1
|
Kirkpatrick BW, Berry DP. A genomic analysis of twinning rate and its relationship with other reproductive traits in Holstein-Friesian cattle. J Dairy Sci 2024:S0022-0302(24)01222-0. [PMID: 39414015 DOI: 10.3168/jds.2024-25236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Twin birth in dairy cattle is generally unfavorably associated with reproductive performance and calf survival in dairy cows. Genetic selection to reduce twinning rate in dairy cattle may be desirable, provided there are no undesirable correlated responses in other traits. The current study was undertaken to characterize the genomic architecture of twinning rate in the Irish Holstein-Friesian population, and to quantify the genetic relationship of twinning with other reproductive traits and milk yield. Calving records from the years 1996 to 2022 were used together with pedigree information to generate breeding value estimates for twinning rate. Genome-wide association analyses of twinning rate, calving interval, cow survival and age at first calving were conducted using de-regressed breeding values estimates for 2,656 Holstein-Friesian sires. Full genome sequence data imputed from approximately 50,000 single nucleotide polymorphisms were available for all sires. The heritability of twinning rate was 0.0118 ± 0.0010. Twinning rate was very weakly genetically correlated with both milk yield (0.13) and the reproductive traits (-0.26 to 0.14). Genomic analyses detected an association with twinning rate at 31.1 Mb on BTA11 in close proximity to genes for follicle-stimulating hormone receptor and luteinizing hormone-chorionic gonadotropin receptor, supporting previous studies. The most significant SNP in this region was not associated with milk yield, indicating the potential for selection to reduce twinning rate without detrimentally affecting milk yield. Novel SNP associations with age at first calving on BTA27 and from a meta-analysis of calving interval and age at first calving on BTA29 were also identified and are candidates for future validation and study.
Collapse
Affiliation(s)
- Brian W Kirkpatrick
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706, USA.
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| |
Collapse
|
2
|
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, Hearne S, Prasanna B, Li X, Li H. Artificial intelligence in plant breeding. Trends Genet 2024; 40:891-908. [PMID: 39117482 DOI: 10.1016/j.tig.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype-phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.
Collapse
Affiliation(s)
- Muhammad Amjad Farooq
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Muhammad Adeel Hassan
- Adaptive Cropping Systems Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sarah Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico
| | - Boddupalli Prasanna
- CIMMYT, International Centre for Research in Agroforestry (ICRAF) House, Nairobi 00100, Kenya
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China.
| |
Collapse
|
3
|
Aponte PFC, Carneiro PLS, Araujo AC, Pedrosa VB, Fotso-Kenmogne PR, Silva DA, Miglior F, Schenkel FS, Brito LF. Investigating the genomic background of calving-related traits in Canadian Jersey cattle. J Dairy Sci 2024:S0022-0302(24)01093-2. [PMID: 39218064 DOI: 10.3168/jds.2024-24768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Traits related to calving have a significant impact on animal welfare and farm profitability in dairy production systems. Identifying genomic regions associated with calving traits could contribute to refining dairy cattle breeding programs and management practices in the dairy industry. Therefore, the primary objectives of this study were to estimate genetic parameters and perform genome-wide association studies (GWAS) and functional enrichment analyses for stillbirth, gestation length, calf size, and calving ease traits in North American Jersey cattle. A total of 40,503 animals with phenotypic records and 5,398 animals genotyped for 45,101 single nucleotide polymorphisms (SNPs) were included in the analyses. Genetic parameters were estimated based on animal models and Bayesian methods. The effects of SNPs were estimated using the Single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) method. The heritability (standard error) estimates ranged from 0.01 (0.01) for stillbirths (SB) in heifers to 0.11 (0.01) for gestation length (GL) in cows. The genetic correlations ranged from -0.58 (0.11) between calving ease (CE) and SB in heifers to 0.44 (0.14) between calving ease and calf size (CZ) in cows. CE showed the highest genetic correlation between heifers and cows, 0.8 (0.22) respectively. The candidate genes identified, including MTHFR, SERPINA5, IGFBP3, and ZRANB1, are involved in key biological processes and metabolic pathways related to the studied traits. Reducing environmental variation and identifying novel indicators of reproduction traits in the Jersey breed are needed given the low heritability estimates for most traits evaluated in this study. In conclusion, this study provides a characterization of the genetic background of calving-related traits in Jersey cattle. The estimates obtained can be used to improve or build selection indexes in Jersey cattle breeding programs in North America.
