1
|
Downie Ruiz Velasco A, Welten SMJ, Goossens EAC, Quax PHA, Rappsilber J, Michlewski G, Nossent AY. Posttranscriptional Regulation of 14q32 MicroRNAs by the CIRBP and HADHB during Vascular Regeneration after Ischemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:329-338. [PMID: 30665182 PMCID: PMC6350214 DOI: 10.1016/j.omtn.2018.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
After induction of ischemia in mice, 14q32 microRNAs are regulated in three distinct temporal patterns. These expression patterns, as well as basal expression levels, are independent of the microRNA genes’ order in the 14q32 locus. This implies that posttranscriptional processing is a major determinant of 14q32 microRNA expression. Therefore, we hypothesized that RNA binding proteins (RBPs) regulate posttranscriptional processing of 14q32, and we aimed to identify these RBPs. To identify proteins responsible for this posttranscriptional regulation, we used RNA pull-down SILAC mass spectrometry (RP-SMS) on selected precursor microRNAs. We observed differential binding of cold-inducible RBP (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) to the precursors of late-upregulated miR-329-3p and unaffected miR-495-3p. Immunohistochemical staining confirmed expression of both CIRBP and HADHB in the adductor muscle of mice. Expression of both CIRBP and HADHB was upregulated after hindlimb ischemia in mice. Using RBP immunoprecipitation experiments, we showed specific binding of CIRBP to pre-miR-329 but not to pri-miR-329. Finally, using CRISPR/Cas9, we generated HADHB−/− 3T3 cells, which display reduced expression of miR-329 and miR-495 but not their precursors. These data suggest a novel role for CIRBP and HADHB in posttranscriptional regulation of 14q32 microRNAs.
Collapse
Affiliation(s)
- Angela Downie Ruiz Velasco
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK; The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Sabine M J Welten
- Department of Surgery, Leiden University Medical, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical, Leiden, the Netherlands
| | - Eveline A C Goossens
- Department of Surgery, Leiden University Medical, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical, Leiden, the Netherlands
| | - Juri Rappsilber
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK; The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, P.R. China.
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical, Leiden, the Netherlands; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria.
| |
Collapse
|
2
|
Hasan AU, Kittikulsuth W, Yamaguchi F, Musarrat Ansary T, Rahman A, Shibayama Y, Nakano D, Hitomi H, Tokuda M, Nishiyama A. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression. Exp Cell Res 2017; 358:343-351. [DOI: 10.1016/j.yexcr.2017.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
3
|
Kim SM, Lim MS, Lee EH, Jung SJ, Chung HY, Kim CH, Park CH. Efficient Generation of Dopamine Neurons by Synthetic Transcription Factor mRNAs. Mol Ther 2017; 25:2028-2037. [PMID: 28705346 DOI: 10.1016/j.ymthe.2017.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 12/25/2022] Open
Abstract
Generation of functional dopamine (DA) neurons is an essential step for the development of effective cell therapy for Parkinson's disease (PD). The generation of DA neurons can be accomplished by overexpression of DA-inducible genes using virus- or DNA-based gene delivery methods. However, these gene delivery methods often cause chromosomal anomalies. In contrast, mRNA-based gene delivery avoids this problem and therefore is considered safe to use in the development of cell-based therapy. Thus, we used mRNA-based gene delivery method to generate safe DA neurons. In this study, we generated transformation-free DA neurons by transfection of mRNA encoding DA-inducible genes Nurr1 and FoxA2. The delivery of mRNA encoding dopaminergic fate inducing genes proved sufficient to induce naive rat forebrain precursor cells to differentiate into neurons exhibiting the biochemical, electrophysiological, and functional properties of DA neurons in vitro. Additionally, the generation efficiency of DA neurons was improved by the addition of small molecules, db-cAMP, and the adjustment of transfection timing. The successful generation of DA neurons using an mRNA-based method offers the possibility of developing clinical-grade cell sources for neuronal cell replacement treatment for PD.
