1
|
Mobasheri A, Rannou F, Ivanavicius S, Conaghan PG. Targeting the TRPV1 pain pathway in osteoarthritis of the knee. Expert Opin Ther Targets 2024; 28:843-856. [PMID: 39450875 DOI: 10.1080/14728222.2024.2416961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION The growing prevalence and lack of effective pain therapies for knee osteoarthritis (KOA) results in a substantial unmet need for novel analgesic therapies. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed in subsets of nociceptive sensory neurons and has major roles in pain transmission and regulation. In the structures of the knee joint, nociceptors are present in abundance. AREAS COVERED TRPV1-expressing nociceptors in the knee represent a rational target to modulate activity at the origin of the pain pathway in KOA and may avoid systemic side effects seen with currently available analgesics. TRPV1 antagonists can induce analgesia, but hyperthermia and thermal hypesthesia side effects have limited their utility. Clinical development of TRPV1 agonists for pain management has progressed further than that of TRPV1 antagonists. Capsaicin and resiniferatoxin have provided proof-of-concept for the modulation of TRPV1 activity in KOA. EXPERT OPINION Intra-articular administration of TRPV1 agonists enables direct delivery to target nerve terminals in the knee, offering a potentially transformative approach for the management of pain associated with KOA. Here, we explore the advances in understanding innervation of the knee joint in KOA, the role of TRPV1-expressing neurons and progress in developing TRPV1 modulators for KOA.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Université de Liège, Liège, Belgium
| | - François Rannou
- UFR de Médecine, Faculté de Santé, Université Paris Cité, Paris, France
- Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs (T3S), Campus Saint-Germain-des-Prés, Paris, France
| | | | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
2
|
Zhang L, Ren C, Liu J, Huang S, Wu C, Zhang J. Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today 2024; 29:103995. [PMID: 38670255 DOI: 10.1016/j.drudis.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.
Collapse
Affiliation(s)
- Linxi Zhang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110000, Liaoning, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Daniluk J, Voets T. pH-dependent modulation of TRPV1 by modality-selective antagonists. Br J Pharmacol 2023; 180:2750-2761. [PMID: 37350138 DOI: 10.1111/bph.16173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Antagonists of TRPV1 that inhibit all activation modes cause hyperthermia, hampering their medical use as novel analgesics. TRPV1 antagonists that do not (fully) inhibit responses to low pH do not cause hyperthermia, but it remains incompletely understood how such antagonists affect channel gating. We tested the hypothesis that pH-sparing antagonists act in a modality-selective manner on TRPV1, differentially affecting channel activation by protons and capsaicin. EXPERIMENTAL APPROACH Using whole-cell patch-clamp and calcium imaging to measure channel activity in cells expressing wild type human TRPV1 or the pH-insensitive mutant F660A. Responses to protons and capsaicin were measured at different pH values in the presence of antagonists that reportedly partially spare (A-1165442) or potentiate (AMG7905) acid-evoked channel activation. KEY RESULTS At pH 5.5, A-1165442 was equipotent at blocking acid- and capsaicin-evoked responses of wild type TRPV1. Its potency to inhibit acid-evoked responses was attenuated at pH ≤ 5.0. AMG7905, at a concentration (1 μM) that fully inhibits capsaicin-evoked responses, potentiated proton-evoked (pH 5.5) responses of wild type TRPV1. In the F660A mutant, the inhibitory efficacy of A-1165442 and AMG7905 towards capsaicin-evoked responses was reduced at lower pH values and AMG7905 acted as a partial agonist. CONCLUSION AND IMPLICATIONS Our findings show that A-1165442 and AMG7905 interact in a pH-dependent manner with TRPV1, but this pH dependence is not strictly modality-selective. Reduced TRPV1 antagonism at acidic pH may limit analgesic efficacy in injured tissue and needs to be considered in models explaining the effects of antagonists on core body temperature.
Collapse
Affiliation(s)
- Jan Daniluk
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Vakil N. Developments in Gastroesophageal Reflux Disease over the Last 40 Years. Dig Dis 2023; 42:127-136. [PMID: 37778332 DOI: 10.1159/000533901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The last 40 years have seen a remarkable change in our understanding of reflux disease. SUMMARY These changes encompass disease definition and impact, pathophysiology, diagnostic testing, regulatory oversight of clinical trials, pharmacotherapy, endoscopic, and surgical treatment. We have also seen a number of promising therapies fail. KEY MESSAGES The future holds the promise of further advances. Adaptive artificial intelligence will take over diagnostics in manometry and pH impedance testing and patient-driven outcomes may be changed by interactions with artificial intelligence rather than humans. Changes in chip technology will allow higher resolution chips to be carried on smaller devices making extra-esophageal areas where reflux may play a role more accessible to prolonged observation and testing.
Collapse
Affiliation(s)
- Nimish Vakil
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Bai X, Zhang K, Ou C, Nie B, Zhang J, Huang Y, Zhang Y, Huang J, Ouyang H, Cao M, Huang W. Selective activation of AKAP150/TRPV1 in ventrolateral periaqueductal gray GABAergic neurons facilitates conditioned place aversion in male mice. Commun Biol 2023; 6:742. [PMID: 37460788 PMCID: PMC10352381 DOI: 10.1038/s42003-023-05106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Aversion refers to feelings of strong dislike or avoidance toward particular stimuli or situations. Aversion can be caused by pain stimuli and has a long-term negative impact on physical and mental health. Aversion can also be caused by drug abuse withdrawal, resulting in people with substance use disorder to relapse. However, the mechanisms underlying aversion remain unclear. The ventrolateral periaqueductal gray (vlPAG) is considered to play a key role in aversive behavior. Our study showed that inhibition of vlPAG GABAergic neurons significantly attenuated the conditioned place aversion (CPA) induced by hindpaw pain pinch or naloxone-precipitated morphine withdrawal. However, activating or inhibiting glutamatergic neurons, or activating GABAergic neurons cannot affect or alter CPA response. AKAP150 protein expression and phosphorylated TRPV1 (p-TRPV1) were significantly upregulated in these two CPA models. In AKAP150flox/flox mice and C57/B6J wild-type mice, cell-type-selective inhibition of AKAP150 in GABAergic neurons in the vlPAG attenuated aversion. However, downregulating AKAP150 in glutamatergic neurons did not attenuate aversion. Knockdown of AKAP150 in GABAergic neurons effectively reversed the p-TRPV1 upregulation in these two CPA models utilized in our study. Collectively, inhibition of the AKAP150/p-TRPV1 pathway in GABAergic neurons in the vlPAG may be considered a potential therapeutic target for the CPA response.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianxing Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongtian Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Minghui Cao
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
7
|
Ustaoglu A, Woodland P. Sensory Phenotype of the Oesophageal Mucosa in Gastro-Oesophageal Reflux Disease. Int J Mol Sci 2023; 24:ijms24032502. [PMID: 36768825 PMCID: PMC9917190 DOI: 10.3390/ijms24032502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Gastroesophageal reflux disease (GORD) affects up to 20% of Western populations, yet sensory mechanisms underlying heartburn pathogenesis remain incompletely understood. While central mechanisms of heartburn perception have been established in earlier studies, recent studies have highlighted an important role of neurochemical, inflammatory, and cellular changes occurring in the oesophageal mucosa itself. The localization and neurochemical characterisation of sensory afferent nerve endings differ among GORD phenotypes, and could explain symptom heterogeneity among patients who are exposed to similar levels of reflux. Acid-induced stimulation of nociceptors on pain-sensing nerve endings can regulate afferent signal transmission. This review considers the role of peripheral mechanisms of sensitization in the amplification of oesophageal sensitivity in patients with GORD.