Collapse
Affiliation(s)
- Pedro F C Aponte
- Postgraduate Program in Animal Science, State University of Southwest Bahia, Itapetinga, BA, 45700-000, Brazil
| | - Paulo L S Carneiro
- Department of Biology, State University of Southwest Bahia, Jequié, BA, 45205-490, Brazil.
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Patrick R Fotso-Kenmogne
- Postgraduate Program in Animal Science, State University of Southwest Bahia, Itapetinga, BA, 45700-000, Brazil
| | - Delvan Alves Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Filippo Miglior
- Center for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - Flavio S Schenkel
- Center for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA; Center for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Panigrahi M, Rajawat D, Nayak SS, Jain K, Vaidhya A, Prakash R, Sharma A, Parida S, Bhushan B, Dutt T. Genomic insights into key genes and QTLs involved in cattle reproduction. Gene 2024; 917:148465. [PMID: 38621496 DOI: 10.1016/j.gene.2024.148465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
From an economic standpoint, reproductive characteristics are fundamental for sustainable production, particularly for monotocous livestock like cattle. A longer inter-calving interval is indicative of low reproductive capacity. This issue changes the dynamics of current and future lactations since it necessitates more inseminations, veterinary care, and hormone interventions. Various reproductive phenotypes, including ovulation, mating, fertility, pregnancy, embryonic growth, and calving-related traits, are observed in dairy cattle, and these traits have been associated with several QTLs. Calving ease, age at puberty, scrotal circumference, and inseminations per conception have been associated with 4437, 10623, 10498, and 2476 Quantitative Trait Loci (QTLs), respectively. This data offers valuable insights into enhancing and comprehending reproductive traits in livestock breeding. Studying QTLs associated with reproductive traits has far-reaching implications across various fields, from agriculture and animal husbandry to human health, evolutionary biology, and conservation. It provides the foundation for informed breeding practices, advances in biotechnology, and a deeper understanding of the genetic underpinnings of reproduction.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ravi Prakash
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
5
|
Jourdain J, Capitan A, Saintilan R, Hozé C, Fouéré C, Fritz S, Boichard D, Barbat A. Genetic parameters, GWAS and selection perspective on gestation length in 16 French cattle breeds. J Dairy Sci 2024:S0022-0302(24)00918-4. [PMID: 38876217 DOI: 10.3168/jds.2024-24736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
In this paper, we present a comprehensive study of gestation length (GL) in 16 cattle breeds by using large genotype and animal record databases. Data included over 20 million gestations since 2000 and genotypes from one million calves. The study addressed the GL variability within and between breeds, estimation of its direct and maternal heritability coefficients, association with fitness and several economic traits, and QTL detection. The breed average GL varied from 279.7 to 294.4 d, in Holstein and Blonde d'Aquitaine breeds, respectively. Standard deviations per breed were similar and ranged from 5.2 to 5.8 d. Direct heritability (i.e., for GL defined as a trait of the calf) was moderate to high (h2 = 0.40 to 0.67), whereas the maternal heritability was low (0.04 to 0.06). Extreme breeding values for GL were strongly associated with a higher mortality during the first 2 d of life and were associated with milk production of dams for dairy breeds and precocity of females. Finally, several QTL were detected affecting GL with cumulated effects up to a few days, and at least 2 QTL were found to be shared between different breeds. Our study highlights the risks that would be associated with selection toward a reduced gestation length. Further genomic studies are needed to identify the causal variants, and their association with juvenile mortality and other economic traits.
