1
|
de la Rosa S, Schol CR, Ramos Peregrina Á, Winter DJ, Hilgers AM, Maeda K, Iida Y, Tarallo M, Jia R, Beenen HG, Rocafort M, de Wit PJGM, Bowen JK, Bradshaw RE, Joosten MHAJ, Bai Y, Mesarich CH. Sequential breakdown of the Cf-9 leaf mould resistance locus in tomato by Fulvia fulva. THE NEW PHYTOLOGIST 2024; 243:1522-1538. [PMID: 38922927 DOI: 10.1111/nph.19925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Leaf mould, caused by Fulvia fulva, is a devastating disease of tomato plants. In many commercial tomato cultivars, resistance to this disease is governed by the Cf-9 locus, which encodes five paralogous receptor-like proteins. Two of these proteins confer resistance: Cf-9C recognises the previously identified F. fulva effector Avr9 and provides resistance during all plant growth stages, while Cf-9B recognises the yet-unidentified F. fulva effector Avr9B and provides mature plant resistance only. In recent years, F. fulva strains have emerged that can overcome the Cf-9 locus, with Cf-9C circumvented through Avr9 deletion. To understand how Cf-9B is circumvented, we set out to identify Avr9B. Comparative genomics, transient expression assays and gene complementation experiments were used to identify Avr9B, while gene sequencing was used to assess Avr9B allelic variation across a world-wide strain collection. A strict correlation between Avr9 deletion and resistance-breaking mutations in Avr9B was observed in strains recently collected from Cf-9 cultivars, whereas Avr9 deletion but no mutations in Avr9B were observed in older strains. This research showcases how F. fulva has evolved to sequentially break down the Cf-9 locus and stresses the urgent need for commercial tomato cultivars that carry novel, stacked resistance genes active against this pathogen.
Collapse
Affiliation(s)
- Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
| | - Christiaan R Schol
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Ángeles Ramos Peregrina
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - David J Winter
- Bioinformatics Group, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Anne M Hilgers
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Kazuya Maeda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Yuichiro Iida
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| | - Ruifang Jia
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Mercedes Rocafort
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Ltd, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Rosie E Bradshaw
- Laboratory of Molecular Plant Pathology, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
2
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Huang Z, Li H, Zhou Y, Bao Y, Duan Z, Wang C, Powell CA, Chen B, Zhang M, Yao W. Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. J Fungi (Basel) 2022; 8:jof8010059. [PMID: 35049998 PMCID: PMC8780550 DOI: 10.3390/jof8010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen–sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Huixue Li
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yuming Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| |
Collapse
|
4
|
Hunziker L, Tarallo M, Gough K, Guo M, Hargreaves C, Loo TS, McDougal RL, Mesarich CH, Bradshaw RE. Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants. Sci Rep 2021; 11:19958. [PMID: 34620932 PMCID: PMC8497623 DOI: 10.1038/s41598-021-99415-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen-angiosperm interactions may also be relevant to pathogen-gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.
Collapse
Affiliation(s)
- Lukas Hunziker
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, 6102, Australia
| | - Mariana Tarallo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Keiko Gough
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Melissa Guo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Cathy Hargreaves
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Trevor S Loo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Rebecca L McDougal
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand.
