1
|
Yang X, Liu T, Yang R, Fan H, Liu X, Xuan Y, Wang Y, Chen L, Duan Y, Zhu X. Overexpression of GmPAL Genes Enhances Soybean Resistance Against Heterodera glycines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:416-423. [PMID: 38171485 DOI: 10.1094/mpmi-09-23-0151-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-β-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaowen Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruowei Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
3
|
Beesley A, Beyer SF, Wanders V, Levecque S, Bredenbruch S, Habash SS, Schleker ASS, Gätgens J, Oldiges M, Schultheiss H, Conrath U, Langenbach CJG. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2490-2506. [PMID: 37578146 PMCID: PMC10651151 DOI: 10.1111/pbi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.
Collapse
Affiliation(s)
| | - Sebastian F. Beyer
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
- Present address:
BASF SE, Agricultural CenterLimburgerhofGermany
| | - Verena Wanders
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Sophie Levecque
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | | - Samer S. Habash
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Present address:
BASF Vegetable SeedsNunhemNetherlands
| | | | - Jochem Gätgens
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | - Marco Oldiges
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | | | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
4
|
Stocker C, Khatanbaatar T, Bressan L, Würth-Roderer K, Cordara G, Krengel U, Kast P. Novel exported fusion enzymes with chorismate mutase and cyclohexadienyl dehydratase activity: Shikimate pathway enzymes teamed up in no man's land. J Biol Chem 2023; 299:105161. [PMID: 37586588 PMCID: PMC10520331 DOI: 10.1016/j.jbc.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Chorismate mutase (CM) and cyclohexadienyl dehydratase (CDT) catalyze two subsequent reactions in the intracellular biosynthesis of l-phenylalanine (Phe). Here, we report the discovery of novel and extremely rare bifunctional fusion enzymes, consisting of fused CM and CDT domains, which are exported from the cytoplasm. Such enzymes were found in only nine bacterial species belonging to non-pathogenic γ- or β-Proteobacteria. In γ-proteobacterial fusion enzymes, the CM domain is N-terminal to the CDT domain, whereas the order is inverted in β-Proteobacteria. The CM domains share 15% to 20% sequence identity with the AroQγ class CM holotype of Mycobacterium tuberculosis (∗MtCM), and the CDT domains 40% to 60% identity with the exported monofunctional enzyme of Pseudomonas aeruginosa (PheC). In vitro kinetics revealed a Km <7 μM, much lower than for ∗MtCM, whereas kinetic parameters are similar for CDT domains and PheC. There is no feedback inhibition of CM or CDT by the pathway's end product Phe, and no catalytic benefit of the domain fusion compared with engineered single-domain constructs. The fusion enzymes of Aequoribacter fuscus, Janthinobacterium sp. HH01, and Duganella sacchari were crystallized and their structures refined to 1.6, 1.7, and 2.4 Å resolution, respectively. Neither the crystal structures nor the size-exclusion chromatography show evidence for substrate channeling or higher oligomeric structure that could account for the cooperation of CM and CDT active sites. The genetic neighborhood with genes encoding transporter and substrate binding proteins suggests that these exported bifunctional fusion enzymes may participate in signaling systems rather than in the biosynthesis of Phe.
Collapse
Affiliation(s)
- Christian Stocker
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland
| | | | - Luca Bressan
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland
| | | | | | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway.
| | - Peter Kast
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Alariqi M, Ramadan M, Wang Q, Yang Z, Hui X, Nie X, Ahmed A, Chen Q, Wang Y, Zhu L, Zhang X, Jin S. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994650 DOI: 10.1111/tpj.16223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.