Collapse
Affiliation(s)
- Sang-Mi Kim
- Department of Biomedical Science, Graduate School, Hanyang University, Seoul 04763, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Mi-Sun Lim
- R&D Center, Jeil Pharmaceutical Co., Ltd., Yongin 17172, Korea; Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 06360, Korea
| | - Eun-Hye Lee
- Department of Biomedical Science, Graduate School, Hanyang University, Seoul 04763, Korea
| | - Sung Jun Jung
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea; Department of Physiology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hee Yong Chung
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea; Department of Microbiology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| | | | - Chang-Hwan Park
- Department of Biomedical Science, Graduate School, Hanyang University, Seoul 04763, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea; Department of Microbiology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
4
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 2016; 598:113-130. [PMID: 27836661 DOI: 10.1016/j.gene.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3'-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3'-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Hunkele A, Sultan H, Ikalina FA, Liu AH, Nahar-Gohad P, Ko JL. Identification of gamma-synuclein as a new PCBP1-interacting protein. Neurol Res 2016; 38:1064-1078. [PMID: 26344801 DOI: 10.1179/1743132815y.0000000091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES PolyC binding protein 1 (PCBP1) is a transcriptional regulator of human mu-opioid receptor (hMOR) gene in the CNS and is also related to cancer/diseases. It possesses multi-roles that can be mediated by protein-protein interactions. To understand the mechanism controlling PCBP1 functions, PCBP1-interacting protein was investigated. METHODS Using PCBP1 as the bait, a human brain cDNA library was screened via two-hybrid system. DNA sequence of candidate protein was confirmed using NCBI/SNP databases. Candidate protein in various cell lines was examined by RT-PCR. Glutathione-S-transferase (GST) pull-down and co-immunoprecipitation were used to validate the physical interaction. Its effects on hMOR gene regulation were examined. RESULTS One clone was identified as gamma-synuclein110E, an SNP of gamma-synuclein110V. The interaction between PCBP1 and gamma-synuclein110E was confirmed by further validation and GST pull-down assay. Confocal analysis showed gamma-synuclein110E mainly expressing in the cytosol of human neuronal NMB cells. This interaction was confirmed by co-immunoprecipitation with NMB lysates, containing both proteins endogenously. Ectopic expression of gamma-synuclein110E or 110V did not alter hMOR mRNA level or promoter activity, suggesting no involvement of gamma-synuclein in modulating hMOR expression. Co-immunoprecipitation using gamma-synuclein110E or 110V overexpressed NMB cells with anti-PCBP1 antibody revealed a stronger intensity of co-immunoprecipitated gamma-synuclein band using gamma-synuclein110E-overexpressed cells as compared to that using gamma-synuclein110V-overexpressed cells. Synuclein110E was also identified in H292 (lung), HT29 (colon) and T47D (breast) cells, and this physical interaction was confirmed. CONCLUSION We report a newly identified PCBP1-interacting protein, gamma-synuclein110E, and provide some insight into its complex role as well as discuss potential roles of this interaction.
Collapse
Affiliation(s)
- Amanda Hunkele
- a Department of Biological Sciences ; Seton Hall University , USA
| | - Hamidah Sultan
- a Department of Biological Sciences ; Seton Hall University , USA
| | - Faith A Ikalina
- a Department of Biological Sciences ; Seton Hall University , USA
| | - Alexander H Liu
- a Department of Biological Sciences ; Seton Hall University , USA
| | | | - Jane L Ko
- a Department of Biological Sciences ; Seton Hall University , USA
| |
Collapse
|
6
|
Gregorini M, Corradetti V, Rocca C, Pattonieri EF, Valsania T, Milanesi S, Serpieri N, Bedino G, Esposito P, Libetta C, Avanzini MA, Mantelli M, Ingo D, Peressini S, Albertini R, Dal Canton A, Rampino T. Mesenchymal Stromal Cells Prevent Renal Fibrosis in a Rat Model of Unilateral Ureteral Obstruction by Suppressing the Renin-Angiotensin System via HuR. PLoS One 2016; 11:e0148542. [PMID: 26866372 PMCID: PMC4750962 DOI: 10.1371/journal.pone.0148542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
