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yu
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo-Pei Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao-Qiang Li
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Xia L, Jin P, Tian W, Liang S, Tan L, Li B. Up-regulation of MARVEL domain-containing protein 1 (MARVELD1) accelerated the malignant phenotype of glioma cancer cells via mediating JAK/STAT signaling pathway. ACTA ACUST UNITED AC 2021; 54:e10236. [PMID: 34008750 PMCID: PMC8130134 DOI: 10.1590/1414-431x2020e10236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
This work aimed to research the function of MARVEL domain-containing protein 1 (MARVELD1) in glioma as well as its functioning mode. Bioinformatics analysis was utilized to assess the MARVELD1 expression in glioma tissues and its relationship with grade and prognosis, based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) databases. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays were carried out to determine the impact of MARVELD1 on malignant biological behavior of glioma, such as proliferation, invasion, and migration. qRT-PCR was carried out to test the mRNA level of MARVELD1. Western blot assay was performed to measure the protein expression of MARVELD1 and JAK/STAT pathway-related proteins. MARVELD1 was expressed at high levels in glioma tissues and cell lines. Kaplan-Meier survival analysis revealed that the higher MARVELD1 expression, the shorter the survival time of patients with glioma. Also, the MARVELD1 expression in WHO IV was significantly enhanced compared to that in WHO II and WHO III. Furthermore, the functional analysis of MARVELD1 in vitro revealed that knockdown of MARVELD1 in U251 cells restrained cell proliferation, migration, and invasion, while up-regulation of MARVELD1 in U87 cells presented opposite outcomes. Finally, we found that JAK/STAT signaling pathway mediated the function of MARVELD1 in glioma. MARVELD1 contributed to promoting the malignant progression of glioma, which is the key driver of activation of JAK/STAT signaling pathway in gliomas.
Collapse
Affiliation(s)
- Lingyang Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Peng Jin
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Wei Tian
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Shuang Liang
- Department of X-ray, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Liye Tan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Binxin Li
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
5
|
Fekete JT, Ősz Á, Pete I, Nagy GR, Vereczkey I, Győrffy B. Predictive biomarkers of platinum and taxane resistance using the transcriptomic data of 1816 ovarian cancer patients. Gynecol Oncol 2020; 156:654-661. [DOI: 10.1016/j.ygyno.2020.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022]
|
6
|
MARVELD1 interacting with catalase regulates reactive oxygen species metabolism and mediates the sensitivity to chemotherapeutic drugs in epithelial tumors of the reproductive system. Mol Carcinog 2019; 58:1410-1426. [DOI: 10.1002/mc.23024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
|
7
|
Ma W, Shen H, Li Q, Song H, Guo Y, Li F, Zhou X, Guo X, Shi J, Cui Q, Xing J, Deng J, Yu Y, Liu W, Zhao H. MARVELD1 attenuates arsenic trioxide-induced apoptosis in liver cancer cells by inhibiting reactive oxygen species production. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:200. [PMID: 31205918 DOI: 10.21037/atm.2019.04.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Arsenic trioxide (As2O3) is widely used for the treatment of acute promyelocytic leukemia (APL), and more recently, has also been applied to solid tumors. However, there are a fraction of patients with solid tumors, such as liver cancer, who respond to As2O3 treatment poorly. The underlying mechanisms for this remain unclear. Methods We determined the suitable concentration of drugs by IC50. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to analyze the apoptosis. Morphological changes of the cells were observed by laser scanning confocal microscopy. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. Quantitative polymerase chain reaction (qPCR) and Western blot tests were conducted to detect the mRNA and protein levels in different groups. Finally, a xenograft tumor assay and histopathological analysis were performed to evaluate the MARVELD1 function in cell proliferation and apoptosis. Results Here, we show that MARVELD1 enhances the therapeutic effects of epirubicin, while inducing the strong resistance of liver cancer cells to As2O3 treatment. We further demonstrate that the As2O3-induced apoptosis was inhibited by MARVELD1 overexpression (24 h Vector vs. MARVELD1 =30.58% vs. 17.41%, P<0.01; 48 h Vector vs. MARVELD1 =46.50% vs. 21.02%, P<0.01), possibly through inhibiting ROS production by enhancing TRXR1 expression. In vivo, we found a significantly increased size (Vector vs. MARVELD1 =203.90±21.92 vs. 675.70±37.84 mm3, P<0.001) and weight (Vector vs. MARVELD1 =0.19±0.02 vs. 0.58±0.05 g, P<0.001) of tumors with high expression of MARVELD1 after As2O3 treatment. Consistently, a higher expression of MARVELD1 predicted a poor prognosis for liver cancer patients. Conclusions Our data identified a unique role of MARVELD1 in As2O3-induced apoptosis and As2O3 cancer therapy resistance.