Collapse
Affiliation(s)
- Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy and Pastures, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Mohamed Ramadan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Xi Hui
- Shihezi University, Shihezi, Xinjiang, China
| | - Xinhui Nie
- Shihezi University, Shihezi, Xinjiang, China
| | - Amani Ahmed
- College of Food Science, Huazhong Agricultural University, Wuhan, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yanyin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, 843300, China
| | - Longfu Zhu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
8
|
Masonbrink RE, Maier TR, Hudson M, Severin A, Baum T. A chromosomal assembly of the soybean cyst nematode genome. Mol Ecol Resour 2021; 21:2407-2422. [PMID: 34036752 DOI: 10.1111/1755-0998.13432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The soybean cyst nematode (Heterodera glycines) is a sedentary plant parasite that exceeds billion USD annually in yield losses. This problem is exacerbated by H. glycines populations overcoming the limited sources of natural resistance in soybean and by the lack of effective and safe alternative treatments. Although there are genetic determinants that render soybeans resistant to nematode genotypes, resistant soybeans are increasingly ineffective because their multiyear usage has selected for virulent H. glycines populations. Successful H. glycines infection relies on the comprehensive re-engineering of soybean root cells into a syncytium, as well as the long-term suppression of host defences to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms that control genomic effector acquisition, diversification, and selection are important insights needed for the development of essential novel control strategies. As a foundation to obtain this understanding, we created a nine-scaffold, 158 Mb pseudomolecule assembly of the H. glycines genome using PacBio, Chicago, and Hi-C sequencing. A Mikado consensus gene prediction produced an annotation of 22,465 genes using short- and long-read expression data. To evaluate assembly and annotation quality, we cross-examined synteny among H. glycines assemblies, and compared BUSCO across related species. To describe the predicted proteins involved in H. glycines' secretory pathway, we contrasted expression between preparasitic and parasitic stages with functional gene information. Here, we present the results from our assembly and annotation of the H. glycines genome and contribute this resource to the scientific community.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
10
|
Baseggio L, Silayeva O, Buller N, Landos M, Englestädter J, Barnes AC. Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants. Microb Genom 2021; 7:000562. [PMID: 33885359 PMCID: PMC8208687 DOI: 10.1099/mgen.0.000562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae, often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida, and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida - a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis. Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.
Collapse
Affiliation(s)
- Laura Baseggio
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Oleksandra Silayeva
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicky Buller
- Diagnostic and Laboratory Services (DDLS), Department of Primary Industries and Regional Development (DPIRD), 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Matt Landos
- Future Fisheries Veterinary Services, East Ballina, New South Wales 2478, Australia
| | - Jan Englestädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C. Barnes
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- *Correspondence: Andrew C. Barnes,
| |
Collapse
|
11
|
Bauters L, Kyndt T, De Meyer T, Morreel K, Boerjan W, Lefevere H, Gheysen G. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. MOLECULAR PLANT PATHOLOGY 2020; 21:1634-1646. [PMID: 33084136 PMCID: PMC7694671 DOI: 10.1111/mpp.13003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 05/11/2023]
Abstract
Hirschmanniella oryzae is one of the most devastating nematodes on rice, leading to substantial yield losses. Effector proteins aid the nematode during the infection process by subduing plant defence responses. In this research we characterized two potential H. oryzae effector proteins, chorismate mutase (HoCM) and isochorismatase (HoICM), and investigated their enzymatic activity and their role in plant immunity. Both HoCM and HoICM proved to be enzymatically active in complementation tests in mutant Escherichia coli strains. Infection success by the migratory nematode H. oryzae was significantly higher in transgenic rice lines constitutively expressing HoCM or HoICM. Expression of HoCM, but not HoICM, increased rice susceptibility against the sedentary nematode Meloidogyne graminicola also. Transcriptome and metabolome analyses indicated reductions in secondary metabolites in the transgenic rice plants expressing the potential nematode effectors. The results presented here demonstrate that both HoCM and HoICM suppress the host immune system and that this may be accomplished by lowering secondary metabolite levels in the plant.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kris Morreel
- VIB‐UGent Center for Plant Systems BiologyGhentBelgium
- Department of Plant Biotechnology and BioinformaticsFaculty of SciencesGhent UniversityGhentBelgium
| | - Wout Boerjan
- VIB‐UGent Center for Plant Systems BiologyGhentBelgium
- Department of Plant Biotechnology and BioinformaticsFaculty of SciencesGhent UniversityGhentBelgium
| | - Hannes Lefevere
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
12
|
Dommel M, Oh J, Huguet-Tapia JC, Guy E, Boulain H, Sugio A, Murugan M, Legeai F, Heck M, Smith CM, White FF. Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons. FRONTIERS IN PLANT SCIENCE 2020; 11:1230. [PMID: 33013944 PMCID: PMC7495047 DOI: 10.3389/fpls.2020.01230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
Aphids secrete proteins from their stylets that evidence indicates function similar to pathogen effectors for virulence. Here, we describe two small candidate effector gene families of the pea aphid, Acyrthosiphon pisum, that share highly conserved secretory signal peptide coding regions and divergent non-secretory coding sequences derived from miniature exons. The KQY candidate effector family contains eleven members with additional isoforms, generated by alternative splicing. Pairwise comparisons indicate possible four unique KQY families based on coding regions without the secretory signal region. KQY1a, a representative of the family, is encoded by a 968 bp mRNA and a gene that spans 45.7 kbp of the genome. The locus consists of 37 exons, 33 of which are 15 bp or smaller. Additional KQY members, as well as members of the KHI family, share similar features. Differential expression analyses indicate that the genes are expressed preferentially in salivary glands. Proteomic analysis on salivary glands and saliva revealed 11 KQY members in salivary proteins, and KQY1a was detected in an artificial diet solution after aphid feeding. A single KQY locus and two KHI loci were identified in Myzus persicae, the peach aphid. Of the genes that can be anchored to chromosomes, loci are mostly scattered throughout the genome, except a two-gene region (KQY4/KQY6). We propose that the KQY family expanded in A. pisum through combinatorial assemblies of a common secretory signal cassette and novel coding regions, followed by classical gene duplication and divergence.