Collapse
Affiliation(s)
- Jeanlin Jourdain
- Eliance, 149 Rue de Bercy, 75012 Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France.
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Romain Saintilan
- Eliance, 149 Rue de Bercy, 75012 Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Chris Hozé
- Eliance, 149 Rue de Bercy, 75012 Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Corentin Fouéré
- Eliance, 149 Rue de Bercy, 75012 Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Sébastien Fritz
- Eliance, 149 Rue de Bercy, 75012 Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Raschia MA, Maizon DO, Amadio AF, Nani JP, Poli MA. Quantitative trait loci exploration and characterization of gestation length in Holstein cattle. Theriogenology 2024; 215:43-49. [PMID: 38006854 DOI: 10.1016/j.theriogenology.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Gestation length (GL) is a moderately heritable trait in cattle with economic and management implications. This study aimed to characterize the gestation length of an Argentinian Holstein cattle population, understand contributing factors, and explore the GL effect on production performance. Further objectives were to estimate direct and maternal heritabilities for this trait and to identify genomic regions affecting it. Data consisted of GL records from 45,738 births corresponding to 17,004 Holstein cows and heifers. The effects of age and calving season over GL were analyzed using a Student's t-test for homoscedastic samples. The effects of the GL category (GL shorter than 1.5 SD, within ±1.5 SD, and longer than 1.5 SD from the mean) on production performance were studied by analysis of variance. A single-step genome-wide association study was performed using the BLUPF90 suite of programs with genotypes from 654 Holstein animals on 40,339 SNP. The results showed that the younger the age at calving, the shorter the GL. Moreover, gestations ending in warmer seasons were, in general, statistically shorter than those ending in colder seasons for both heifers and cows. Regarding the effect of GL on production performance, cows with gestation periods within ±1.5 SD from the population mean exhibited the highest 305-day cumulative milk, fat, and protein productions. Direct and maternal heritabilities for GL were 0.42 and 0.03, respectively. We detected a SNP suggestively associated with direct gestation length at 57.7 Mb on Bos taurus autosome 18, a locus included in a region described in the literature as associated with the trait. The information obtained on the environmental and genetic factors affecting GL in Argentinian Holstein cows contributes to characterizing the population in pursuit of improving the performance of national dairy cattle breeding systems.
Collapse
Affiliation(s)
- M A Raschia
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham, (B1686), Buenos Aires, Argentina.
| | - D O Maizon
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Anguil, Ruta 5 Km 580, Anguil, (6326), La Pampa, Argentina
| | - A F Amadio
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela, Ruta 34 Km 227, Rafaela, (S2300), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - J P Nani
- ABS Global, 1525 River Rd, DeForest, WI, 53532, United States
| | - M A Poli
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham, (B1686), Buenos Aires, Argentina; Universidad del Salvador, Facultad de Ciencias Agrarias y Veterinaria, Champagnat 1599, B1630AHU Pilar, Campus del Pilar, Argentina
| |
Collapse
|
7
|
Baba T, Morota G, Kawakami J, Gotoh Y, Oka T, Masuda Y, Brito LF, Cockrum RR, Kawahara T. Longitudinal genome-wide association analysis using a single-step random regression model for height in Japanese Holstein cattle. JDS COMMUNICATIONS 2023; 4:363-368. [PMID: 37727246 PMCID: PMC10505781 DOI: 10.3168/jdsc.2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/22/2023] [Indexed: 09/21/2023]
Abstract
Growth traits, such as body weight and height, are essential in the design of genetic improvement programs of dairy cattle due to their relationship with feeding efficiency, longevity, and health. We investigated genomic regions influencing height across growth stages in Japanese Holstein cattle using a single-step random regression model. We used 72,921 records from birth to 60 mo of age with 4,111 animals born between 2000 and 2016. The analysis included 1,410 genotyped animals with 35,319 single nucleotide polymorphisms, consisting of 883 females with records and 527 bulls, and 30,745 animals with pedigree information. A single genomic region at the 58.4 megabase pair on chromosome 18 was consistently identified across 6 age points of 10, 20, 30, 40, 50, and 60 mo after multiple testing corrections for the significance threshold. Twelve candidate genes, previously reported for longevity and gestation length, were found near the identified genomic region. Another location near the identified region was also previously associated with body conformation, fertility, and calving difficulty. Functional Gene Ontology enrichment analysis suggested that the candidate genes regulate dephosphorylation and phosphatase activity. Our findings show that further study of the identified candidate genes will contribute to a better understanding of the genetic basis of height in Japanese Holstein cattle.