Collapse
|
8
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
9
|
Patel D, Fass R, Vaezi M. Untangling Nonerosive Reflux Disease From Functional Heartburn. Clin Gastroenterol Hepatol 2021; 19:1314-1326. [PMID: 32246998 DOI: 10.1016/j.cgh.2020.03.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Heartburn is a common symptom in clinical practice, but as many as 70% of patients have normal findings from upper endoscopy. Most of these patients have nonerosive reflux disease (NERD) or functional esophageal disorders. NERD is the most common phenotype of gastroesophageal reflux disease, and functional heartburn is the most common cause for refractory heartburn. In patients with NERD, symptoms arise from gastroesophageal reflux and esophageal hypersensitivity, whereas in patients with functional heartburn, symptoms result from esophageal hypersensitivity. A diagnosis of NERD requires endoscopy and reflux testing, whereas a diagnosis of functional heartburn also requires esophageal manometry. NERD is treated most commonly with medical, endoscopic, and surgical antireflux approaches, whereas functional heartburn as well as NERD can be treated with neuromodulators, psychological intervention, and complementary medicine options.
Collapse
Affiliation(s)
- Dhyanesh Patel
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Ronnie Fass
- Division of Gastroenterology and Hepatology, MetroHealth System, Case Western Reserve University, Cleveland, Ohio
| | - Michael Vaezi
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
10
|
Yu M, Chang C, Undem BJ, Yu S. Capsaicin-Sensitive Vagal Afferent Nerve-Mediated Interoceptive Signals in the Esophagus. Molecules 2021; 26:3929. [PMID: 34203134 PMCID: PMC8271978 DOI: 10.3390/molecules26133929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
Heartburn and non-cardiac chest pain are the predominant symptoms in many esophageal disorders, such as gastroesophageal reflux disease (GERD), non-erosive reflux disease (NERD), functional heartburn and chest pain, and eosinophilic esophagitis (EoE). At present, neuronal mechanisms underlying the process of interoceptive signals in the esophagus are still less clear. Noxious stimuli can activate a subpopulation of primary afferent neurons at their nerve terminals in the esophagus. The evoked action potentials are transmitted through both the spinal and vagal pathways to their central terminals, which synapse with the neurons in the central nervous system to induce esophageal nociception. Over the last few decades, progress has been made in our understanding on the peripheral and central neuronal mechanisms of esophageal nociception. In this review, we focus on the roles of capsaicin-sensitive vagal primary afferent nodose and jugular C-fiber neurons in processing nociceptive signals in the esophagus. We briefly compare their distinctive phenotypic features and functional responses to mechanical and chemical stimulations in the esophagus. Then, we summarize activation and/or sensitization effects of acid, inflammatory cells (eosinophils and mast cells), and mediators (ATP, 5-HT, bradykinin, adenosine, S1P) on these two nociceptive C-fiber subtypes. Lastly, we discuss the potential roles of capsaicin-sensitive esophageal afferent nerves in processing esophageal sensation and nociception. A better knowledge of the mechanism of nociceptive signal processes in primary afferent nerves in the esophagus will help to develop novel treatment approaches to relieve esophageal nociceptive symptoms, especially those that are refractory to proton pump inhibitors.
Collapse
Affiliation(s)
| | | | | | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Ave, Baltimore, MD 21205, USA; (M.Y.); (C.C.); (B.J.U.)
| |
Collapse
|
11
|
Song Y, Wang X, Hou A, Li H, Lou J, Liu Y, Cao J, Mi W. Integrative Analysis of lncRNA and mRNA and Profiles in Postoperative Delirium Patients. Front Aging Neurosci 2021; 13:665935. [PMID: 34093168 PMCID: PMC8171121 DOI: 10.3389/fnagi.2021.665935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Delirium is a common serious complication that often occurs after major surgery. The goals of this study were to explore the expression profiles and functional networks of long non-coding RNAs (lncRNAs) and mRNAs in patients of postoperative delirium (POD). Microarray analysis was performed on the peripheral blood samples to identify differentially expressed (DE) lncRNAs and mRNAs in 4 POD patients and 4 non-POD volunteers. DE lncRNAs and mRNAs were validated by quantitative reverse transcription PCR (RT-qPCR). Bioinformatic analyses were performed to identify the critical biological functions and signaling pathways involved in POD. A total of 1195 DE lncRNAs and 735 DE mRNAs were identified between the POD and non-POD groups. Verified by the RT-qPCR, we identified 14 DE lncRNAs that may relate to the pathogenesis of POD. These 14 DE lncRNAs play important regulatory roles in “glutamate and 5-hydroxytryptamine,” “synaptotagmin 7,” “transient receptor potential channel,” “interleukin-2 production.” There was a regulatory relationship between lncRNA ENST00000530057 and synaptotagmin (Syt) 7 mRNA. The mRNA level of PCLO was up-regulated in POD group. This study showed abundant DE lncRNAs and mRNAs in POD that might help in deciphering the disease pathogenesis.
Collapse
Affiliation(s)
- Yuxiang Song
- Medical School of Chinese PLA, Beijing, China.,Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Wang
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aisheng Hou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Ustaoglu A, Sawada A, Lee C, Lei WY, Chen CL, Hackett R, Sifrim D, Peiris M, Woodland P. Heartburn sensation in nonerosive reflux disease: pattern of superficial sensory nerves expressing TRPV1 and epithelial cells expressing ASIC3 receptors. Am J Physiol Gastrointest Liver Physiol 2021; 320:G804-G815. [PMID: 33655767 DOI: 10.1152/ajpgi.00013.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The underlying causes of heartburn, characteristic symptom of gastroesophageal reflux disease (GERD), remain incompletely understood. Superficial afferent innervation of the esophageal mucosa in nonerosive reflux disease (NERD) may drive nociceptive reflux perception, but its acid-sensing role has not yet been established. Transient receptor potential vanilloid subfamily member-1 (TRPV1), transient receptor potential melastatin 8 (TRPM8), and acid-sensing ion channel 3 (ASIC3) are regulators of sensory nerve activity and could be important reflux-sensing receptors within the esophageal mucosa. We characterized TRPV1, TRPM8, and ASIC3 expression in esophageal mucosa of patients with GERD. We studied 10 patients with NERD, 10 with erosive reflux disease (ERD), 7 with functional heartburn (FH), and 8 with Barrett's esophagus (BE). Biopsies obtained from the distal esophageal mucosa were costained with TRPV1, TRPM8, or ASIC3, and CGRP, CD45, or E-cadherin. RNA expression of TRPV1, TRPM8, and ASIC3 was assessed using qPCR. Patients with NERD had significantly increased expression of TRPV1 on superficial sensory nerves compared with ERD (P = 0.028) or BE (P = 0.017). Deep intrapapillary nerve endings did not express TRPV1 in all phenotypes studied. ASIC3 was exclusively expressed on epithelial cells most significantly in patients with NERD and ERD (P ≤0.0001). TRPM8 was expressed on submucosal CD45+ leukocytes. Superficial localization of TRPV1-immunoreactive nerves in NERD, and increased ASIC3 coexpression on epithelial cells in NERD and ERD, suggests a mechanism for heartburn sensation. Esophageal epithelial cells may play a sensory role in acid reflux perception and act interdependently with TRPV1-expressing mucosal nerves to augment hypersensitivity in patients with NERD, raising the enticing possibility of topical antagonists for these ion channels as a therapeutic option.NEW & NOTEWORTHY We demonstrate for the first time that increased pain perception in patients with nonerosive reflux disease likely results from expression of acid-sensitive channels on superficial mucosal afferents and esophageal epithelial cells, raising the potential for topical therapy.