Collapse
Affiliation(s)
- Matthew Dommel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jonghee Oh
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Endrick Guy
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Hélène Boulain
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Akiko Sugio
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Marimuthu Murugan
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Fabrice Legeai
- INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Michelle Heck
- USDA-ARS, Cornell University, Ithaca, NY, United States
| | - C. Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Favery B, Dubreuil G, Chen MS, Giron D, Abad P. Gall-Inducing Parasites: Convergent and Conserved Strategies of Plant Manipulation by Insects and Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:1-22. [PMID: 32853101 DOI: 10.1146/annurev-phyto-010820-012722] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gall-inducing insects and nematodes engage in sophisticated interactions with their host plants. These parasites can induce major morphological and physiological changes in host roots, leaves, and other tissues. Sedentary endoparasitic nematodes, root-knot and cyst nematodes in particular, as well as gall-inducing and leaf-mining insects, manipulate plant development to form unique organs that provide them with food from feeding cells. Sometimes, infected tissues may undergo a developmental switch resulting in the formation of aberrant and spectacular structures (clubs or galls). We describe here the complex interactions between these plant-reprogramming sedentary endoparasites and their infected hosts, focusing on similarities between strategies of plant manipulation. We highlight progress in our understanding of the host plant response to infection and focus on the nematode and insect molecules secreted in planta. We suggest thatlooking at similarities may identify convergent and conserved strategies and shed light on the promise they hold for the development of new management strategies in agriculture and forestry.
Collapse
Affiliation(s)
- Bruno Favery
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Pierre Abad
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| |
Collapse
|
14
|
Gheysen G, Mitchum MG. Phytoparasitic Nematode Control of Plant Hormone Pathways. PLANT PHYSIOLOGY 2019; 179:1212-1226. [PMID: 30397024 PMCID: PMC6446774 DOI: 10.1104/pp.18.01067] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 05/17/2023]
Abstract
Phytoparasitic nematodes use multiple tactics to influence phytohormone physiology and alter plant developmental programs to establish feeding sites.
Collapse
Affiliation(s)
- Godelieve Gheysen
- Ghent University, Department of Biotechnology, Coupure Links 653, 9000 Ghent, Belgium
| | - Melissa G Mitchum
- University of Missouri, Division of Plant Sciences and Bond Life Sciences Center, Columbia, Missouri 65211
| |
Collapse
|
15
|
Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E, Juvale PS, Schmutz J, Johnson NT, Korkin D, Mitchum MG, Mimee B, den Akker SEV, Hudson M, Severin AJ, Baum TJ. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genomics 2019; 20:119. [PMID: 30732586 PMCID: PMC6367775 DOI: 10.1186/s12864-019-5485-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. RESULTS Here, we use PacBio long-read technology to assemble a H. glycines genome of 738 contigs into 123 Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7 Mb), and horizontal gene transfer events (151 genes). A large number of putative effectors (431 genes) were identified in the genome, many of which were found in transposons. CONCLUSIONS This advance provides a glimpse into the host and parasite interplay by revealing a diversity of mechanisms that give rise to virulence genes in the soybean cyst nematode, including: tandem duplications containing over a fifth of the total gene count, virulence genes hitchhiking in transposons, and 107 horizontal gene transfers not reported in other plant parasitic nematodes thus far. Through extensive characterization of the H. glycines genome, we provide new insights into H. glycines biology and shed light onto the mystery underlying complex host-parasite interactions. This genome sequence is an important prerequisite to enable work towards generating new resistance or control measures against H. glycines.