Collapse
Affiliation(s)
- Wenping Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Haiyang Shen
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Qian Li
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hao Song
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanyan Guo
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Fangrong Li
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinwu Guo
- Sansure Biotech Inc., Changsha 410205, China
| | - Jingdong Shi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi Cui
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhao Xing
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhai Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenjie Liu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Abstract
Toll-like receptors (TLRs) are associated with tumor growth and immunosuppression, as well as apoptosis and immune system activation. TLRs can activate apoptosis and innate and adaptive immunity pathways, which can be pharmacologically targeted for the development of anticancer oncotherapies. Several studies and clinical trials indicate that TLR agonists are promising adjuvants or elements of novel therapies, particularly when used in conjunction with chemotherapy or radiotherapy. An increasing number of studies suggest that the activation of TLRs in various cancer types is related to oncotherapy; however, before this finding can be applied to clinical practice, additional studies are required. Research suggests that TLR agonists may have potential applications in cancer therapy; nevertheless, because TLR signaling can also promote tumorigenesis, a critical and comprehensive evaluation of TLR action is warranted. This review focuses on recent studies that have assessed the strengths and weaknesses of utilizing TLR agonists as potential anticancer agents.
Collapse
Affiliation(s)
- Caiqi Liu
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Ci Han
- Department of Critical Care Medicine, Third Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Jinfeng Liu
- Department of Pain, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
9
|
Li J, Yan H, Zhao L, Jia W, Yang H, Liu L, Zhou X, Miao P, Sun X, Song S, Zhao X, Liu J, Huang G. Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells. Oncotarget 2018; 7:52392-52403. [PMID: 27447558 PMCID: PMC5239560 DOI: 10.18632/oncotarget.10721] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/29/2016] [Indexed: 12/24/2022] Open
Abstract
The clinical success of EGFR inhibitors in patients with lung cancer is limited by the inevitable development of treatment resistance. Here, we show that inhibition of SREBP increase gefitinib sensitivity in vitro and in vivo. Interference of SREBP1 binding partner MARVELD1 potentiate the therapeutic effect of gefitinib as well. Mechanistically, SREBP inhibition decreases the cell membrane fluidity, results in a decreased tyrosine phosphorylation of EGFR. Therefore, targeting lipid metabolism combined with EGFR-TKIs is potentially a novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Yan
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenzhi Jia
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Yang
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Liu Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ping Miao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoguang Sun
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
10
|
Abstract
Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also evaluated in this review. We show that targeting TLRs in cancer immunotherapy is a promising strategy for cancer therapy, and the specific TLR ligands, either alone or combination, exhibit antitumor potential.
Collapse
|
11
|
Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation. Sci Rep 2015; 5:16007. [PMID: 26537865 PMCID: PMC4633583 DOI: 10.1038/srep16007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/23/2022] Open
Abstract
Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p < 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.