Collapse
Affiliation(s)
- Ahsen Ustaoglu
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Akinari Sawada
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Chung Lee
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chien-Lin Chen
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Richard Hackett
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel Sifrim
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Philip Woodland
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Vaidya B, Sharma SS. Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson's Disease: An Insight Into Role of Pharmacological Interventions. Front Cell Dev Biol 2020; 8:584513. [PMID: 33330461 PMCID: PMC7714790 DOI: 10.3389/fcell.2020.584513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the symptoms of motor deficits and cognitive decline. There are a number of therapeutics available for the treatment of PD, but most of them suffer from serious side effects such as bradykinesia, dyskinesia and on-off effect. Therefore, despite the availability of these pharmacological agents, PD patients continue to have an inferior quality of life. This has warranted a need to look for alternate strategies and molecular targets. Recent evidence suggests the Transient Receptor Potential (TRP) channels could be a potential target for the management of motor and non-motor symptoms of PD. Though still in the preclinical stages, agents targeting these channels have shown immense potential in the attenuation of behavioral deficits and signaling pathways. In addition, these channels are known to be involved in the regulation of ionic homeostasis, which is disrupted in PD. Moreover, activation or inhibition of many of the TRP channels by calcium and oxidative stress has also raised the possibility of their paramount involvement in affecting the other molecular mechanisms associated with PD pathology. However, due to the paucity of information available and lack of specificity, none of these agents have gone into clinical trials for PD treatment. Considering their interaction with oxidative stress, apoptosis and excitotoxicity, TRP channels could be considered as a potential future target for the treatment of PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
14
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
15
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This paper aims to review the definition and diagnostic criteria for reflux hypersensitivity and comment on the present and future management of this condition. RECENT FINDINGS In 2016, the Rome IV criteria redefined reflux hypersensitivity as characterized by typical reflux symptoms, absence of endoscopic mucosal disease, absence of pathologic gastroesophageal reflux, and positive symptom correlation between reflux and heartburn episodes. Though uncertain, TPRV1 receptors have been implicated in the pathophysiology of reflux hypersensitivity. Recent studies have shown neuromodulators like SSRIs, SNRIs, and TCAs may be the future of managing this condition. With the release of the Rome IV criteria and availability of continuous pH monitoring, the diagnosis of reflux hypersensitivity has become more streamlined. Though there is no definitive therapy for reflux hypersensitivity, several anti-secretory agents and neuromodulators have shown some efficacy in therapeutic trials. The lack of large-scale, randomized controlled trials, however, reinforces the need for further research into the pharmacotherapy of reflux hypersensitivity.
Collapse
Affiliation(s)
- Pankaj Aggarwal
- University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Afrin N Kamal
- Division of Gastroenterology, Stanford University, 420 Broadway Street, Pavilion D, Redwood City, CA, 94063, USA.
| |
Collapse
|
18
|
Shibli F, Kitayama Y, Fass R. Novel Therapies for Gastroesophageal Reflux Disease: Beyond Proton Pump Inhibitors. Curr Gastroenterol Rep 2020; 22:16. [PMID: 32185589 DOI: 10.1007/s11894-020-0753-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Despite the many areas of unmet needs in gastroesophageal reflux disease (GERD), proton pump inhibitors (PPIs) remain the cornerstone of medical therapy. However, since their introduction, the therapeutic limitations of PPIs in GERD management have been increasingly recognized. RECENT FINDINGS In this review we discuss the new medical, endoscopic, and surgical therapeutic modalities that have been developed over the last decade. They include the potassium-competitive acid blockers (P-CABs) which provide a rapid onset, prolonged, and profound acid suppression, mucosal protectants which promote the physiological protective barrier of the esophageal mucosa, new prokinetics and neuromodulators. There are growing numbers of novel therapeutic endoscopic techniques that are under investigation or were recently introduced into the market, further expanding our therapeutic armamentarium for GERD. The development of diverse therapeutic modalities for GERD, despite the availability of PPIs, suggests that there are many areas of unmet need in GERD that will continue and drive future exploration for novel therapies.
Collapse
Affiliation(s)
- Fahmi Shibli
- The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA
| | - Yoshitaka Kitayama
- The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA
| | - Ronnie Fass
- The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA.
| |
Collapse
|
19
|
Geysen H, Gielis E, Deloose E, Vanuytsel T, Tack J, Biesiekierski JR, Pauwels A. Response to Letter to the Editor: NMO-00228-2019.R1. Neurogastroenterol Motil 2020; 32:e13786. [PMID: 32103612 DOI: 10.1111/nmo.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Hannelore Geysen
- Translational Research Center for Gastrointestinal Disease, KU Leuven, Leuven, Belgium
| | - Eva Gielis
- Translational Research Center for Gastrointestinal Disease, KU Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disease, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disease, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disease, KU Leuven, Leuven, Belgium
| | - Jessica R Biesiekierski
- Department of Dietetics, Human Nutrition & Sport, La Trobe University, Melbourne, Vic., Australia
| | - Ans Pauwels
- Translational Research Center for Gastrointestinal Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Damann N, Bahrenberg G, Stockhausen H, Habermann CJ, Lesch B, Frank-Foltyn R, Lee J, Ann J, Christoph T. In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) inhibitor GRTE16523. Eur J Pharmacol 2020; 871:172934. [PMID: 31954706 DOI: 10.1016/j.ejphar.2020.172934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
The TRPV1 ion channel is a neuronal sensor that plays an important role in nociception and neuropathic as well as inflammatory pain. In clinical trials, hyperthermia and thermo-hypoaesthesia turned out as major side effects of TRPV1 antagonists, preventing successful development of such molecules as analgesics. In vitro studies demonstrated that the TRPV1 ion channel is a polymodal sensor integrating stimuli from molecular modulators with temperature, pH and transmembrane potential. Temperature dependent gating is suggested to constitute the molecular basis for its role in heat sensation and body temperature regulation. Drug discovery scientists since many years seek to obtain "thermoneutral" TRPV1 inhibitors, blocking the channels sensitivity for painful stimuli while keeping its temperature mode of activation unaffected. Aiming for a screening rational for the identification of thermoneutral TRPV1 antagonists, we broadly characterized the prototypic small molecule TRPV1 inhibitors GRT12360V and GRTE16523. In vitro, GRT12360V demonstrated pan-modality inhibition on human, cynomolgus and rodent TRPV1, whereas GRTE16523 selectively bypassed the channels temperature mode on human and cynomolgus TRPV1 and revealed partial agonism on rodent channels. Strikingly, in vivo, GRT12360V induced hyperthermia in all species tested whereas GRTE16523 proved thermoneutral in cynomolgus monkeys and induced hypothermia in rodents. Hence, working out the different in vitro to in vivo correlations of two compounds, we suggest temperature dependent voltage gating as key parameter when screening for thermoneutral TRPV1 inhibitors. We highlight a species difference of molecular TRPV1 pharmacology between primates and rodents and provide a methodological breakthrough to engineer thermoneutral TRPV1 antagonists with improved therapeutic safety.
