1
|
Baldino KD, Scott JC, Dung JKS. The Alternative Host with the Most: Understanding the Ecology of Xanthomonas hortorum pv. carotae on Noncarrot Crops in Central Oregon. PLANT DISEASE 2024; 108:1755-1761. [PMID: 38213121 DOI: 10.1094/pdis-08-23-1631-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Bacterial blight of carrot, caused by Xanthomonas hortorum pv. carotae (Xhc), is an economically important disease in carrot (Daucus carota subsp. sativus) seed production. The objectives of this study were to determine if Xhc was present on noncarrot crops grown in central Oregon and, if detected, evaluate its ability to colonize alternative hosts. Surveys of three carrot seed fields and adjacent fields of rye (Secale cereale), alfalfa (Medicago sativa), parsley root (Petroselinum crispum var. tuberosum), and Kentucky bluegrass (Poa pratensis) demonstrated that Xhc was present on noncarrot crops. Greenhouse experiments were conducted to determine the ability of Xhc to colonize crops cultivated in the region. Carrot, alfalfa, curly parsley (Petroselinum crispum), Kentucky bluegrass, mint (Mentha × piperita), parsley root, roughstalk bluegrass (Poa trivialis), and wheat (Triticum aestivum) plants were spray-inoculated with Xhc and destructively sampled at 1, 7, 14, and 28 or 25 days post-inoculation. Xhc populations were quantified using viability quantitative PCR and dilution plating. A significant (P ≤ 0.03) effect of crop was observed at 1, 14, and 28 or 25 days in both experiments. While carrot hosted the most Xhc at the final timepoint, other crops supported epiphytic Xhc populations including wheat and both bluegrasses. Mint, parsley root, and alfalfa hosted the least Xhc. Bacterial blight symptoms were observed on carrots but not on noncarrot crops. This suggests that crops grown in central Oregon have the potential to be asymptomatically colonized by Xhc and may serve as reservoirs of the pathogen in carrot seed production systems.
Collapse
Affiliation(s)
- Katelyn D Baldino
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| | - Jeness C Scott
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| | - Jeremiah K S Dung
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| |
Collapse
|
2
|
Dia NC, Morinière L, Cottyn B, Bernal E, Jacobs J, Koebnik R, Osdaghi E, Potnis N, Pothier J. Xanthomonas hortorum - beyond gardens: Current taxonomy, genomics, and virulence repertoires. MOLECULAR PLANT PATHOLOGY 2022; 23:597-621. [PMID: 35068051 PMCID: PMC8995068 DOI: 10.1111/mpp.13185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 05/02/2023]
Abstract
TAXONOMY Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. hortorum; Pathovars: pv. carotae, pv. vitians, pv. hederae, pv. pelargonii, pv. taraxaci, pv. cynarae, and pv. gardneri. HOST RANGE Xanthomonas hortorum affects agricultural crops, and horticultural and wild plants. Tomato, carrot, artichoke, lettuce, pelargonium, ivy, and dandelion were originally described as the main natural hosts of the seven separate pathovars. Artificial inoculation experiments also revealed other hosts. The natural and experimental host ranges are expected to be broader than initially assumed. Additionally, several strains, yet to be assigned to a pathovar within X. hortorum, cause diseases on several other plant species such as peony, sweet wormwood, lavender, and oak-leaf hydrangea. EPIDEMIOLOGY AND CONTROL X. hortorum pathovars are mainly disseminated by infected seeds (e.g., X. hortorum pvs carotae and vitians) or cuttings (e.g., X. hortorum pv. pelargonii) and can be further dispersed by wind and rain, or mechanically transferred during planting and cultivation. Global trade of plants, seeds, and other propagating material constitutes a major pathway for their introduction and spread into new geographical areas. The propagules of some pathovars (e.g., X. horturum pv. pelargonii) are spread by insect vectors, while those of others can survive in crop residues and soils, and overwinter until the following growing season (e.g., X. hortorum pvs vitians and carotae). Control measures against X. hortorum pathovars are varied and include exclusion strategies (i.e., by using certification programmes and quarantine regulations) to multiple agricultural practices such as the application of phytosanitary products. Copper-based compounds against X. hortorum are used, but the emergence of copper-tolerant strains represents a major threat for their effective management. With the current lack of efficient chemical or biological disease management strategies, host resistance appears promising, but is not without challenges. The intrastrain genetic variability within the same pathovar poses a challenge for breeding cultivars with durable resistance. USEFUL WEBSITES https://gd.eppo.int/taxon/XANTGA, https://gd.eppo.int/taxon/XANTCR, https://gd.eppo.int/taxon/XANTPE, https://www.euroxanth.eu, http://www.xanthomonas.org, http://www.xanthomonas.org/dokuwiki.