Collapse
Affiliation(s)
- Toshimi Baba
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Gota Morota
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Junpei Kawakami
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
| | - Yusaku Gotoh
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
| | - Taro Oka
- Holstein Cattle Association of Japan, Tokyo, Japan 164-0012
| | - Yutaka Masuda
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan 069-8501
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Rebbeca R. Cockrum
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Takayoshi Kawahara
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
| |
Collapse
|
8
|
Dachs N, Upadhyay M, Hannemann E, Hauser A, Krebs S, Seichter D, Russ I, Gehrke LJ, Thaller G, Medugorac I. Quantitative trait locus for calving traits on Bos taurus autosome 18 in Holstein cattle is embedded in a complex genomic region. J Dairy Sci 2023; 106:1925-1941. [PMID: 36710189 DOI: 10.3168/jds.2021-21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/10/2022] [Indexed: 01/31/2023]
Abstract
Although the quantitative trait locus (QTL) on chromosome 18 (BTA18) associated with paternal calving ease and stillbirth in Holstein Friesian cattle and its cross has been known for over 20 years, to our knowledge, the exact causal genetic sequence has yet escaped identification. The aim of this study was to re-examine the region of the published QTL on BTA18 and to investigate the possible reasons behind this elusiveness. For this purpose, we carried out a combined linkage disequilibrium and linkage analysis using genotyping data of 2,697 German Holstein Friesian (HF) animals and subsequent whole-genome sequencing (WGS) data analyses and genome assembly of HF samples. We confirmed the known QTL in the 95% confidence interval of 1.089 Mbp between 58.34 and 59.43 Mbp on BTA18. Additionally, these 4 SNPs in the near-perfect linkage disequilibrium with the QTL haplotype were identified: rs381577268 (on 57,816,137 bp, C/T), rs381878735 (on 59,574,329 bp, A/T), rs464221818 (on 59,329,176 bp, C/T), and rs472502785 (on 59,345,689 bp, T/C). Search for the causal mutation using short and long-read sequences, and methylation data of the BTA18 QTL region did not reveal any candidates though. The assembly showed problems in the region, as well as an abundance of segmental duplications within and around the region. Taking the QTL of BTA18 in Holstein cattle as an example, the data presented in this study comprehensively characterize the genomic features that could also be relevant for other such elusive QTL in various other cattle breeds and livestock species as well.
Collapse
Affiliation(s)
- Nina Dachs
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany; Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany; Vereinigte Informationssysteme Tierhaltung w.V. (vit) Verden, Heinrich-Schröder-Weg 1, 27283 Verden (Aller), Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany.
| |
Collapse
|
9
|
Overlapping haplotype blocks indicate shared genomic regions between a composite beef cattle breed and its founder breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Crum TE, Schnabel RD, Decker JE, Taylor JF. Taurine and Indicine Haplotype Representation in Advanced Generation Individuals From Three American Breeds. Front Genet 2021; 12:758394. [PMID: 34733318 PMCID: PMC8558500 DOI: 10.3389/fgene.2021.758394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.