Collapse
Affiliation(s)
- Nils Damann
- Research & Development, Grünenthal, Zieglerstrasse 6, D-52078 Aachen, Germany.
| | - Gregor Bahrenberg
- Research & Development, Grünenthal, Zieglerstrasse 6, D-52078 Aachen, Germany
| | | | | | - Bernhard Lesch
- Research & Development, Grünenthal, Zieglerstrasse 6, D-52078 Aachen, Germany
| | - Robert Frank-Foltyn
- Research & Development, Grünenthal, Zieglerstrasse 6, D-52078 Aachen, Germany
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Thomas Christoph
- Research & Development, Grünenthal, Zieglerstrasse 6, D-52078 Aachen, Germany
| |
Collapse
|
21
|
Garami A, Shimansky YP, Rumbus Z, Vizin RCL, Farkas N, Hegyi J, Szakacs Z, Solymar M, Csenkey A, Chiche DA, Kapil R, Kyle DJ, Van Horn WD, Hegyi P, Romanovsky AA. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol Ther 2020; 208:107474. [PMID: 31926897 DOI: 10.1016/j.pharmthera.2020.107474] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel alter body temperature (Tb) in laboratory animals and humans: most cause hyperthermia; some produce hypothermia; and yet others have no effect. TRPV1 can be activated by capsaicin (CAP), protons (low pH), and heat. First-generation (polymodal) TRPV1 antagonists potently block all three TRPV1 activation modes. Second-generation (mode-selective) TRPV1 antagonists potently block channel activation by CAP, but exert different effects (e.g., potentiation, no effect, or low-potency inhibition) in the proton mode, heat mode, or both. Based on our earlier studies in rats, only one mode of TRPV1 activation - by protons - is involved in thermoregulatory responses to TRPV1 antagonists. In rats, compounds that potently block, potentiate, or have no effect on proton activation cause hyperthermia, hypothermia, or no effect on Tb, respectively. A Tb response occurs when a TRPV1 antagonist blocks (in case of hyperthermia) or potentiates (hypothermia) the tonic TRPV1 activation by protons somewhere in the trunk, perhaps in muscles, and - via the acido-antithermogenic and acido-antivasoconstrictor reflexes - modulates thermogenesis and skin vasoconstriction. In this work, we used a mathematical model to analyze Tb data from human clinical trials of TRPV1 antagonists. The analysis suggests that, in humans, the hyperthermic effect depends on the antagonist's potency to block TRPV1 activation not only by protons, but also by heat, while the CAP activation mode is uninvolved. Whereas in rats TRPV1 drives thermoeffectors by mediating pH signals from the trunk, but not Tb signals, our analysis suggests that TRPV1 mediates both pH and thermal signals driving thermoregulation in humans. Hence, in humans (but not in rats), TRPV1 is likely to serve as a thermosensor of the thermoregulation system. We also conducted a meta-analysis of Tb data from human trials and found that polymodal TRPV1 antagonists (ABT-102, AZD1386, and V116517) increase Tb, whereas the mode-selective blocker NEO6860 does not. Several strategies of harnessing the thermoregulatory effects of TRPV1 antagonists in humans are discussed.
Collapse
Affiliation(s)
- Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
| | - Yury P Shimansky
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robson C L Vizin
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
| | - Nelli Farkas
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsolt Szakacs
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandra Csenkey
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Zharko Pharma Inc., Olympia, WA, USA.
| |
Collapse
|
22
|
Ofer F, Custon N, Scott S, Abraham K. Functional esophageal chest pain, functional heartburn and reflux hypersensitivity. CLINICAL AND BASIC NEUROGASTROENTEROLOGY AND MOTILITY 2020:247-262. [DOI: 10.1016/b978-0-12-813037-7.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals (Basel) 2019; 12:ph12010023. [PMID: 30717260 PMCID: PMC6469169 DOI: 10.3390/ph12010023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The lungs are essential for gas exchange and serve as the gateways of our body to the external environment. They are easily accessible for drugs from both sides, the airways and the vasculature. Recent literature provides evidence for a role of Transient Receptor Potential (TRP) channels as chemosensors and essential members of signal transduction cascades in stress-induced cellular responses. This review will focus on TRP channels (TRPA1, TRPC6, TRPV1, and TRPV4), predominantly expressed in non-neuronal lung tissues and their involvement in pathways associated with diseases like asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), lung fibrosis, and edema formation. Recently identified specific modulators of these channels and their potential as new therapeutic options as well as strategies for a causal treatment based on the mechanistic understanding of molecular events will also be evaluated.
Collapse
|
24
|
NEO6860, modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritis knee pain. Pain Rep 2018; 3:e696. [PMID: 30706039 PMCID: PMC6344137 DOI: 10.1097/pr9.0000000000000696] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction NEO6860 is a TRPV1 antagonist when activated by capsaicin but not by heat or pH, developed to relieve pain without the adverse events reported with non-modality-selective TRPV1 antagonists. Objective The primary Objective of this study was to evaluate the analgesic efficacy and safety of NEO6860 after 1 day oral dosing in patients with Kellgren-Lawrence stage I, II or III osteoarthritis of the knee. Method This randomized, double-blinded, 3-period crossover, phase II study compared 1 day (2 doses) of NEO6860 (500 mg twice a day), placebo, and naproxen in 54 patients with osteoarthritis knee pain. Primary endpoint was reduction in pain intensity (PI) on Numerical Rating Scale after exercise, using the staircase test, 8 hours after dose. Results Level of PI, compared with baseline, was numerically lower during NEO6860 and naproxen periods vs placebo at 3 and 24 hours, but not at 8 hours after first dose. A statistically significant effect for naproxen and a trend for NEO6860 were observed at 3 and 24 hours. Least square means' (95% confidence interval) change in PI at 24 hours was -0.67 (-1.09 to -0.26), -0.97 (-1.39 to -0.55), -0.29 (-0.71 to 0.13) for NEO6860, naproxen, and placebo, respectively. NEO6860 exposure was ∼1.6 times higher compared with previous phase I. In this study, NEO6860 safety profile was less favorable than naproxen or placebo. Possibly NEO6860-related adverse events included: feel hot, headache, nausea, dizziness, fatigue, hypoaesthesia, and increased blood pressure. Conclusion In this exploratory study, NEO6860 did not statistically significantly outperform placebo but showed an analgesic trend, without impacting body temperature and heat pain perception. Further studies are warranted to explore the potential of NEO6860 in other pain indications. We intent to optimize the dose and evaluate analgesic synergism with other mechanism.