Collapse
Affiliation(s)
- Nay C. Dia
- Environmental Genomics and Systems Biology Research GroupInstitute for Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland
- Molecular Plant BreedingInstitute of Agricultural SciencesETH ZurichZurichSwitzerland
| | - Lucas Morinière
- University of LyonUniversité Claude Bernard Lyon 1CNRSINRAEUMR Ecologie MicrobienneVilleurbanneFrance
| | - Bart Cottyn
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and FoodMerelbekeBelgium
| | - Eduardo Bernal
- Department of Plant PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Jonathan M. Jacobs
- Department of Plant PathologyThe Ohio State UniversityColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Ralf Koebnik
- Plant Health Institute of MontpellierUniversity of Montpellier, CIRAD, INRAe, Institut Agro, IRDMontpellierFrance
| | - Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAlabamaUSA
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research GroupInstitute for Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland
| |
Collapse
|
3
|
The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System. Microorganisms 2021; 9:microorganisms9071458. [PMID: 34361895 PMCID: PMC8306577 DOI: 10.3390/microorganisms9071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.
Collapse
|
4
|
Palomo Gómez JL, Shima M, Monterde A, Navarro I, Barbé S, Marco-Noales E. First report of bacterial leaf blight caused by Xanthomonas hortorum pv. carotae on carrots in Spain. PLANT DISEASE 2021; 105:2712. [PMID: 33622058 DOI: 10.1094/pdis-11-20-2493-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In September 2019, symptoms resembling those of bacterial leaf blight were observed on carrot plants (Daucus carota L. subsp. sativus Hoffm.) cv. Romance cultivated in commercial plots in Chañe (Segovia), Spain. Symptoms were observed in two plots surveyed representing three hectares, with an incidence greater than 90%, and also in some plots in other nearby municipalities sown with the same batch of seeds. The lesions observed at the ends of the leaves were initially yellow that develop dark brown to black with chlorotic halos on leaflets that turned necrotic. Yellow, Xanthomonas-like colonies were isolated onto YPGA medium (Ridé 1969) from leaf lesions. Two bacterial isolates were selected and confirmed by real-time PCR using a specific primer set for Xanthomonas hortorum pv. carotae (Temple et al. 2013). All isolates were gram-negative, aerobic rods positive for catalase, able of hydrolyzing casein and aesculin and growing at 2% NaCl, while were negative for oxidase and urease tests. Sequences of 16S rRNA gene showed 100% similarity with Xanthomonas campestris, X. arboricola, X. gardneri, X. cynarae strains (GenBank accession numbers: MW077507.1 and MW077508.1 for the isolates CRD19-206.3 and CRD19-206.4, respectively). However, the resulting phylogeny of multilocus sequence analysis (MLSA) of a concatenation of the housekeeping genes atpD, dnaK, and efp (Bui Thi Ngoc et al. 2010), by using neighbour-joining trees generated with 500 bootstrap replicates, grouped the two isolates with the X. hortorum pv. carotae M081 strain (Kimbrel et al. 2011) (GenBank accession numbers: MW161270 and MW161271 for atpD for the two isolates, respectively; MW161268 and MW161269 for dnaK; MW161272 and MW161273 for efp). A pairwise identity analysis revealed a 100% identity between all three isolates. Pathogenicity of the isolates was tested by spray inoculation (Christianson et al. 2015) with a bacterial suspension (108 CFU/ml) prepared in sterile distilled water at 3 to 4 true-leaf stage (six plants per isolate). Sterile distilled water was used as negative control. The inoculated plants were incubated in a growth chamber (25°C and 95% relative humidity [RH]) for 72 h, and then transferred to a greenhouse at 24 to 28°C and 65% RH. Characteristic leaf blight symptoms developed on inoculated carrot plants, while no symptoms were observed on the negative control plants 20 days after inoculation. The bacterium was re-isolated from symptomatic tissue and the identity confirmed through PCR analysis. Based on PCR, morphological and phenotypic tests, sequence analysis, and pathogenicity assays, the isolates were identified as X. hortorum pv. carotae. To our knowledge, this is the first report of bacterial leaf blight of carrot caused by X. hortorum pv. carotae in Spain, and the first molecular and pathological characterization. It is important to early detect this pathogen and take suitable measures to prevent its spread, since it could cause yield losses for a locally important crop such as carrot.