We studied Mesenchymal Stromal Cells (MSC) effects in experimental Unilateral Ureteral Obstruction (UUO), a fibrogenic renal disease. Rats were divided in 5 groups: sham, UUO, MSC treated-UUO, ACEi treated-UUO, MSC+ACEi treated- UUO. Data were collected at 1, 7, 21 days. UUO induced monocyte renal infiltration, tubular cell apoptosis, tubular atrophy, interstitial fibrosis and overexpression of TGFβ, Renin mRNA (RENmRNA), increase of Renin, Angiotensin II (AII) and aldosterone serum levels. Both lisinopril (ACEi) and MSC treatment prevented monocyte infiltration, reduced tubular cell apoptosis, renal fibrosis and TGFβ expression. Combined therapy provided a further suppression of monocyte infiltration and tubular injury. Lisinopril alone caused a rebound activation of Renin-Angiotensin System (RAS), while MSC suppressed RENmRNA and Renin synthesis and induced a decrease of AII and aldosterone serum levels. Furthermore, in in-vitro and in-vivo experiments, MSC inhibit Human antigen R (HuR) trascription, an enhancer of RENmRNA stability by IL10 release. In conclusion, we demonstrate that in UUO MSC prevent fibrosis, by decreasing HuR-dependent RENmRNA stability. Our findings give a clue to understand the molecular mechanism through which MSC may prevent fibrosis in a wide and heterogeneous number of diseases that share RAS activation as common upstream pathogenic mechanism.
Collapse
Affiliation(s)
- Marilena Gregorini
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Valeria Corradetti
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
- * E-mail:
| | - Chiara Rocca
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eleonora Francesca Pattonieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Valsania
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Samantha Milanesi
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Nicoletta Serpieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giulia Bedino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Pasquale Esposito
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Melissa Mantelli
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Daniela Ingo
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Sabrina Peressini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Dal Canton
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Pullmann R, Rabb H. HuR and other turnover- and translation-regulatory RNA-binding proteins: implications for the kidney. Am J Physiol Renal Physiol 2014; 306:F569-76. [PMID: 24431206 DOI: 10.1152/ajprenal.00270.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The posttranscriptional regulation of gene expression occurs through cis RNA regulatory elements by the action of trans factors, which are represented by noncoding RNAs (especially microRNAs) and turnover- and translation-regulatory (TTR) RNA-binding proteins (RBPs). These multifactorial proteins are a group of heterogeneous RBPs primarily implicated in controlling the decay and translation rates of target mRNAs. TTR-RBPs usually shuttle between cellular compartments (the nucleus and cytoplasm) in response to various stimuli and undergo posttranslational modifications such as phosphorylation or methylation to ensure their proper subcellular localization and function. TTR-RBPs are emerging as key regulators of a wide variety of genes influencing kidney physiology and pathology. This review summarizes the current knowledge of TTR-RBPs that influence renal metabolism. We will discuss the role of TTR-RBPs as regulators of kidney ischemia, fibrosis and matrix remodeling, angiogenesis, membrane transport, immunity, vascular tone, hypertension, and acid-base balance as well as anemia, bone mineral disease, and vascular calcification.
Collapse
|
8
|
Mayer S, Roeser M, Lachmann P, Ishii S, Suh JM, Harlander S, Desch M, Brunssen C, Morawietz H, Tsai SY, Tsai MJ, Hohenstein B, Hugo C, Todorov VT. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression. J Biol Chem 2012; 287:24483-91. [PMID: 22645148 DOI: 10.1074/jbc.m111.329474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.
Collapse
Affiliation(s)
- Sandra Mayer
- Laboratory for Experimental Nephrology and Division of Nephrology, Dresden University of Technology, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sequeira Lopez MLS, Gomez RA. Novel mechanisms for the control of renin synthesis and release. Curr Hypertens Rep 2010; 12:26-32. [PMID: 20425155 DOI: 10.1007/s11906-009-0080-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Renin is the key regulated step in the enzymatic cascade that leads to angiotensin generation and the control of blood pressure and fluid/electrolyte homeostasis. In the adult unstressed animal, renin is synthesized and released by renal juxtaglomerular cells. However, when homeostasis is threatened, the number of cells that express and release renin increases and extends beyond the juxtaglomerular area; the result is an increase in circulating renin and the reestablishment of homeostasis. The increase in the number of renin cells, a process termed recruitment, is achieved by dedifferentiation and re-expression of renin in cells derived from the renin lineage. The mechanisms that regulate the related processes of reacquisition of the renin phenotype, renin synthesis, and renin release are beginning to be understood. Numerous studies point to cAMP as a central common factor for the regulation of renin phenotype. In addition, we are seeing the emergence of gap junctions and microRNAs as new and promising avenues for a more complete understanding of the complex regulation of the renin cell.