| |
Collapse
|
5
|
Guo Y, Hunziker L, Mesarich CH, Chettri P, Dupont PY, Ganley RJ, McDougal RL, Barnes I, Bradshaw RE. DsEcp2-1 is a polymorphic effector that restricts growth of Dothistroma septosporum in pine. Fungal Genet Biol 2020; 135:103300. [PMID: 31730909 DOI: 10.1016/j.fgb.2019.103300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
The detrimental effect of fungal pathogens on forest trees is an increasingly important problem that has implications for the health of our planet. Despite this, the study of molecular plant-microbe interactions in forest trees is in its infancy, and very little is known about the roles of effector molecules from forest pathogens. Dothistroma septosporum causes a devastating needle blight disease of pines, and intriguingly, is closely related to Cladosporium fulvum, a tomato pathogen in which pioneering effector biology studies have been carried out. Here, we studied D. septosporum effectors that are shared with C. fulvum, by comparing gene sequences from global isolates of D. septosporum and assessing effector function in both host and non-host plants. Many of the effectors were predicted to be non-functional in D. septosporum due to their pseudogenization or low expression in planta, suggesting adaptation to lifestyle and host. Effector sequences were polymorphic among a global collection of D. septosporum isolates, but there was no evidence for positive selection. The DsEcp2-1 effector elicited cell death in the non-host plant Nicotiana tabacum, whilst D. septosporum DsEcp2-1 mutants showed increased colonization of pine needles. Together these results suggest that DsEcp2-1 might be recognized by an immune receptor in both angiosperm and gymnosperm plants. This work may lead to the identification of plant targets for DsEcp2-1 that will provide much needed information on the molecular basis of gymnosperm-pathogen interactions in forests, and may also lead to novel methods of disease control.
Collapse
Affiliation(s)
- Yanan Guo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| | - Lukas Hunziker
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4474, New Zealand
| | - Pranav Chettri
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pierre-Yves Dupont
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Rebecca J Ganley
- The New Zealand Institute for Plant & Food Research Limited, Te Puke, New Zealand
| | - Rebecca L McDougal
- Scion, New Zealand Forest Research Institute Ltd, Rotorua 3010, New Zealand
| | - Irene Barnes
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
6
|
FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2015; 79:54-62. [DOI: 10.1016/j.fgb.2015.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
|
7
|
Wulff BBH, Chakrabarti A, Jones DA. Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1191-202. [PMID: 19737093 DOI: 10.1094/mpmi-22-10-1191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interactions between plants and many biotrophic or hemibiotrophic pathogens are controlled by receptor proteins in the host and effector proteins delivered by the pathogen. Pathogen effectors facilitate pathogen growth through the suppression of host defenses and the manipulation of host metabolism, but recognition of a pathogen-effector protein by a host receptor enables the host to activate a suite of defense mechanisms that limit pathogen growth. In the tomato (Lycopersicon esculentum syn. Solanum lycopersicum)-Cladosporium fulvum (leaf mold fungus syn. Passalora fulva) pathosystem, the host receptors are plasma membrane-anchored, leucine-rich repeat, receptor-like proteins encoded by an array of Cf genes conferring resistance to C. fulvum. The pathogen effectors are mostly small, secreted, cysteine-rich, but otherwise largely dissimilar, extracellular proteins encoded by an array of avirulence (Avr) genes, so called because of their ability to trigger resistance and limit pathogen growth when the corresponding Cf gene is present in tomato. A number of Cf and Avr genes have been isolated, and details of the complex molecular interplay between tomato Cf proteins and C. fulvum effector proteins are beginning to emerge. Each effector appears to have a different role; probably most bind or modify different host proteins, but at least one has a passive role masking the pathogen. It is, therefore, not surprising that each effector is probably detected in a distinct and specific manner, some by direct binding, others as complexes with host proteins, and others via their modification of host proteins. The two papers accompanying this review contribute further to our understanding of the molecular specificity underlying effector perception by Cf proteins. This review, therefore, focuses on our current understanding of recognitional specificity in the tomato-C. fulvum pathosystem and highlights some of the critical questions that remain to be addressed. It also addresses the evolutionary causes and consequences of this specificity.