Collapse
Affiliation(s)
- Rick Masonbrink
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Tom R. Maier
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| | - Usha Muppirala
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Arun S. Seetharam
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Etienne Lord
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, Walnut Creek, CA USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Nathan T. Johnson
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA USA
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Matthew Hudson
- Department of Crop Sciences University of Illinois, Urbana, IL USA
| | | | - Thomas J. Baum
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| |
Collapse
|
16
|
Barnes SN, Masonbrink RE, Maier TR, Seetharam A, Sindhu AS, Severin AJ, Baum TJ. Heterodera glycines utilizes promiscuous spliced leaders and demonstrates a unique preference for a species-specific spliced leader over C. elegans SL1. Sci Rep 2019; 9:1356. [PMID: 30718603 PMCID: PMC6362198 DOI: 10.1038/s41598-018-37857-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.
Collapse
Affiliation(s)
- Stacey N Barnes
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Arun Seetharam
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew J Severin
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
17
|
Functions of Flavonoids in Plant⁻Nematode Interactions. PLANTS 2018; 7:plants7040085. [PMID: 30326617 PMCID: PMC6313853 DOI: 10.3390/plants7040085] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 11/21/2022]
Abstract
Most land plants can become infected by plant parasitic nematodes in the field. Plant parasitic nematodes can be free-living or endoparasitic, and they usually infect plant roots. Most damaging are endoparasites, which form feeding sites inside plant roots that damage the root system and redirect nutrients towards the parasite. This process involves developmental changes to the root in parallel with the induction of defense responses. Plant flavonoids are secondary metabolites that have roles in both root development and plant defense responses against a range of microorganisms. Here, we review our current knowledge of the roles of flavonoids in the interactions between plants and plant parasitic nematodes. Flavonoids are induced during nematode infection in plant roots, and more highly so in resistant compared with susceptible plant cultivars, but many of their functions remain unclear. Flavonoids have been shown to alter feeding site development to some extent, but so far have not been found to be essential for root–parasite interactions. However, they likely contribute to chemotactic attraction or repulsion of nematodes towards or away from roots and might help in the general plant defense against nematodes. Certain flavonoids have also been associated with functions in nematode reproduction, although the mechanism remains unknown. Much remains to be examined in this area, especially under field conditions.
Collapse
|
18
|
Barnes SN, Wram CL, Mitchum MG, Baum TJ. The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein. MOLECULAR PLANT PATHOLOGY 2018; 19:2263-2276. [PMID: 29719112 PMCID: PMC6637993 DOI: 10.1111/mpp.12697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
Cyst nematodes are plant pathogens that infect a wide range of economically important crops. One parasitic mechanism employed by cyst nematodes is the production and in planta delivery of effector proteins to modify plant cells and suppress defences to favour parasitism. This study focuses on GLAND4, an effector of Heterodera glycines and H. schachtii, the soybean and sugar beet cyst nematodes, respectively. We show that GLAND4 is recognized by the plant cellular machinery and is transported to the plant nucleus, an organelle for which little is known about plant nematode effector functions. We show that GLAND4 has DNA-binding ability and represses reporter gene expression in a plant transcriptional assay. One DNA fragment that binds to GLAND4 is localized in an Arabidopsis chromosomal region associated with the promoters of two lipid transfer protein genes (LTP). These LTPs have known defence functions and are down-regulated in the nematode feeding site. When expressed in Arabidopsis, the presence of GLAND4 causes the down-regulation of the two LTP genes in question, which is also associated with increased susceptibility to the plant-pathogenic bacterium Pseudomonas syringae. Furthermore, overexpression of one of the LTP genes reduces plant susceptibility to H. schachtii and P. syringae, confirming that LTP repression probably suppresses plant defences. This study makes GLAND4 one of a small subset of characterized plant nematode nuclear effectors and identifies GLAND4 as the first DNA-binding, plant-parasitic nematode effector.