Collapse
Affiliation(s)
- Tamar E Crum
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Miles AM, Huson HJ. Time- and population-dependent genetic patterns underlie bovine milk somatic cell count. J Dairy Sci 2020; 103:8292-8304. [PMID: 32622601 DOI: 10.3168/jds.2020-18322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to determine whether genetic regulation of bovine milk somatic cell count (SCC) varied throughout the course of an individual lactation and to identify quantitative trait loci (QTL) that may differentiate populations of chronically mastitic and robustly healthy cows. Milk SCC has long been a proxy for clinical mastitis diagnosis in management and genetic improvement strategies to control the disease. Cows (n = 471) were genotyped on the Illumina BovineHD 777K BeadChip (Illumina Inc., San Diego, CA), and composite milk samples were collected for SCC at 0-1 d in milk (DIM), 3-5 DIM, 10-14 DIM, 90-110 DIM, and 210-230 DIM, with each time span representing key physiological transitions for the cow. Median lactation somatic cell score (SCS) and area under the SCS curve were calculated from farm test data. A total of 8 genome-wide associations were performed and 167 SNP spanning the genome were significantly associated (false discovery rate <0.05). Of these associated regions, 27 of 48 associated QTL were novel for clinical mastitis or SCC. The linkage disequilibrium block surrounding the associated QTL or a 1-Mb window in the absence of linkage disequilibrium was interrogated for candidate genes, and many of those identified were related to multiple arms of the immune system, including toll-like receptor signaling, macrophage activation, B-cell maturation, T-cell recruitment, and the complement pathway. These genes included EXOC4, BAMBI, ITSN2, IL34, FCN3, CD8A, and CD8B. In addition, we identified populations of robustly healthy (SCS ≤4 from 10-14 DIM until study end), chronically mastitic (SCS >4 from 10-14 DIM until study end), and average cows with fluctuating SCS, and calculated fixation indices to identify regions of the genome differentiating these 3 populations. A total of 12 SNP were identified that showed moderate allelic differentiation (Wright's F statistic, FST ≥ 0.4) between the "chronic," "healthy," and "average" populations of cows. Candidate genes in the region surrounding differentiated QTL were related to cell signaling and immune response, such as JAKMIP1 and MADCAM1. The wide range of significantly associated QTL spanning the genome and the diversity of gene functions reinforces that mastitis is a complex trait and suggests that selection based on lactation stage-specific SCS rather than a generalized score may lead to greater success in breeding mastitis-resistant cows.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
12
|
Aliloo H, Mrode R, Okeyo AM, Gibson JP. Ancestral Haplotype Mapping for GWAS and Detection of Signatures of Selection in Admixed Dairy Cattle of Kenya. Front Genet 2020; 11:544. [PMID: 32582285 PMCID: PMC7296079 DOI: 10.3389/fgene.2020.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the genetic structure of adaptation and productivity in challenging environments is necessary for designing breeding programs that suit such conditions. Crossbred dairy cattle in East Africa resulting from over 60 years of crossing exotic dairy breeds with indigenous cattle plus inter se matings form a highly variable admixed population. This population has been subject to natural selection in response to environmental stresses, such as harsh climate, low-quality feeds, poor management, and strong disease challenge. Here, we combine two complementary sets of analyses, genome-wide association (GWA) and signatures of selection (SoS), to identify genomic regions that contribute to variation in milk yield and/or contribute to adaptation in admixed dairy cattle of Kenya. Our GWA separates SNP effects due to ancestral origin of alleles from effects due to within-population linkage disequilibrium. The results indicate that many genomic regions contributed to the high milk production potential of modern dairy breeds with no region having an exceptional effect. For SoS, we used two haplotype-based tests to compare haplotype length variation within admixed and between admixed and East African Shorthorn Zebu cattle populations. The integrated haplotype score (iHS) analysis identified 16 candidate regions for positive selection in the admixed cattle while the between population Rsb test detected 24 divergently selected regions in the admixed cattle compared to East African Shorthorn Zebu. We compare the results from GWA and SoS in an attempt to validate the most significant SoS results. Only four candidate regions for SoS intersect with GWA regions using a low stringency test. The identified SoS candidate regions harbored genes in several enriched annotation clusters and overlapped with previously found QTLs and associations for different traits in cattle. If validated, the GWA and SoS results indicate potential for SNP-based genomic selection for genetic improvement of smallholder crossbred cattle.