Collapse
|
25
|
Moran MM, Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol 2018; 175:2185-2203. [PMID: 28924972 PMCID: PMC5980611 DOI: 10.1111/bph.14044] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022] Open
Abstract
Control of chronic pain is frequently inadequate and/or associated with intolerable adverse effects, prompting a frantic search for new therapeutics and new therapeutic targets. Nearly two decades of preclinical and clinical research supports the involvement of transient receptor potential (TRP) channels in temperature perception, nociception and sensitization. Although there has been considerable excitement around the therapeutic potential of this channel family since the cloning and identification of TRPV1 cation channels as the capsaicin receptor more than 20 years ago, only modulators of a few channels have been tested clinically. TRPV1 channel antagonists have suffered from side effects related to the channel's role in temperature sensation; however, high dose formulations of capsaicin have reached the market and shown therapeutic utility. A number of potent, small molecule antagonists of TRPA1 channels have recently advanced into clinical trials for the treatment of inflammatory and neuropathic pain, and TRPM8 antagonists are following closely behind for cold allodynia. TRPV3, TRPV4, TRPM2 and TRPM3 channels have also been of significant interest. This review discusses the preclinical promise and status of novel analgesic agents that target TRP channels and the challenges that these compounds may face in development and clinical practice. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | - Arpad Szallasi
- Clinical LaboratoriesBaptist Medical CenterJacksonvilleFLUSA
| |
Collapse
|
26
|
|
27
|
Abstract
Heat sensation, the ability to detect warm and noxious temperatures, is an ancient and indispensable sensory process. Noxious temperatures can have detrimental effects on the physiology and integrity of cells, and therefore, the detection of environmental hot temperatures is absolutely crucial for survival. Temperature-sensitive ion channels, which conduct ions in a highly temperature-dependent manner, have been put forward as molecular thermometers expressed at the endings of sensory neurons. In particular, several temperature-sensitive members of the transient receptor potential (TRP) superfamily of ion channels have been identified, and a multitude of in vivo studies have shown that the capsaicin-sensitive TRPV1 channel plays a key role as a noxious heat sensor. However, Trpv1-deficient mice display a residual heat sensitivity suggesting the existence of additional heat sensor(s). In this chapter, we provide evidence for the role of the non-selective calcium-permeable TRPM3 ion channel as an additional heat sensor that acts independently of TRPV1, and give an update of the modulation of this channel by various molecular mechanisms. Finally, we compare antagonists of TRPM3 to specific blockers of TRPV1 as potential analgesic drugs to treat pathological pain.
Collapse
|
28
|
Kung YM, Hsu WH, Wu MC, Wang JW, Liu CJ, Su YC, Kuo CH, Kuo FC, Wu DC, Wang YK. Recent Advances in the Pharmacological Management of Gastroesophageal Reflux Disease. Dig Dis Sci 2017; 62:3298-3316. [PMID: 29110162 DOI: 10.1007/s10620-017-4830-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
The management of proton pump inhibitor-refractory GERD (rGERD) is a challenge in clinical practice. Since up to one-third of patients with typical GERD symptoms (heartburn and/or acid regurgitation) are not satisfied with proton pump inhibitor (PPI) therapy, new drug development targeting different pathophysiologies of GERD is imperative. At present, no other drugs serve as a more potent acid suppression agent than PPIs. As an add-on therapy, histamine type-2 receptor antagonists, alginates, prokinetics and transient lower esophageal sphincter relaxation inhibitors have some impact on the subgroups of rGERD, but greater effectiveness and fewer adverse effects for widespread use are required. Visceral hypersensitivity also contributes to the perception of GERD symptoms, and neuromodulators including antidepressants play a role in this category. Esophageal pH-impedance monitoring helps to distinguish functional heartburn from true GERD, and psychologic medication and cognitive behavior therapy are further therapy options instead of PPIs.
Collapse
Affiliation(s)
- Yu-Min Kung
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, 100 Tz-You 1st road, Kaohsiung, 807, Taiwan
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chieh Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chung Su
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Chen Kuo
- School of Medicine, College of Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Yao-Kuang Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, 100 Tz-You 1st road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
29
|
Pharmacological management of gastroesophageal reflux disease in infants: current opinions. Curr Opin Pharmacol 2017; 37:112-117. [DOI: 10.1016/j.coph.2017.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
|
30
|
Abstract
Functional heartburn (FH) is defined as a functional esophageal disorder characterized by symptoms of chronic heartburn with no apparent correlation to acid or nonacid reflux. In addition, its symptoms persist despite the lack of organic abnormalities or inflammation, esophageal motility disorders, or metabolic disorders. Although conditions presenting with esophageal symptoms without endoscopic abnormalities were previously categorized as nonerosive reflux disease, such conditions are now classified into 3 categories under Rome IV criteria: nonerosive reflux disease, reflux hypersensitivity, and FH. Although many aspects of FH remain unclear, its onset mechanism is considered to be strongly associated with peripheral or central sensitization, given the fact that its symptoms seem to be unrelated to gastroesophageal reflux. In addition, the cause of such hypersensitivity is an interesting topic in itself, and psychological factors, such as stress followed by increasing esophageal permeability are gaining attention as factors that can potentially influence this condition. There is a great unmet clinical need for therapeutic drugs that can be used to treat FH, and the development of novel drugs, diagnostic tests and biomarkers is eagerly awaited.
Collapse
|
31
|
Abstract
Chronic neuropathic pain is a widespread problem with negative personal and societal consequences. Despite considerable clinical neuroscience research, the goal of developing effective, reliable, and durable treatments has remained elusive. The critical role played by the dorsal root ganglion (DRG) in the induction and maintenance of chronic pain has been largely overlooked in these efforts, however. It may be that, by targeting this site, robust new options for pain management will be revealed. This review summarizes recent advances in the knowledge base for DRG-targeted treatments for neuropathic pain:• Pharmacological options including the chemical targeting of voltage-dependent calcium channels, transient receptor potential channels, neurotrophin production, potentiation of opioid transduction pathways, and excitatory glutamate receptors.• Ablation or modulation of the DRG via continuous thermal radiofrequency and pulsed radiofrequency treatments.• Implanted electrical neurostimulator technologies.• Interventions involving the modification of DRG cellular function at the genetic level by using viral vectors and gene silencing methods.