Collapse
Affiliation(s)
- José Luis Palomo Gómez
- Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Centro Regional de Diagnóstico, Salamanca, Spain;
| | - Maria Shima
- Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Centro Regional de Diagnóstico, Salamanca, Spain;
| | - Adela Monterde
- Instituto Valenciano de Investigaciones Agrarias, 70706, Moncada, Valencia, Spain;
| | - Inmaculada Navarro
- Instituto Valenciano de Investigaciones Agrarias, 70706, Moncada, Valencia, Spain;
| | - Silvia Barbé
- Instituto Valenciano de Investigaciones Agrarias, 70706, Moncada, Valenciana, Spain;
| | - Ester Marco-Noales
- Instituto Valenciano de Investigaciones Agrarias, 70706, CV-315 km 10,7, Moncada, Valencia, Spain, 46113;
| |
Collapse
|
5
|
Morinière L, Burlet A, Rosenthal ER, Nesme X, Portier P, Bull CT, Lavire C, Fischer-Le Saux M, Bertolla F. Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Syst Appl Microbiol 2020; 43:126087. [PMID: 32690196 DOI: 10.1016/j.syapm.2020.126087] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/21/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Assessment of the taxonomy and diversity of Xanthomonas strains causing bacterial leaf spot of lettuce (BLSL), commonly referred to as Xanthomonas campestris pv. vitians, has been a long-lasting issue which held back the global efforts made to understand this pathogen. In order to provide a sound basis essential to its study, we conducted a polyphasic approach on strains obtained through sampling campaigns or acquired from collections. Results of a multilocus sequence analysis crossed with phenotypic assays revealed that the pathotype strain does not match the description of the nomenspecies provided by Brown in 1918. However, strain LMG 938=CFBP 8686 does fit this description. Therefore, we propose that it replaces LMG 937=CFBP 2538 as pathotype strain of X. campestris pv. vitians. Then, whole-genome based phylogenies and overall genome relatedness indices calculated on taxonomically relevant strains exhibited the intermediate position of X. campestris pv. vitians between closely related species Xanthomonas hortorum and Xanthomonas cynarae. Phenotypic profiles characterized using Biolog microplates did not reveal stable diagnostic traits legitimizing their distinction. Therefore, we propose that X. cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of X. hortorum, to reclassify X. campestris pv. vitians as X. hortorum pv. vitians comb. nov. and to transfer X. cynarae pathovars in X. hortorum as X. hortorum pv. cynarae comb. nov. and X. hortorum pv. gardneri comb. nov. An emended description of X. hortorum is provided, making this extended species a promising model for the study of Xanthomonas quick adaptation to different hosts.
Collapse
Affiliation(s)
- Lucas Morinière
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Alexandre Burlet
- Station d'Expérimentation Rhône-Alpes Information Légumes, SERAIL, 69126 Brindas, France
| | - Emma R Rosenthal
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Xavier Nesme
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Perrine Portier
- IRHS, INRAE, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Marion Fischer-Le Saux
- IRHS, INRAE, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France.
| | - Franck Bertolla
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
6
|
Morinière L, Lecomte S, Gueguen E, Bertolla F. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes. Microb Genom 2019; 7. [PMID: 33760724 PMCID: PMC8627662 DOI: 10.1099/mgen.0.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of Xanthomonas hortorum pv. vitians, a gammaproteobacterial plant pathogen of lettuce (Lactuca sativa L.) which belongs to the plant-pathogen reservoir genus Xanthomonas and is affiliated to the family Xanthomonadaceae. No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of X. hortorum pv. vitians LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of Xanthomonas or Xanthomonadaceae species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of X. hortorum pv. vitians.