Collapse
Affiliation(s)
- Hassan Aliloo
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya.,Animal and Veterinary Science, Scotland's Rural College, Edinburgh, United Kingdom
| | - A M Okeyo
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
| | - John P Gibson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
13
|
Purfield DC, Evans RD, Carthy TR, Berry DP. Genomic Regions Associated With Gestation Length Detected Using Whole-Genome Sequence Data Differ Between Dairy and Beef Cattle. Front Genet 2019; 10:1068. [PMID: 31749838 PMCID: PMC6848454 DOI: 10.3389/fgene.2019.01068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
While many association studies exist that have attempted to relate genomic markers to phenotypic performance in cattle, very few have considered gestation length as a phenotype, and of those that did, none used whole genome sequence data from multiple breeds. The objective of the present study was therefore to relate imputed whole genome sequence data to estimated breeding values for gestation length using 22,566 sires (representing 2,262,706 progeny) of multiple breeds [Angus (AA), Charolais (CH), Holstein-Friesian (HF), and Limousin (LM)]. The associations were undertaken within breed using linear mixed models that accounted for genomic relatedness among sires; a separate association analysis was undertaken with all breeds analysed together but with breed included as a fixed effect in the model. Furthermore, the genome was divided into 500 kb segments and whether or not segments harboured a single nucleotide polymorphism (SNP) with a P ≤ 1 × 10-4 common to different combinations of breeds was determined. Putative quantitative trait loci (QTL) regions associated with gestation length were detected in all breeds; significant associations with gestation length were only detected in the HF population and in the across-breed analysis of all 22,566 sires. Twenty-five SNPs were significantly associated (P ≤ 5 × 10-8) with gestation length in the HF population. Of the 25 significant SNPs, 18 were located within three QTLs on Bos taurus autosome number (BTA) 18, six were in two QTL on BTA19, and one was located within a QTL on BTA7. The strongest association was rs381577268, a downstream variant of ZNF613 located within a QTL spanning from 58.06 to 58.19 Mb on BTA18; it accounted for 1.37% of the genetic variance in gestation length. Overall there were 11 HF animals within the edited dataset that were homozygous for the T allele at rs381577268 and these had a 3.3 day longer (P < 0.0001) estimated breeding value (EBV) for gestation length than the heterozygous animals and a 4.7 day longer (P < 0.0001) EBV for gestation length than the homozygous CC animals. The majority of the 500 kb windows harboring a SNP with a P ≤ 1 × 10-4 were unique to a single breed and no window was shared among all four breeds for gestation length, suggesting any QTLs identified are breed-specific associations.