Collapse
|
10
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Guo N, Baglole CJ, O'Loughlin CW, Feldon SE, Phipps RP. Mast cell-derived prostaglandin D2 controls hyaluronan synthesis in human orbital fibroblasts via DP1 activation: implications for thyroid eye disease. J Biol Chem 2010; 285:15794-804. [PMID: 20308056 DOI: 10.1074/jbc.m109.074534] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thyroid eye disease (TED) is a debilitating disorder characterized by the accumulation of adipocytes and hyaluronan (HA). Production of HA by fibroblasts leads to remarkable increases in tissue volume and to the anterior displacement of the eyes. Prostaglandin D(2) (PGD(2)), mainly produced by mast cells, promotes orbital fibroblast adipogenesis. The mechanism by which PGD(2) influences orbital fibroblasts and their synthesis of HA is poorly understood. We report here that mast cell-derived PGD(2) is a key factor that promotes HA biosynthesis by orbital fibroblasts. Primary orbital fibroblasts from TED patients were isolated and used to test the effects of PGD(2), prostaglandin J(2), as well as prostaglandin D receptor (DP) agonists and antagonists on HA synthesis. The expression of HA synthase (HAS), hyaluronidase, DP1, and DP2 mRNA levels was assessed by PCR. Small interfering RNAs against HAS1 or HAS2 were used to assess the importance of HAS isoforms on HA production. Treatment of human orbital fibroblasts with PGD(2) and PGJ(2) increased HA synthesis and HAS mRNA. HAS2 was the dominant isoform responsible for HA production by PGD(2). The effect of PGD(2) on HA production was mimicked by the selective DP1 agonist BW245C. The DP1 antagonist MK-0524 completely blocked PGD(2)-induced HA synthesis. Human mast cells (HMC-1) produced PGD(2). Co-culture of HMC-1 cells with orbital fibroblasts induced HA production and inhibition of mast cell-derived PGD(2) prevented HA synthesis. Mast cell-derived PGD(2) increased HA production via activation of DP1. Selectively targeting the production of PGD(2) and/or activation of DP1 may prevent pathological changes associated with TED.
Collapse
Affiliation(s)
- Naxin Guo
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
12
|
Bhattacharya A, Biswas A, Das PK. Role of a differentially expressed cAMP phosphodiesterase in regulating the induction of resistance against oxidative damage in Leishmania donovani. Free Radic Biol Med 2009; 47:1494-506. [PMID: 19733234 DOI: 10.1016/j.freeradbiomed.2009.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/04/2009] [Accepted: 08/20/2009] [Indexed: 11/20/2022]
Abstract
Differentiation-coupled induction of resistance of Leishmania parasites to macrophage oxidative damage was shown to be associated with an increased cAMP response. This study explores the significance of the cAMP response in the parasite by identifying a differentially expressed cAMP phosphodiesterase (LdPDEA) and deciphering its role in regulating antioxidant machineries in the parasite. LdPDEA, a high K(M) class I cytosolic cAMP phosphodiesterase, was expressed maximally in log-phase promastigotes, but was significantly reduced in stationary-phase promastigotes and amastigotes. Chemical inhibition or silencing of PDEA conferred enhanced resistance to pro-oxidants in these cells and this led to studies on trypanothione biosynthesis and utilization, as trypanothione is one of the major modulators of antioxidant defense in kinetoplastidae. Despite enhanced arginase and ornithine decarboxylase activity, trypanothione biosynthesis seemed to be unaffected by PDEA blockage, whereas significant elevations in the expression of tryparedoxin peroxidase, ascorbate peroxidase, and tryparedoxin were detected, suggesting a definite shift of trypanothione-pool utilization bias toward antioxidant defense. Moreover, parasites that overexpressed PDEA showed reduced resistance to oxidative damage and reduced infectivity toward activated macrophages. This study reveals the significance of a cAMP phosphodiesterase in the infectivity of Leishmania parasites.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Molecular Cell Biology Laboratory, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | |
Collapse
|
13
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
14
|
Chen L, Kim SM, Oppermann M, Faulhaber-Walter R, Huang Y, Mizel D, Chen M, Lopez MLS, Weinstein LS, Gomez RA, Briggs JP, Schnermann J. Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsα in juxtaglomerular cells. Am J Physiol Renal Physiol 2007; 292:F27-37. [PMID: 16822937 DOI: 10.1152/ajprenal.00193.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By crossing mice with expression of Cre recombinase under control of the endogenous renin promoter (Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA. Dev Cell 6: 719–728, 2004) with mice in which exon 1 of the Gnas gene was flanked by loxP sites (Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, Nackers LM, Lorenzo J, Shen L, Weinstein LS. Proc Natl Acad Sci USA), we generated animals with preferential and nearly complete excision of Gsα in juxtaglomerular granular (JG) cells. Compared with wild-type animals, mice with conditional Gsα deficiency had markedly reduced basal levels of renin expression and very low plasma renin concentrations. Furthermore, the acute release responses to furosemide, hydralazine, and isoproterenol were virtually abolished. Consistent with a state of primary renin depletion, Gsα-deficient mice had reduced arterial blood pressure, reduced levels of aldosterone, and a low glomerular filtration rate. Renin content and renin secretion of JG cells in primary culture were drastically reduced, and the stimulatory response to the addition of PGE2or isoproterenol was eliminated. Unexpectedly, Gsα recombination was also observed in the renal medulla, and this was associated with a vasopressin-resistant concentrating defect. Our study shows that Cre recombinase under control of the renin promoter can be used for the excision of floxed targets from JG cells. We conclude that Gsα-mediated signal transduction is essential and nonredundant in the control of renin synthesis and release.
Collapse
Affiliation(s)
- Limeng Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1370, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Barbosa-Morais NL, Carmo-Fonseca M, Aparício S. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion. Genome Res 2005; 16:66-77. [PMID: 16344558 PMCID: PMC1356130 DOI: 10.1101/gr.3936206] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although more than 200 human spliceosomal and splicing-associated proteins are known, the evolution of the splicing machinery has not been studied extensively. The recent near-complete sequencing and annotation of distant vertebrate and chordate genomes provides the opportunity for an exhaustive comparative analysis of splicing factors across eukaryotes. We describe here our semiautomated computational pipeline to identify and annotate splicing factors in representative species of eukaryotes. We focused on protein families whose role in splicing is confirmed by experimental evidence. We visually inspected 1894 proteins and manually curated 224 of them. Our analysis shows a general conservation of the core spliceosomal proteins across the eukaryotic lineage, contrasting with selective expansions of protein families known to play a role in the regulation of splicing, most notably of SR proteins in metazoans and of heterogeneous nuclear ribonucleoproteins (hnRNP) in vertebrates. We also observed vertebrate-specific expansion of the CLK and SRPK kinases (which phosphorylate SR proteins), and the CUG-BP/CELF family of splicing regulators. Furthermore, we report several intronless genes amongst splicing proteins in mammals, suggesting that retrotransposition contributed to the complexity of the mammalian splicing apparatus.