Collapse
Affiliation(s)
- Stacey N. Barnes
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| | - Catherine L. Wram
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
- Present address:
Department of Botany and Plant PathologyOregon State UniversityCorvallisOR 97330USA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMO 65211USA
| | - Thomas J. Baum
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| |
Collapse
|
19
|
Hu Y, Hewezi T. Nematode-secreted peptides and host factor mimicry. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2866-2868. [PMID: 29846675 PMCID: PMC5972653 DOI: 10.1093/jxb/ery144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article comments on: Kim J, Yang R, Chang C, Park Y, Tucker ML. 2018. The root-knot nematode (Meloidogyne incognita) produces a functional mimic of the Arabidopsis IDA signaling peptide. Journal of Experimental Botany 69, 3009–3021.
Collapse
Affiliation(s)
- Yanfeng Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Correspondence:
| |
Collapse
|
20
|
Rancurel C, Legrand L, Danchin EGJ. Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life. Genes (Basel) 2017; 8:E248. [PMID: 28961181 PMCID: PMC5664098 DOI: 10.3390/genes8100248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.
Collapse
Affiliation(s)
- Corinne Rancurel
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan Cedex, France.
| | - Etienne G J Danchin
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
21
|
Lin J, Mazarei M, Zhao N, Hatcher CN, Wuddineh WA, Rudis M, Tschaplinski TJ, Pantalone VR, Arelli PR, Hewezi T, Chen F, Stewart CN. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2100-2109. [PMID: 27064027 PMCID: PMC5095773 DOI: 10.1111/pbi.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 05/10/2023]
Abstract
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Nan Zhao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Wegi A Wuddineh
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mary Rudis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | | | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
22
|
Toruño TY, Stergiopoulos I, Coaker G. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:419-41. [PMID: 27359369 PMCID: PMC5283857 DOI: 10.1146/annurev-phyto-080615-100204] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks.
Collapse
Affiliation(s)
- Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, California; , ,
| | | | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California; , ,
| |
Collapse
|
23
|
Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biol Evol 2016; 8:1785-801. [PMID: 27307274 PMCID: PMC4943190 DOI: 10.1093/gbe/evw119] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants.
Collapse
Affiliation(s)
- Nicky Wybouw
- Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Van Leeuwen
- Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
24
|
Hewezi T. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins. PLANT PHYSIOLOGY 2015; 169:1018-26. [PMID: 26315856 PMCID: PMC4587465 DOI: 10.1104/pp.15.00923] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/27/2015] [Indexed: 05/19/2023]
Abstract
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
25
|
Kazan K, Lyons R. Intervention of Phytohormone Pathways by Pathogen Effectors. THE PLANT CELL 2014; 26:2285-2309. [PMID: 24920334 PMCID: PMC4114936 DOI: 10.1105/tpc.114.125419] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/16/2014] [Accepted: 05/24/2014] [Indexed: 05/18/2023]
Abstract
The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane 4069, Queensland, Australia
| | - Rebecca Lyons
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane 4069, Queensland, Australia
| |
Collapse
|
26
|
Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. Nematode effector proteins: an emerging paradigm of parasitism. THE NEW PHYTOLOGIST 2013; 199:879-894. [PMID: 23691972 DOI: 10.1111/nph.12323] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
Phytonematodes use a stylet and secreted effectors to modify host cells and ingest nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode effectors, with a particular focus on proteinaceous stylet-secreted effectors of sedentary endoparasitic phytonematodes, for which a wealth of information has surfaced in the past 10 yr. We provide an update on the effector repertoires of several of the most economically important genera of phytonematodes and discuss current approaches to dissecting their function. Lastly, we highlight the latest breakthroughs in effector discovery that promise to shed new light on effector diversity and function across the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Xiaohong Wang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Martin Wubben
- USDA-ARS, Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit and Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
27
|
Wang Y, Chantreau M, Sibout R, Hawkins S. Plant cell wall lignification and monolignol metabolism. FRONTIERS IN PLANT SCIENCE 2013; 4:220. [PMID: 23847630 PMCID: PMC3705174 DOI: 10.3389/fpls.2013.00220] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Plants are built of various specialized cell types that differ in their cell wall composition and structure. The cell walls of certain tissues (xylem, sclerenchyma) are characterized by the presence of the heterogeneous lignin polymer that plays an essential role in their physiology. This phenolic polymer is composed of different monomeric units - the monolignols - that are linked together by several covalent bonds. Numerous studies have shown that monolignol biosynthesis and polymerization to form lignin are tightly controlled in different cell types and tissues. However, our understanding of the genetic control of monolignol transport and polymerization remains incomplete, despite some recent promising results. This situation is made more complex since we know that monolignols or related compounds are sometimes produced in non-lignified tissues. In this review, we focus on some key steps of monolignol metabolism including polymerization, transport, and compartmentation. As well as being of fundamental interest, the quantity of lignin and its nature are also known to have a negative effect on the industrial processing of plant lignocellulose biomass. A more complete view of monolignol metabolism and the relationship that exists between lignin and other monolignol-derived compounds thereby appears essential if we wish to improve biomass quality.