Collapse
|
12
|
Yao Y, Shi M, Liu S, Li Y, Guo K, Ci Y, Liu W, Li Y. MARVELD1 modulates cell surface morphology and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. Mol Carcinog 2015; 55:1714-1727. [PMID: 26509557 DOI: 10.1002/mc.22421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/11/2022]
Abstract
Integrins have been known to play pivotal roles in malignant progression and epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC). We previously demonstrated that MARVELD1, a potential tumor suppressor, is epigenetically silenced in multiple cancer cells. In this study, we found MARVELD1 silencing altered cell surface ultrastructure of NSCLC cells and inhibited the formation of punctate integrin β1/β4 cluster in microvillus, whereas MARVELD1 overexpression suppressed TGF-β1-induced EMT. Remarkably, the balance of integrin β1 and β4 was modulated by MARVELD1. MARVELD1 silencing led to imbalance of integrin β1/β4 and significantly reduced microvillus length, furthermore affected the localization of β1/β4 at microvilli tips. TGF-β1-induced EMT was promoted by MARVELD1 silencing, while rebalance of integrin β1/β4 partly rescued the epithelial phenotype of MARVELD1-silenced cells. Mechanistically, we demonstrate that MARVELD1-mediated balance of integrin β1 and β4 regulates cell surface ultrastructure and EMT phenotype of NSCLC cells, suggesting MARVELD1 has a potential to be developed as a therapeutic target for NSCLC. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shanshan Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kexin Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yanpeng Ci
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weizhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
13
|
Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, Nie H, Su J, Wang Z, Yue L, Cao J, Li Y. Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer. Sci Rep 2014; 4:7545. [PMID: 25520033 PMCID: PMC4269892 DOI: 10.1038/srep07545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 01/20/2023] Open
Abstract
Epigenetic silence in cancer frequently altered signal-transduction pathways during the early stages of tumor development. Recent progress in the field of cancer epigenetics has led to new opportunities for diagnosis and treatment of cancer. We previously demonstrated that novel identified nuclear factor MARVELD1 was widely expressed in human tissues, but down-regulated by promoter methylation in multiple cancers. This study was carried out to determine the biological and clinical significance of MARVELD1 gene silencing in lung cancer. Here, we found the reduced MARVELD1 expression significantly correlated with diagnostic histopathology and malignant degree of lung cancers. DNA hypermethylation and histone deacetylation synergistically inactivated MARVELD1 gene in lung cancer cells. Moreover, MARVELD1 modulated the efficiency of nonsense-mediated mRNA decay (NMD) through interaction with NMD core factor SMG1. The decreased MARVELD1 level in lung cancer reduces NMD efficiency through diminishing the association between NMD complex component UPF1/SMG1 and premature termination codons containing mRNA (PTC-mRNA). The results suggested that MARVELD1 silencing is an appealing diagnostic biomarker for lung cancer and epigenetic silencing of MARVELD1 gene links with the regulatory mechanism of NMD pathway in lung cancer, which may be required for tumorigenesis.
Collapse
Affiliation(s)
- Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Su
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zeyu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
14
|
MAP1S controls breast cancer cell TLR5 signaling pathway and promotes TLR5 signaling-based tumor suppression. PLoS One 2014; 9:e86839. [PMID: 24466264 PMCID: PMC3900661 DOI: 10.1371/journal.pone.0086839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/14/2013] [Indexed: 01/31/2023] Open
Abstract
Targeting TLR5 signaling in breast cancer represents a novel strategy in cancer immunotherapy. However, the underlying mechanism by which TLR5 signaling inhibits cancer cell proliferation and tumor growth has not been elucidated. In this study, we found TLR5 agonist flagellin inhibited the cell state of activation and induced autophagy, and reported that autophagy protein MAP1S regulated the flagellin/TLR5 signaling pathway in breast cancer cells through enhancement of NF-κB activity and cytokine secretion. Remarkably, MAP1S played a critical role in tumor suppression induced by flagellin, and knockdown of MAP1S almost completely abrogated the suppression of tumor growth and migration by flagellin treatment. In addition, elevated expression of MAP1S in response to flagellin feed-back regulated tumor inflammatory microenvironment in the late stages of TLR5 signaling through degradation of MyD88 in autophagy process. These results indicate a mechanism of antitumor activity that involves MAP1S-controlled TLR5 signaling in breast cancer.
Collapse
|
15
|
Yao R, Zheng J, Zheng W, Gong Y, Liu W, Xing R. VX680 suppresses the growth of HepG2 cells and enhances the chemosensitivity to cisplatin. Oncol Lett 2013; 7:121-124. [PMID: 24348832 PMCID: PMC3861569 DOI: 10.3892/ol.2013.1648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022] Open
Abstract
VX680 is an Aurora A inhibitor. It has been reported to inhibit the growth of the HepG2 cell line in several studies. However, whether it enhances chemosensitivity to cisplatin remains unclear. In this study, the synergistic effect of VX680 and cisplatin on the proliferation of HepG2 cells was determined by MTT assay. The changes in cell apoptosis were detected by flow cytometry. Aurora A, Bcl-2 and p53 protein levels were analyzed by western blotting. This study demonstrated that VX680, cisplatin and a combination of the two inhibit the growth of HepG2 cells in a dose- and time-dependent manner. A synergistic effect was observed with the combined therapy. Moreover, the inhibitory effect of VX680 was positively correlated with the expression of Aurora A. The rate of apoptosis in the combined group was significantly higher compared with that of the VX680 and cisplatin groups. In addition, VX680 and cisplatin increased the expression of the p53 protein. Cisplatin reduced the expression of Bcl-2 protein, while VX680 did not. In the combined group, the expression of Bcl-2 and p53 changed significantly compared with the single drug group and control group. This study suggests that Aurora A may represent a valid target in hepatocellular carcinoma. We also demonstrated that the Aurora A inhibitor VX680 has a synergistic effect with cisplatin.