Collapse
|
32
|
Safety, Pharmacokinetics, and Pharmacodynamics Study in Healthy Subjects of Oral NEO6860, a Modality Selective Transient Receptor Potential Vanilloid Subtype 1 Antagonist. THE JOURNAL OF PAIN 2017; 18:726-738. [PMID: 28188907 DOI: 10.1016/j.jpain.2017.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/07/2016] [Accepted: 01/27/2017] [Indexed: 11/23/2022]
Abstract
Most previous transient receptor potential vanilloid subtype 1 (TRPV1) antagonist programs have been put on hold, mainly because of on-target adverse events: hyperthermia and impaired noxious heat sensation. NEO6860 is a TRPV1 antagonist, blocking capsaicin activation of the target, with little or no effect against pH or heat activation. The hypothesis is that this pharmacological profile will translate into analgesia without undesired effects on the body temperature or heat-pain threshold. This phase I, double blind, placebo controlled, ascending dose study, included 64 subjects. Pharmacodynamics (intradermal capsaicin test) was explored. The study was comprised of 6 dose levels (50, 100, 200, 400, 800, and 1,200 mg) and 2 doses of 500 mg, 12 hours apart. NEO6860 was rapidly absorbed and systemic exposure increases were less than dose proportional. Median time of maximum observed plasma concentration values ranged from 2 to 3 hours. The mean apparent plasma terminal elimination half-life was between 4 and 8 hours. No significant food-effect or gender-effect was observed. The most frequently reported events were feeling hot, headache, paresthesia, nausea, and dizziness. Single oral doses of up to 800 mg and two 500-mg doses administered 12 hours apart of NEO6860 were well tolerated in this study. Unlike other TRPV1 antagonists, no clinically significant increase in temperature or heat pain threshold/tolerance was noted despite thorough and specific monitoring of these parameters. At all doses, most subjects reported a sensation of "feeling hot," with a rapid onset and transient. NEO6860 showed an improvement in the pharmacodynamics parameters (evoked pain and secondary hyperalgesia) at 3 and 8 hours post NEO6860 dosing. PERSPECTIVE This first in human study on NEO6860, showed that an antagonist of TRPV1, blocking only the activation by capsaicin has been identified. This finding paves the way for the development of a new powerful analgesic for many pain conditions, without the fear of the side effects observed with previous TRPV1 antagonists.
Collapse
|
33
|
Bonfiglio F, Hysi PG, Ek W, Karhunen V, Rivera NV, Männikkö M, Nordenstedt H, Zucchelli M, Bresso F, Williams F, Tornblom H, Magnusson PK, Pedersen NL, Ronkainen J, Schmidt PT, D'Amato M. A meta-analysis of reflux genome-wide association studies in 6750 Northern Europeans from the general population. Neurogastroenterol Motil 2017; 29. [PMID: 27485664 DOI: 10.1111/nmo.12923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Gastroesophageal reflux disease (GERD), the regurgitation of gastric acids often accompanied by heartburn, affects up to 20% of the general population. Genetic predisposition is suspected from twin and family studies but gene-hunting efforts have so far been scarce and no conclusive genome-wide study has been reported. We exploited data available from general population samples, and studied self-reported reflux symptoms in relation to genome-wide single nucleotide polymorphism (SNP) genotypes. METHODS We performed a GWAS meta-analysis of three independent population-based cohorts from Sweden, Finland, and UK. GERD cases (n=2247) and asymptomatic controls (n=4503) were identified using questionnaire-derived symptom data. Upon stringent quality controls, genotype data for more than 2.5M markers were used for association testing. Bioinformatic characterization of genomic regions associated with GERD included gene-set enrichment analysis (GSEA), in silico prediction of genetic risk effects on gene expression, and computational analysis of drug-induced gene expression signatures using Connectivity Map (cMap). KEY RESULTS We identified 30 GERD suggestive risk loci (P≤5×10-5 ), with concordant risk effects in all cohorts, and predicted functional effects on gene expression in relevant tissues. GSEA revealed involvement of GERD risk genes in biological processes associated with the regulation of ion channel and cell adhesion. From cMap analysis, omeprazole had significant effects on GERD risk gene expression, while antituberculosis and anti-inflammatory drugs scored highest among the repurposed compounds. CONCLUSIONS We report a large-scale genetic study of GERD, and highlight genes and pathways that contribute to further our understanding of its pathogenesis and therapeutic opportunities.
Collapse
Affiliation(s)
- F Bonfiglio
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - P G Hysi
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
| | - W Ek
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| | - V Karhunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - N V Rivera
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M Männikkö
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - H Nordenstedt
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - M Zucchelli
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - F Bresso
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - F Williams
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - H Tornblom
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - P K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - N L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J Ronkainen
- Primary Health Care Centre, Tornio, Finland.,Center for Family Medicine, Karolinska Institutet, Stockholm, Sweden
| | - P T Schmidt
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - M D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,BioCruces Health Research Institute and Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
Abstract
The Rome IV diagnostic criteria delineates 5 functional esophageal disorders which include functional chest pain, functional heartburn, reflux hypersensitivity, globus, and functional dysphagia. These are a heterogenous group of disorders which, despite having characteristic symptom profiles attributable to esophageal pathology, fail to demonstrate any structural, motility or inflammatory abnormalities on standard clinical testing. These disorders are associated with a marked reduction in patient quality of life, not least considerable healthcare resources. Furthermore, the pathophysiology of these disorders is incompletely understood. In this narrative review we provide the reader with an introductory primer to the structure and function of esophageal perception, including nociception that forms the basis of the putative mechanisms that may give rise to symptoms in functional esophageal disorders. We also discuss the provocative techniques and outcome measures by which esophageal hypersensitivity can be established.
Collapse
|
35
|
Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel) 2016; 9:ph9040072. [PMID: 27854251 PMCID: PMC5198047 DOI: 10.3390/ph9040072] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Specialized receptors belonging to the transient receptor potential (TRP) family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Andrew J Shepherd
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Durga P Mohapatra
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Gastroesophageal reflux disease-related and functional heartburn: pathophysiology and treatment. Curr Opin Gastroenterol 2016; 32:344-52. [PMID: 27206157 DOI: 10.1097/mog.0000000000000282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Patients who continue to experience heartburn symptoms despite adequate-dose proton pump inhibitor therapy have unmet clinical needs. In this review, we focus on the most recent findings related to the mechanism of heartburn symptom generation, and on the treatment of gastroesophageal reflux disease-related and functional heartburn. RECENT FINDINGS The immunological mechanism in the esophageal mucosa has been addressed as a potential mechanism of the onset of esophageal mucosa damage and the generation of heartburn symptoms. Peripheral or central hypersensitivity in viscera is a potentially unifying pathophysiological concept in functional heartburn. Vonoprazan, a novel and potent first-in-class potassium-competitive acid blocker, is expected to prove useful in the treatment of reflux disease. SUMMARY New findings in the mechanisms of heartburn symptom generation are emerging, including the immunological mediation of esophageal mucosal damage and the development of visceral hypersensitivity in functional heartburn. In the future, we anticipate the emergence of new and specific therapeutic options based on these mechanisms, with less dependence on acid-suppressing agents.