Collapse
Affiliation(s)
- Yin Wang
- Unite Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Saclay Plant SciencesVersailles, France
| | - Maxime Chantreau
- Lille 1 UMR 1281, UniversitéLille Nord de FranceVilleneuve d’Ascq, France
- Unite Mixte de Recherche 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Institut National de la Recherche AgronomiqueVilleneuve d’Ascq, France
| | - Richard Sibout
- Unite Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Saclay Plant SciencesVersailles, France
| | - Simon Hawkins
- Lille 1 UMR 1281, UniversitéLille Nord de FranceVilleneuve d’Ascq, France
- Unite Mixte de Recherche 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Institut National de la Recherche AgronomiqueVilleneuve d’Ascq, France
| |
Collapse
|
28
|
Quentin M, Abad P, Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. FRONTIERS IN PLANT SCIENCE 2013; 4:53. [PMID: 23493679 PMCID: PMC3595553 DOI: 10.3389/fpls.2013.00053] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 05/17/2023]
Abstract
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Collapse
Affiliation(s)
- Michaëel Quentin
- *Correspondence: Michaël Quentin, Institut Sophia Agrobiotech, UMR INRA 1355 – Université Nice-Sophia Antipolis – CNRS 7254, 400 routes des Chappes, F-06903 Sophia Antipolis, France. e-mail:
| | | | | |
Collapse
|
29
|
de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. Int J Parasitol 2012; 42:225-37. [PMID: 22309969 DOI: 10.1016/j.ijpara.2011.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/20/2022]
Abstract
The migratory endoparasitic root lesion nematode Pratylenchus thornei is a major pest of the cereals wheat and barley. In what we believe to be the first global transcriptome analysis for P. thornei, using Roche GS FLX sequencing, 787,275 reads were assembled into 34,312 contigs using two assembly programs, to yield 6,989 contigs common to both. These contigs were annotated, resulting in functional assignments for 3,048. Specific transcripts studied in more detail included carbohydrate active enzymes potentially involved in cell wall degradation, neuropeptides, putative plant nematode parasitism genes, and transcripts that could be secreted by the nematode. Transcripts for cell wall degrading enzymes were similar to bacterial genes, suggesting that they were acquired by horizontal gene transfer. Contigs matching 14 parasitism genes found in sedentary endoparasitic nematodes were identified. These genes are thought to function in suppression of host defenses and in feeding site development, but their function in P. thornei may differ. Comparison of the common contigs from P. thornei with other nematodes showed that 2,039 were common to sequences of the Heteroderidae, 1,947 to the Meloidogynidae, 1,218 to Radopholus similis, 1,209 matched expressed sequence tags (ESTs) of Pratylenchus penetrans and Pratylenchus vulnus, and 2,940 to contigs of Pratylenchus coffeae. There were 2,014 contigs common to Caenarhabditis elegans, with 15.9% being common to all three groups. Twelve percent of contigs with matches to the Heteroderidae and the Meloidogynidae had no homology to any C. elegans protein. Fifty-seven percent of the contigs did not match known sequences and some could be unique to P. thornei. These data provide substantial new information on the transcriptome of P. thornei, those genes common to migratory and sedentary endoparasitic nematodes, and provide additional understanding of genes required for different forms of parasitism. The data can also be used to identify potential genes to study host interactions and for crop protection.