Collapse
Affiliation(s)
- Rucheng Yao
- Department of General Surgery, The First College of Clinical Medical Sciences, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Jun Zheng
- Department of General Surgery, The First College of Clinical Medical Sciences, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Weihong Zheng
- Department of Pharmacology, Medical Science College, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Yuan Gong
- Department of Respiratory Medicine, The First College of Clinical Medical Sciences, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Wei Liu
- Department of General Surgery, The First College of Clinical Medical Sciences, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Rongchun Xing
- Department of General Surgery, The First College of Clinical Medical Sciences, Three Gorges University, Yichang, Hubei 443003, P.R. China
| |
Collapse
|
16
|
Wang S, Hu J, Yao Y, Shi M, Yue L, Han F, Zhang H, He J, Liu S, Li Y. MARVELD1 regulates integrin β1-mediated cell adhesion and actin organization via inhibiting its pre-mRNA processing. Int J Biochem Cell Biol 2013; 45:2679-87. [PMID: 24055813 DOI: 10.1016/j.biocel.2013.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/24/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Cell adhesion on an extracellular matrix (ECM) participates in cell motility, invasion, cell signal transduction and gene expression. Many nuclear proteins regulate cell-ECM adhesion through managing the transcription of cell adhesion-related genes. Here, we identified MARVEL [MAL (The myelin and lymphocyte protein) and related proteins for vesicle trafficking and membrane link] domain containing 1 (MARVELD1) that could suppress cell spreading and complicate actin organization. Over-expression of MARVELD1 in NIH3T3 cells decreased the expression level of integrin β1 and vinculin, and further led to dephosphorylation of focal adhesion kinase (FAK) at Tyr 397. We also found that MARVELD1 partially colocalized with serine/arginine-rich splicing factor 2 (SC35) and interacted with nuclear cap binding protein subunit 2 (CBP20). Finally, we demonstrated that pre-mRNA processing of integrin β1 was affected by MARVELD1. Taken together, our studies demonstrate that MARVELD1 plays a role in pre-mRNA processing of integrin β1, and thereby regulates cell adhesion and cell motility. These studies provide a novel regulatory mechanism of cell-ECM adhesion by nuclear protein in cells.
Collapse
Affiliation(s)
- Shan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hu J, Li Y, Li P. MARVELD1 Inhibits Nonsense-Mediated RNA Decay by Repressing Serine Phosphorylation of UPF1. PLoS One 2013; 8:e68291. [PMID: 23826386 PMCID: PMC3694864 DOI: 10.1371/journal.pone.0068291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 11/24/2022] Open
Abstract
We have observed low expression levels of MARVELD1, a novel tumor repressor, in multiple tumors; however, its function in normal cells has not been explored. We recently reported that MARVELD1 interacts with importin β1, which plays an important role in nonsense-mediated RNA decay(NMD). Here, we demonstrate that MARVELD1 substantially inhibits nonsense-mediated RNA decay by decreasing the pioneer round of translation but not steady-state translation, and we identify MARVELD1 as an important component of the molecular machinery containing UPF1 and Y14. Furthermore, we determined the specific regions of MARVELD1 and UPF1 responsible for their interaction. We also showed that MARVELD1 promotes the dissociation of SMG1 from UPF1, resulting in the repression of serine phosphorylation of UPF1, and subsequently blocks the recruitment of SMG5, which is required for ensuing SMG5-mediated exonucleolytic decay. Our observations provide molecular insight into the potential function of MARVELD1 in nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Jianran Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail:
| | - Ping Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|