Collapse
|
37
|
Scarpellini E, Ang D, Pauwels A, De Santis A, Vanuytsel T, Tack J. Management of refractory typical GERD symptoms. Nat Rev Gastroenterol Hepatol 2016; 13:281-94. [PMID: 27075264 DOI: 10.1038/nrgastro.2016.50] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The management of patients with refractory GERD (rGERD) is a major clinical challenge for gastroenterologists. In up to 30% of patients with typical GERD symptoms (heartburn and/or regurgitation), acid-suppressive therapy does not provide clinical benefit. In this Review, we discuss the current management algorithm for GERD and the features and management of patients who do not respond to treatment (such as those individuals with an incorrect diagnosis of GERD, inadequate PPI intake, persisting acid reflux and persisting weakly acidic reflux). Symptom response to existing surgical techniques, novel antireflux procedures, and the value of add-on medical therapies (including prokinetics and reflux inhibitors) for rGERD symptoms are discussed. Pharmaceutical agents targeting oesophageal sensitivity, a condition that can contribute to symptom generation in rGERD, are also discussed. Finally, on the basis of available published data and our expert opinion, we present an outline of a current, usable algorithm for management of patients with rGERD that considers the timing and diagnostic use of pH-impedance monitoring on or off PPI, additional diagnostic tests, the clinical use of baclofen and the use of add-on neuromodulators (tricyclic agents and selective serotonin reuptake inhibitors).
Collapse
Affiliation(s)
- Emidio Scarpellini
- Translational Research in Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.,Division Gastroenterology, Sapienza University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Daphne Ang
- Division of Gastroenterology, Changi General Hospital, 2 Simei Street 3, Singapore 529889
| | - Ans Pauwels
- Translational Research in Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Adriano De Santis
- Division of Gastroenterology, Changi General Hospital, 2 Simei Street 3, Singapore 529889
| | - Tim Vanuytsel
- Translational Research in Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan Tack
- Translational Research in Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
38
|
De Logu F, Patacchini R, Fontana G, Geppetti P. TRP functions in the broncho-pulmonary system. Semin Immunopathol 2016; 38:321-9. [PMID: 27083925 DOI: 10.1007/s00281-016-0557-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
Abstract
The current understanding of the role of transient receptor potential (TRP) channels in the airways and lung was initially based on the localization of a series of such channels in a subset of sensory nerve fibers of the respiratory tract. Soon after, TRP channel expression and function have been identified in respiratory nonneuronal cells. In these two locations, TRPs regulate physiological processes aimed at integrating different stimuli to maintain homeostasis and to react to harmful agents and tissue injury by building up inflammatory responses and repair processes. There is no doubt that TRPs localized in the sensory network contribute to airway neurogenic inflammation, and emerging evidence underlines the role of nonneuronal TRPs in orchestrating inflammation and repair in the respiratory tract. However, recent basic and clinical studies have offered clues regarding the contribution of neuronal and nonneuronal TRPs in the mechanism of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cough, and other respiratory diseases.
Collapse
Affiliation(s)
- Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Riccardo Patacchini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Giovanni Fontana
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
39
|
Established and Emerging Treatment Options for Functional Heartburn and Chest Pain. ACTA ACUST UNITED AC 2016; 14:19-27. [DOI: 10.1007/s11938-016-0081-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Kuethe JT, Journet M, Peng Z, Zhao D, McKeown A, Humphrey GR. Development of a Multikilogram Scale Synthesis of a TRPV1 Antagonist. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jeffrey T. Kuethe
- Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michel Journet
- Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhihui Peng
- Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dalian Zhao
- Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Arlene McKeown
- Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guy R. Humphrey
- Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
41
|
Diagnosis and Management of Functional Heartburn. Am J Gastroenterol 2016; 111:53-61; quiz 62. [PMID: 26729546 DOI: 10.1038/ajg.2015.376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
Heartburn is among the most common gastrointestinal symptoms presenting to both generalist physicians and gastroenterologists. Heartburn that does not respond to traditional acid suppression is a diagnostic and therapeutic dilemma. In the era of high utilization of proton pump inhibitors, a substantial proportion of patients presenting to the gastroenterologist with chronic symptoms of heartburn do not have a reflux-mediated disease. Subjects without objective evidence of reflux as a cause of their symptoms have "functional heartburn". The diagnostic role of endoscopy, reflux and motility testing in functional heartburn (FH) patients is discussed. Lifestyle modifications, pharmacological interventions, and alternative therapies for FH are also presented. Recognition of patients with FH allows earlier assignment of these patients to different treatment algorithms, which may allow greater likelihood of success of treatment, diminished resource utilization and improved quality of life. Further data on this large and understudied group of patients is necessary to allow improvement in treatment algorithms and a more evidence-based approach to care of these patients.
Collapse
|
42
|
Maradey-Romero C, Fass R. Novel Upcoming Therapies. DIAGNOSIS AND TREATMENT OF GASTROESOPHAGEAL REFLUX DISEASE 2016:93-115. [DOI: 10.1007/978-3-319-19524-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Suzuki N, Mihara H, Nishizono H, Tominaga M, Sugiyama T. Protease-Activated Receptor-2 Up-Regulates Transient Receptor Potential Vanilloid 4 Function in Mouse Esophageal Keratinocyte. Dig Dis Sci 2015; 60:3570-8. [PMID: 26233549 DOI: 10.1007/s10620-015-3822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The reflux of pancreatic-duodenal fluids is implicated in the pathophysiology of proton-pump inhibitor-resistant gastroesophageal reflux disease (GERD). Protease-activated receptor-2 (PAR-2) is activated by proteases, the pancreatic enzyme, trypsin, and the activated PAR-2 enhances transient receptor potential vanilloid 4 (TRPV4) function in neurons. TRPV4 stimulates ATP exocytosis in conjunction with the vesicular nucleotide transporter, which mediates mechano-transduction and vagal stimulation. The aim of the present study was to verify whether the activated PAR-2 up-regulates TRPV4 function in mouse esophageal keratinocytes, which may link to the pathophysiology in PPI-resistant GERD. METHODS TRPV4 and PAR-2 expressions were detected by RT-PCR, immunostaining, and western blotting in mouse esophageal keratinocytes. The functional response of TRPV4 to esophageal keratinocytes was analyzed using a Ca(2+) imaging system. Cellular ATP release was examined by luciferase-luciferin reaction. TRPV4 phosphorylation was studied by immunoprecipitation and western blotting. RESULTS PAR-2 and TRPV4 mRNAs and proteins were expressed in esophageal keratinocytes. Pre-treatment with trypsin significantly increased the responses to TRPV4 activator in esophageal keratinocytes, probably via the phosphorylation of serine residue of TRPV4 by protein kinase C and resulted in cellular ATP release from the cells. CONCLUSIONS Activated PAR-2 with trypsin exposure up-regulated TRPV4 function and increased ATP release in mouse esophageal keratinocytes. This mechanism might be related to the pathophysiology of GERD, especially non-erosive GERD.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Hiroshi Mihara
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Hirofumi Nishizono
- Division of Animal Experimental Laboratory, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Toshiro Sugiyama
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
44
|
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol 2015; 38:385-96. [PMID: 26459157 DOI: 10.1007/s00281-015-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Mingran Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Yingzhe Liu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Shaoyong Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
45
|
|
46
|
Alsalem M, Wong A, Millns P, Arya PH, Chan MSL, Bennett A, Barrett DA, Chapman V, Kendall DA. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms. Br J Pharmacol 2015; 168:1961-74. [PMID: 23278358 DOI: 10.1111/bph.12092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid type 1 (TRPV1) plays a fundamental role in the detection of heat and inflammatory pain responses. Here we investigated the contribution of two potential endogenous ligands [9- and 13- hydroxyoctadecadienoic acid (HODE)] to TRPV1-mediated noxious responses and inflammatory pain responses. EXPERIMENTAL APPROACH 9- and 13-HODE, and their precursor, linoleic acid, were measured in dorsal root ganglion (DRG) neurons and in the hindpaws of control and carrageenan-inflamed rats by liquid chromatography/tandem electrospray mass spectrometry. Calcium imaging studies of DRG neurons were employed to determine the role of TRPV1 in mediating linoleic acid, 9-HODE- and 13-HODE-evoked responses, and the contribution of 15-lipoxygenase to the generation of the HODEs. Behavioural studies investigated the contribution of 9- and 13-HODE and 15-lipoxygenase to inflammatory pain behaviour. KEY RESULTS 9-HODE (35 ± 7 pmol g(-1)) and 13-HODE (32 ± 6 pmol g(-1)) were detected in hindpaw tissue, but were below the limits of detection in DRGs. Following exposure to linoleic acid, 9- and 13-HODE were detected in DRGs and TRPV1 antagonist-sensitive calcium responses evoked, which were blocked by the 15-lipoxygenase inhibitor PD146176 and an anti-13-HODE antibody. Levels of linoleic acid were significantly increased in the carrageenan-inflamed hindpaw (P < 0.05), whereas levels of 9- and 13-HODE were, however, decreased. Intraplantar co-administration of anti-9- and 13-HODE antibodies and treatment with PD146176 significantly (P < 0.01) attenuated carrageenan-induced hyperalgesia. CONCLUSIONS AND IMPLICATIONS This study demonstrates that, although 9- and 13-HODE can activate TRPV1 in DRG cell bodies, the evidence for a role of these lipids as endogenous peripheral TRPV1 ligands in a model of inflammatory pain is at best equivocal.