Collapse
|
30
|
Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene 2011; 492:19-31. [PMID: 22062000 DOI: 10.1016/j.gene.2011.10.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Plant pathogens have evolved a variety of different strategies that allow them to successfully infect their hosts. Plant-parasitic nematodes secrete numerous proteins into their hosts. These proteins, called effectors, have various functions in the plant cell. The most studied effectors to date are the plant cell wall degrading enzymes, which have an interesting evolutionary history since they are believed to have been acquired from bacteria or fungi by horizontal gene transfer. Extensive genome, transcriptome and proteome studies have shown that plant-parasitic nematodes secrete many additional effectors. The function of many of these is less clear although during the last decade, several research groups have determined the function of some of these effectors. Even though many effectors remain to be investigated, it has already become clear that they can have very diverse functions. Some are involved in suppression of plant defences, while others can specifically interact with plant signalling or hormone pathways to promote the formation of nematode feeding sites. In this review, the most recent progress in the understanding of the function of plant-parasitic nematode effectors is discussed.
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
31
|
Haegeman A, Joseph S, Gheysen G. Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology. Mol Biochem Parasitol 2011; 178:7-14. [PMID: 21513748 DOI: 10.1016/j.molbiopara.2011.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
To study interactions between plants and plant-parasitic nematodes, several omics studies have nowadays become extremely useful. Since most data available so far is derived from sedentary nematodes, we decided to improve the knowledge on migratory nematodes by studying the transcriptome of the nematode Pratylenchus coffeae through generating expressed sequence tags (ESTs) on a 454 sequencing platform. In this manuscript we present the generation, assembly and annotation of over 325,000 reads from P. coffeae. After assembling these reads, 56,325 contigs and singletons with an average length of 353bp were selected for further analyses. Homology searches revealed that 25% of these sequences had significant matches to the Swiss-prot/trEMBL database and 29% had significant matches in nematode ESTs. Over 10,000 sequences were successfully annotated, corresponding to over 6000 unique Gene Ontology identifiers and 5000 KEGG orthologues. Different approaches led to the identification of different sequences putatively involved in the parasitism process. Several plant cell wall modifying enzymes were identified, including an arabinogalactan galactosidase, so far identified in cyst nematodes only. Additionally, some new putative cell wall modifying enzymes are present belonging to GHF5 and GHF16, although further functional studies are needed to determine the true role of these proteins. Furthermore, a homologue to a chorismate mutase was found, suggesting that this parasitism gene has a wider occurrence in plant-parasitic nematodes than previously assumed. Finally, the dataset was searched for orthologues against the Meloidogyne genomes and genes involved in the RNAi pathway. In conclusion, the generated transcriptome data of P. coffeae will be very useful in the future for several projects: (1) evolutionary studies of specific gene families, such as the plant cell wall modifying enzymes, (2) the identification and functional analysis of candidate effector genes, (3) the development of new control strategies, e.g. by finding new targets for RNAi and (4) the annotation of the upcoming genome sequence.
Collapse
Affiliation(s)
- Annelies Haegeman
- Ghent University, Department of Molecular Biotechnology, Ghent, Belgium
| | | | | |
Collapse
|
32
|
Degrassi G, Devescovi G, Bigirimana J, Venturi V. Xanthomonas oryzae pv. oryzae XKK.12 contains an AroQgamma chorismate mutase that is involved in rice virulence. PHYTOPATHOLOGY 2010; 100:262-270. [PMID: 20128700 DOI: 10.1094/phyto-100-3-0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chorismate mutase (CM) is a key enzyme in the shikimate pathway which is responsible for the synthesis of aromatic amino acids. There are two classes of CMs, AroQ and AroH, and several pathogenic bacteria have been reported to possess a subgroup of CMs designated AroQ(gamma). These CMs are usually exported to the periplasm or outside the cell; in a few cases, they have been reported to be involved in virulence and their precise role is currently unknown. Here, we report that the important rice pathogen Xanthomonas oryzae pv. oryzae XKK.12 produces an AroQ(gamma) CM which we have purified and characterized from spent supernatants. This enzyme is synthesized in planta and X. oryzae pv. oryzae knock-out mutants are hypervirulent to rice. The role of this enzyme in X. oryzae pv. oryzae rice virulence is discussed.
Collapse
Affiliation(s)
- Giuliano Degrassi
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Trieste, Italy.
| | | | | | | |
Collapse
|