Collapse
Affiliation(s)
- B B H Wulff
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | | | | |
Collapse
|
8
|
van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1420-30. [PMID: 17153926 DOI: 10.1094/mpmi-19-1420] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resistance against the leaf mold fungus Cladosporium fulvum is mediated by the tomato Cf proteins which belong to the class of receptor-like proteins and indirectly recognize extracellular avirulence proteins (Avrs) of the fungus. Apart from triggering disease resistance, Avrs are believed to play a role in pathogenicity or virulence of C. fulvum. Here, we report on the avirulence protein Avr4, which is a chitin-binding lectin containing an invertebrate chitin-binding domain (CBM14). This domain is found in many eukaryotes, but has not yet been described in fungal or plant genomes. We found that interaction of Avr4 with chitin is specific, because it does not interact with other cell wall polysaccharides. Avr4 binds to chitin oligomers with a minimal length of three N-acetyl glucosamine residues. In vitro, Avr4 protects chitin against hydrolysis by plant chitinases. Avr4 also binds to chitin in cell walls of the fungi Trichoderma viride and Fusarium solani f. sp. phaseoli and protects these fungi against normally deleterious concentrations of plant chitinases. In situ fluorescence studies showed that Avr4 also binds to cell walls of C. fulvum during infection of tomato, where it most likely protects the fungus against tomato chitinases, suggesting that Avr4 is a counter-defensive virulence factor.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Thomma BPHJ, VAN Esse HP, Crous PW, DE Wit PJGM. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. MOLECULAR PLANT PATHOLOGY 2005; 6:379-93. [PMID: 20565665 DOI: 10.1111/j.1364-3703.2005.00292.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Cladosporium fulvum is an asexual fungus for which no sexual stage is currently known. Molecular data, however, support C. fulvum as a member of the Mycosphaerellaceae, clustering with other taxa having Mycosphaerella teleomorphs. C. fulvum has recently been placed in the anamorph genus Passalora as P. fulva. Its taxonomic disposition is supported by its DNA phylogeny, as well as the distinct scars on its conidial hila, which are typical of Passalora, and unlike Cladosporium s.s., which has teleomorphs that reside in Davidiella, and not Mycosphaerella. Host range and disease symptoms: The presently known sole host of C. fulvum is tomato (members of the genusLycopersicon). C. fulvum is mainly a foliar pathogen. Disease symptoms are most obvious on the abaxial side of the leaf and include patches of white mould that turn brown upon sporulation. Due to stomatal clogging, curling of leaves and wilting can occur, leading to defoliation. C. fulvum as a model pathogen: The interaction between C. fulvum and tomato is governed by a gene-for-gene relationship. A total of eight Avr and Ecp genes, and for four of these also the corresponding plant Cf genes, have been cloned. Obtaining conclusive evidence for gene-for-gene relationships is complicated by the poor availability of genetic tools for most Mycosphaerellaceae-plant interactions. Newly developed tools, including Agrobacterium-mediated transformation and RNAi, added to the genome sequence of its host tomato, which will be available within a few years, render C. fulvum attractive as a model species for plant pathogenic Mycosphaerellaceae. USEFUL WEBSITES http://www.sgn.cornell.edu/help/about/index.html; http://cogeme.ex.ac.uk.
Collapse
Affiliation(s)
- Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Rivas S, Thomas CM. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:395-436. [PMID: 16078890 DOI: 10.1146/annurev.phyto.43.040204.140224] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner. This interaction has provided useful insights to the molecular basis of recognition specificity in plant disease resistance (R) proteins, disease resistance (R) gene evolution, R-protein mediated signaling, and cellular responses to pathogen attack. Tomato Cf genes encode type I membrane-associated receptor-like proteins (RLPs) comprised predominantly of extracellular leucine-rich repeats (eLRRs) and which are anchored in the plasma membrane. Cf proteins recognize fungal avirulence (Avr) peptides secreted into the leaf apoplast during infection. A direct interaction of Cf proteins with their cognate Avr proteins has not been demonstrated and the molecular mechanism of Avr protein perception is not known. Following ligand perception Cf proteins trigger a hypersensitive response (HR) and the arrest of pathogen development. Cf proteins lack an obvious signaling domain, suggesting that defense response activation is mediated through interactions with other partners. Avr protein perception results in the rapid accumulation of active oxygen species (AOS), changes in cellular ion fluxes, activation of protein kinase cascades, changes in gene expression and, possibly, targeted protein degradation. Here we review our current understanding of Cf-mediated responses in resistance to C. fulvum.
Collapse
Affiliation(s)
- Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, UMR CNRS/INRA 2594, BP 52627, 31326 Castanet-Tolosan cedex, France.
| | | |
Collapse
|