Collapse
Affiliation(s)
- Mohammad Alsalem
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brock C, Brokjaer A, Drewes AM, Farmer AD, Frøkjaer JB, Gregersen H, Lottrup C. Neurophysiology of the esophagus. Ann N Y Acad Sci 2015; 1325:57-68. [PMID: 25266015 DOI: 10.1111/nyas.12515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on the methods and characteristics of esophageal afferents in humans; the pitfalls in characterization of mechanosensitive afferents; the sensitization of esophageal afferents in human studies; the brain source modeling in the understanding of the esophagus-brain axis; the use of evoked brain potentials in the esophagus; and measuring descending inhibition in animal and human studies.
Collapse
Affiliation(s)
- Christina Brock
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | |
Collapse
|
48
|
Holland C, van Drunen C, Denyer J, Smart K, Segboer C, Terreehorst I, Newlands A, Beerahee M, Fokkens W, Tsitoura DC. Inhibition of capsaicin-driven nasal hyper-reactivity by SB-705498, a TRPV1 antagonist. Br J Clin Pharmacol 2015; 77:777-88. [PMID: 23909699 DOI: 10.1111/bcp.12219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/21/2013] [Indexed: 11/30/2022] Open
Abstract
AIMS To assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of intranasal SB-705498, a selective TRPV1 antagonist. METHODS Two randomized, double-blind, placebo-controlled, clinical studies were performed: (i) an intranasal SB-705498 first time in human study to examine the safety and PK of five single escalating doses from 0.5 to 12 mg and of repeat dosing with 6 mg and 12 mg twice daily for 14 days and (ii) a PD efficacy study in subjects with non-allergic rhinitis (NAR) to evaluate the effect of 12 mg intranasal SB-705498 against nasal capsaicin challenge. RESULTS Single and repeat dosing with intranasal SB-705498 was safe and well tolerated. The overall frequency of adverse events was similar for SB-705498 and placebo and no dose-dependent increase was observed. Administration of SB-705498 resulted in less than dose proportional AUC(0,12 h) and Cmax , while repeat dosing from day 1 to day 14 led to its accumulation. SB-705498 receptor occupancy in nasal tissue was estimated to be high (>80%). Administration of 12 mg SB-705498 to patients with NAR induced a marked reduction in total symptom scores triggered by nasal capsaicin challenge. Inhibition of rhinorrhoea, nasal congestion and burning sensation was associated with 2- to 4-fold shift in capsaicin potency. CONCLUSIONS Intranasal SB-705498 has an appropriate safety and PK profile for development in humans and achieves clinically relevant attenuation of capsaicin-provoked rhinitis symptoms in patients with NAR. The potential impact intranasal SB-705498 may have in rhinitis treatment deserves further evaluation.
Collapse
Affiliation(s)
- Carlijn Holland
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Maradey-Romero C, Fass R. Antidepressants for functional esophageal disorders: evidence- or eminence-based medicine? Clin Gastroenterol Hepatol 2015; 13:260-2. [PMID: 25283580 DOI: 10.1016/j.cgh.2014.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Carla Maradey-Romero
- The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ronnie Fass
- The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
50
|
Weijenborg PW, de Schepper HS, Smout AJPM, Bredenoord AJ. Effects of antidepressants in patients with functional esophageal disorders or gastroesophageal reflux disease: a systematic review. Clin Gastroenterol Hepatol 2015; 13:251-259.e1. [PMID: 24997325 DOI: 10.1016/j.cgh.2014.06.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/01/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with functional esophageal disorders present with symptoms of chest pain, heartburn, dysphagia, or globus in the absence of any structural abnormality. Visceral hypersensitivity is a feature of these functional disorders, and might be modulated by antidepressant therapy. We evaluated evidence for the efficacy of antidepressant therapy for symptoms associated with esophageal visceral hypersensitivity in patients with functional esophageal disorders or gastroesophageal reflux disease (GERD). METHODS We performed a systematic search of the Cochrane Comprehensive Trial Register, MEDLINE, and EMBASE (through February 2014). We analyzed relevant randomized, placebo-controlled trials reporting the effect of antidepressant therapy on experimentally induced esophageal sensation or intensity, or frequency of heartburn, chest pain, dysphagia, or globus. RESULTS The search strategy identified 378 articles; 15 described randomized controlled trials that were eligible for inclusion. In addition, 1 conference abstract and 2 case reports were included, providing the best available evidence on specific symptoms. Esophageal pain thresholds increased by 7% to 37% after antidepressant therapy. Antidepressant therapy reduced functional chest pain over a range from 18% to 67% and reduced heartburn in patients with GERD over a range of 23% to 61%. One study included patients with globus and none of the studies included patients with functional heartburn or functional dysphagia. CONCLUSIONS Based on a systematic review, antidepressants modulate esophageal sensation and reduce functional chest pain. There is limited evidence that antidepressants benefit a subgroup of patients with GERD. More controlled trials are needed to investigate the effects of antidepressants on functional esophageal disorders.
Collapse
Affiliation(s)
- Pim W Weijenborg
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Heiko S de Schepper
- Department of Gastroenterology and Hepatology, Universitair Ziekenhuis Antwerpen, Antwerpen, Belgium
| | - André J P M Smout
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|