Collapse
Affiliation(s)
- Lucas Morinière
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Solène Lecomte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, F 69622 Villeurbanne, France
| | - Franck Bertolla
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
7
|
Chen NWG, Serres-Giardi L, Ruh M, Briand M, Bonneau S, Darrasse A, Barbe V, Gagnevin L, Koebnik R, Jacques MA. Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean. BMC Genomics 2018; 19:606. [PMID: 30103675 PMCID: PMC6090828 DOI: 10.1186/s12864-018-4975-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Laurana Serres-Giardi
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Armelle Darrasse
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion France
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| |
Collapse
|
8
|
Temple TN, du Toit LJ, Derie ML, Johnson KB. Quantitative Molecular Detection of Xanthomonas hortorum pv. carotae in Carrot Seed Before and After Hot-Water Treatment. PLANT DISEASE 2013; 97:1585-1592. [PMID: 30716831 DOI: 10.1094/pdis-03-13-0262-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular assays to detect and quantify DNA from viable cells of the seedborne pathogen Xanthomonas hortorum pv. carotae in carrot seed were developed and evaluated for use on nontreated and hot-water-treated seed lots. Both a TaqMan real-time polymerase chain reaction (PCR) assay and a loop-mediated isothermal amplification (LAMP) dilution endpoint assay detected and quantified DNA from viable pathogen cells after treatment of carrot seed washes with the live-dead discriminating dye propidium monoazide (PMA). The detection limits of the assays were approximately 101 CFU for pure cultures of X. hortorum pv. carotae, and 102 to 103 CFU/g seed from naturally infested carrot seed lots. X. hortorum pv. carotae in and on carrot seed was killed by soaking the seed in hot water (52°C for 25 min), and a subsequent PMA treatment of these hot-water-treated seed washes suppressed detection of the pathogen with both the real-time PCR and LAMP assays. For 36 commercial seed lots treated with PMA but not hot water, regression of colony counts of X. hortorum pv. carotae measured by dilution plating on a semiselective agar medium versus estimates of pathogen CFU determined by the molecular assays resulted in significant (P ≤ 0.05) linear relationships (R2 = 0.68 for the real-time PCR assay and 0.79 for the LAMP assay). The molecular assays provided quantitative estimates of X. hortorum pv. carotae infestations in carrot seed lots in <24 h, which is a significant improvement over the 7 to 14 days required to obtain results from the traditional dilution-plating assay.
Collapse
Affiliation(s)
- Todd N Temple
- Oregon State University, Department of Botany and Plant Pathology, Corvallis 97331-2902
| | - Lindsey J du Toit
- Washington State University Mount Vernon NWREC, Mount Vernon 98273-4768
| | - Michael L Derie
- Washington State University Mount Vernon NWREC, Mount Vernon 98273-4768
| | - Kenneth B Johnson
- Oregon State University, Department of Botany and Plant Pathology, Corvallis
| |
Collapse
|
9
|
Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl Environ Microbiol 2011; 78:371-84. [PMID: 22101042 DOI: 10.1128/aem.06119-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species.
Collapse
|
10
|
RNA-Seq for Plant Pathogenic Bacteria. Genes (Basel) 2011; 2:689-705. [PMID: 24710287 PMCID: PMC3927590 DOI: 10.3390/genes2040689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 11/18/2022] Open
Abstract
The throughput and single-base resolution of RNA-Sequencing (RNA-Seq) have contributed to a dramatic change in transcriptomic-based inquiries and resulted in many new insights into the complexities of bacterial transcriptomes. RNA-Seq could contribute to similar advances in our understanding of plant pathogenic bacteria but it is still a technology under development with limitations and unknowns that need to be considered. Here, we review some new developments for RNA-Seq and highlight recent findings for host-associated bacteria. We also discuss the technical and statistical challenges in the practical application of RNA-Seq for studying bacterial transcriptomes and describe some of the currently available solutions.
Collapse
|
11
|
Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 2011; 193:5450-64. [PMID: 21784931 PMCID: PMC3187462 DOI: 10.1128/jb.05262-11] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/11/2011] [Indexed: 01/03/2023] Open
Abstract
Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Department of Plant Pathology, Iowa State University, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|