Collapse
Affiliation(s)
- Nuno L Barbosa-Morais
- University of Cambridge, Department of Oncology, Hutchison-MRC Research Centre, Cambridge CB2 2XZ, United Kingdom
| | | | | |
Collapse
|
16
|
Klar J, Sigl M, Obermayer B, Schweda F, Krämer BK, Kurtz A. Calcium inhibits renin gene expression by transcriptional and posttranscriptional mechanisms. Hypertension 2005; 46:1340-6. [PMID: 16286572 DOI: 10.1161/01.hyp.0000192025.86189.46] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the role of cytosolic calcium for renin gene expression in juxtaglomerular cells. For this purpose, we used the immortalized juxtaglomerular mouse cell line As4.1. To increase cytosolic calcium concentration, we treated the cells with thapsigargin and cyclopiazonic acid, inhibitors of the endoplasmatic reticulum Ca- ATPase. Thapsigargin and cyclopiazonic acid inhibited renin gene expression in a characteristic time and concentration-dependent manner. This effect was concentration-dependently blocked by BAPTA-AM, an intracellular Ca2+ chelator. Pharmacological blocking of protein kinase C activity by calphostin, Gö6976, and Gö6983 did not change the effect of thapsigargin on renin gene expression. Experiments with renin1C-promoter-reporter constructs revealed that thapsigargin inhibited renin gene transcription. Analysis of deletion constructs of the renin1C promoter indicated that regulatory elements involved in the calcium-mediated inhibition of renin gene transcription are located in the enhancer region of the renin gene and that > or =3 transcription factor-binding sites are involved in this process. In addition, thapsigargin reduced the renin mRNA half-life from 10 hours (control conditions) to 4 hours. Knockdown studies with small interfering RNA directed to dynamin-1 mRNA revealed that dynamin-1 is likely to be involved in the calcium-mediated destabilization of renin mRNA. These data suggest that calcium inhibits renin gene expression in juxtaglomerular cells via a concerted action of inhibition of renin gene transcription and destabilization of renin mRNA.
Collapse
Affiliation(s)
- Jürgen Klar
- Institut für Physiologie, Universität Regensburg, D-93040 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res 2005; 33:4813-27. [PMID: 16126846 PMCID: PMC1192834 DOI: 10.1093/nar/gki797] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3′-untranslated region (3′-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3′-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3′-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these cells, iNOS expression was increased. Mapping of the binding site revealed KSRP interacting with the most 3′-located AU-rich element (ARE) of the human iNOS mRNA. This sequence is also the target for HuR, an iNOS mRNA stabilizing protein. We were able to demonstrate that KSRP and HuR compete for this binding site, and that intracellular binding to the iNOS mRNA was reduced for KSRP and enhanced for HuR after cytokine treatment. Finally, a complex interplay of KSRP with TTP and HuR seems to be essential for iNOS mRNA stabilization after cytokine stimulation.
Collapse
Affiliation(s)
| | | | | | | | - Jobst Greeve
- Department of General Internal Medicine, Inselspital-University Hospital BernCH-3010 Bern, Switzerland
| | - Hartmut Kleinert
- To whom correspondence should be addressed. Tel: +49 6131 393 3245; Fax: +49 6131 393 6611;
| |
Collapse
|
18
|
Wickenheisser JK, Nelson-Degrave VL, McAllister JM. Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90:1720-7. [PMID: 15598676 DOI: 10.1210/jc.2004-1860] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder characterized by ovarian hyperandrogenism. Theca interna cells isolated from the ovaries of women with PCOS are characterized by increased expression of cytochrome P450 17alpha-hydroxylase (CYP17) [steroid 17alpha-hydroxylase/17,20 lyase (P450c17)], a steroidogenic enzyme obligatory for the biosynthesis of androgens. Augmented expression of the gene encoding P450c17 (CYP17) in PCOS theca has been attributed, in part, to differential transcriptional regulation of the CYP17 promoter in normal and PCOS cells. The present studies examine whether CYP17 gene expression is also posttranscriptionally regulated at the level of mRNA stability in normal and PCOS theca cells maintained in long-term culture. Determination of endogenous CYP17 mRNA half-life by pharmacological inhibition of transcription demonstrated that the half-life of CYP17 mRNA increased 2-fold in PCOS theca cells, compared with normal theca cells. Forskolin treatment also prolonged CYP17 mRNA half-life in both normal and PCOS theca cells. In vitro mRNA degradation studies demonstrated that the 5'-untranslated region confers increased stability to CYP17 mRNA in PCOS theca cells and showed that the 5'-untranslated region of CYP17 also confers forskolin-stimulated stabilization of CYP17 mRNA. These studies indicate that a slower rate of CYP17 mRNA decay contributes to increased steady-state mRNA accumulation and augmented CYP17 gene expression in PCOS theca cells.
Collapse
Affiliation(s)
- Jessica K Wickenheisser
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive H166, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|