1
|
Schumacher T, Röntgen M, Maak S. Congenital Splay Leg Syndrome in Piglets-Current Knowledge and a New Approach to Etiology. Front Vet Sci 2021; 8:609883. [PMID: 33718467 PMCID: PMC7952305 DOI: 10.3389/fvets.2021.609883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The porcine congenital splay leg syndrome (PCS), even though being of transient nature, is still one of the most important causes for piglet losses due to its high incidence and mortality. Although, described decades ago, the pathogenetic mechanism is still elusive. Numerous, mostly descriptive studies characterized the syndrome at clinical, histological and cellular levels but resulted in a highly diverse picture of the syndrome. Broad variability in phenotypical expression and, in case of proper care, the rapid recovery of affected animals complicated a systematical analysis of the underlying pathogenesis. Although, several environmental factors were discussed as potential causes of PCS, most of the evidence points to a hereditary basis of PCS. Nevertheless, only few of the suggested candidate genes from transcriptome and mapping analyses, like F-box protein 32 (FBXO32), could be confirmed so far. Only recently, a genome wide association study revealed genomic regions on five porcine chromosomes and named a number of potential candidate genes, among them homer scaffold protein 1 (HOMER1). This new candidate-a cellular scaffold protein-plays a role in a plethora of cellular signaling cascades, and is not only involved in skeletal muscle differentiation but also critical for muscular function. In this review, we critically elucidate the current state of knowledge in the field and evaluate current achievements in the identification of the pathogenetic mechanism for the syndrome.
Collapse
Affiliation(s)
| | | | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
2
|
Stenberg H, Jacobson M, Malmberg M. Detection of atypical porcine pestivirus in Swedish piglets with congenital tremor type A-II. BMC Vet Res 2020; 16:260. [PMID: 32727473 PMCID: PMC7389371 DOI: 10.1186/s12917-020-02445-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/24/2020] [Indexed: 01/16/2023] Open
Abstract
Background Congenital tremor (CT) type A-II is a neurological disorder characterized by tremor of the head and body of newborn piglets. The suggested causative agent of the disease is the recently found atypical porcine pestivirus (APPV). The virus has been detected in piglets suffering from congenital tremor in central Europe, South and North America and in China but no studies has so far been performed in the Nordic countries. The overarching goal of this study was to investigate if APPV is present in the brain tissue of Swedish piglets suffering from congenital tremor. From June 2017 – June 2018, 15 piglets from four Swedish farms with ongoing outbreaks of congenital tremor and 13 piglets with splay leg originating from four different farms, were investigated for presence of APPV RNA in brain tissue. Matched healthy control piglets (n = 8) were also investigated. Two APPV-specific RT-qPCR methods targeting the NS3 and NS5B region, respectively, were used. A retrospective study was performed on material from Swedish piglets with congenital tremor sampled in 2004 (n = 11) and 2011/2012 (n = 3) using the described APPV-specific RT-qPCR methods. The total number of piglets with signs of CT in this study was 29. Results Atypical porcine pestivirus-RNA was detected in 93% (27/29) of the piglets suffering from congenital tremor. All piglets with congenital tremor from 2004 (n = 11) and 2012 (n = 3) were PCR-positive with respect to APPV, whereas, all of the healthy controls (n = 11) were negative. The piglets with congenital tremor sampled 2017–2018 had an odds ratio of 91.8 (95% CI 3.9128 to 2153.7842, z = 2.807, P = 0.0050) to test positive for APPV by qRT-PCR compared to the healthy piglets (Fishers exact test p < 0.0001). These findings make it interesting to continue investigating APPV in the Swedish pig-population. Conclusion This is the first description of atypical porcine pestivirus in piglets suffering from congenital tremor type A-II in Sweden and the Nordic countries. The virus has been present in the Swedish pig population since at least 2004.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden.
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 75007, Uppsala, Sweden
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden.,SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007, Uppsala, Sweden
| |
Collapse
|
3
|
Wu T, Zhang X, Tian M, Tao Q, Zhang L, Ding Y, Zhang X, Yin Z. Transcriptome analysis reveals candidate genes involved in splay leg syndrome in piglets. J Appl Genet 2018; 59:475-483. [PMID: 29978277 DOI: 10.1007/s13353-018-0454-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Splay leg is frequently observed in newborn piglets and leads to economic loss as well as welfare concerns. However, the etiology and pathogenesis of splay leg syndrome in piglets are still poorly understood. The aims of this paper were to characterize changes in the transcriptome of splay leg piglets and identify candidate genes responsible for this disease. We chose three splay leg piglets and their healthy full sibs, and constructed six RNA libraries using skeletal muscle samples from both groups and identified the differentially expressed genes between the two groups using RNA-seq. A total of 555 differentially expressed genes were identified, of which 216 were up-regulated and 339 genes were down-regulated in the splay leg group relative to the healthy group. In addition, 321 significantly enriched GO terms and 12 significantly enriched KEGG pathways were identified. FBXO32 is one of the ten most differentially expressed genes in our experiment, and it is regulated by the significantly enriched pathway (PI3K-Akt). The overexpression of FBXO32 which leads to the process of muscle atrophy might be responsible for congenital splay leg in piglets. The result of this study could help improve understanding of the molecular mechanism of congenital splay leg syndrome.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Mi Tian
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Qiangqiang Tao
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Yueyun Ding
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Xiaodong Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China.
| | - Zongjun Yin
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China.
| |
Collapse
|
4
|
Hao X, Plastow G, Zhang C, Xu S, Hu Z, Yang T, Wang K, Yang H, Yin X, Liu S, Wang Z, Wang Z, Zhang S. Genome-wide association study identifies candidate genes for piglet splay leg syndrome in different populations. BMC Genet 2017; 18:64. [PMID: 28679362 PMCID: PMC5499021 DOI: 10.1186/s12863-017-0532-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Piglet splay leg syndrome (PSL) is one of the most frequent genetic defects, and can cause considerable economic loss in pig production. The present understanding of etiology and pathogenesis of PSL is poor. The current study focused on identifying loci associated with PSL through a genome-wide association study (GWAS) performed with the Illumina Porcine60 SNP Beadchip v2.0. The study was a case/control design with four pig populations (Duroc, Landrace, Yorkshire and one crossbred of Landrace × Yorkshire). RESULT After quality control of the genotyping data, 185 animals (73 cases, 112 controls) and 43,495 SNPs were retained for further analysis. Principal components (PCs) identified from the genomic kinship matrix were included in the statistical model for correcting the effect of population structure. Seven chromosome-wide significant SNPs were identified on Sus scrofa chromosome 1 (SSC1), SSC2 (2 SNPs), SSC7, SSC15 (2 SNPs) and SSC16 after strict Bonferroni correction. Four genes (HOMER1 and JMY on SSC2, ITGA1 on SSC16, and RAB32 on SSC1) related to muscle development, glycogen metabolism and mitochondrial dynamics were identified as potential candidate genes for PSL. CONCLUSIONS We identified seven chromosome-wide significant SNPs associated with PSL and four potential candidate genes for PSL. To our knowledge, this is the first pilot study aiming to identify the loci associated with PSL using GWAS. Further investigations and validations for those findings are encouraged.
Collapse
Affiliation(s)
- Xingjie Hao
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Graham Plastow
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Chunyan Zhang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Sutong Xu
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Zhiqiu Hu
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Tianfu Yang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Kai Wang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Huawei Yang
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Xiaoxue Yin
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Shili Liu
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Zhenghua Wang
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Zhiquan Wang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Shujun Zhang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|