Collapse
Affiliation(s)
- Deirdre C Purfield
- Animal & Grassland Research and Innovation Centre, Teagasc, Cork, Ireland
| | | | - Tara R Carthy
- Animal & Grassland Research and Innovation Centre, Teagasc, Cork, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Cork, Ireland
| |
Collapse
|
14
|
Smith SP, Phillips JB, Johnson ML, Abbot P, Capra JA, Rokas A. Genome-wide association analysis uncovers variants for reproductive variation across dog breeds and links to domestication. Evol Med Public Health 2019; 2019:93-103. [PMID: 31263560 PMCID: PMC6592264 DOI: 10.1093/emph/eoz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The diversity of eutherian reproductive strategies has led to variation in many traits, such as number of offspring, age of reproductive maturity and gestation length. While reproductive trait variation has been extensively investigated and is well established in mammals, the genetic loci contributing to this variation remain largely unknown. The domestic dog, Canis lupus familiaris is a powerful model for studies of the genetics of inherited disease due to its unique history of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four traits, cesarean section rate, litter size, stillbirth rate and gestation length, from primary literature and breeders' handbooks. METHODOLOGY By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank, we performed genome-wide association analyses for these four reproductive traits, using body mass and kinship among breeds as covariates. RESULTS We identified 12 genome-wide significant associations between these traits and genetic loci, including variants near CACNA2D3 with gestation length, MSRB3 and MSANTD1 with litter size, SMOC2 with cesarean section rate and UFM1 with stillbirth rate. A few of these loci, such as CACNA2D3 and MSRB3, have been previously implicated in human reproductive pathologies, whereas others have been associated with domestication-related traits, including brachycephaly (SMOC2) and coat curl (KRT71). CONCLUSIONS AND IMPLICATIONS We hypothesize that the artificial selection that gave rise to dog breeds also influenced the observed variation in their reproductive traits. Overall, our work establishes the domestic dog as a system for studying the genetics of reproductive biology and disease. LAY SUMMARY The genetic contributors to variation in mammalian reproductive traits remain largely unknown. We took advantage of the domestic dog, a powerful model system, to test for associations between genome-wide variants and four reproductive traits (cesarean section rate, litter size, stillbirth rate and gestation length) that vary extensively across breeds. We identified associations at a dozen loci, including ones previously associated with domestication-related traits, suggesting that selection on dog breeds also influenced their reproductive traits.
Collapse
Affiliation(s)
- Samuel P Smith
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Julie B Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biological Sciences, Cumberland University, Lebanon, TN 37087, USA
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden PM, Cole JB, Liu GE, Ma L. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Commun Biol 2019; 2:100. [PMID: 30886909 PMCID: PMC6418173 DOI: 10.1038/s42003-019-0341-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
The length of gestation can affect offspring health and performance. Both maternal and fetal effects contribute to gestation length; however, paternal contributions to gestation length remain elusive. Using genome-wide association study (GWAS) in 27,214 Holstein bulls with millions of gestation records, here we identify nine paternal genomic loci associated with cattle gestation length. We demonstrate that these GWAS signals are enriched in pathways relevant to embryonic development, and in differentially methylated regions between sperm samples with long and short gestation length. We reveal that gestation length shares genetic and epigenetic architecture in sperm with calving ability, body depth, and conception rate. While several candidate genes are detected in our fine-mapping analysis, we provide evidence indicating ZNF613 as a promising candidate for cattle gestation length. Collectively, our findings support that the paternal genome and epigenome can impact gestation length potentially through regulation of the embryonic development. Lingzhao Fang et al. studied the paternal genetic variants that affect gestational length in cattle. They found that paternal genes from pathways involved in embryonic development were associated with gestation length, and that these were often found in differentially methylated regions of the genome.
Collapse
Affiliation(s)
- Lingzhao Fang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ellen Freebern
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Paul M Vanraden
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Tiezzi F, Arceo ME, Cole JB, Maltecca C. Including gene networks to predict calving difficulty in Holstein, Brown Swiss and Jersey cattle. BMC Genet 2018; 19:20. [PMID: 29609562 PMCID: PMC5880070 DOI: 10.1186/s12863-018-0606-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background Calving difficulty or dystocia has a great economic impact in the US dairy industry. Reported risk factors associated with calving difficulty are feto-pelvic disproportion, gestation length and conformation. Different dairy cattle breeds have different incidence of calving difficulty, with Holstein having the highest dystocia rates and Jersey the lowest. Genomic selection becomes important especially for complex traits with low heritability, where the accuracy of conventional selection is lower. However, for complex traits where a large number of genes influence the phenotype, genome-wide association studies showed limitations. Biological networks could overcome some of these limitations and better capture the genetic architecture of complex traits. In this paper, we characterize Holstein, Brown Swiss and Jersey breed-specific dystocia networks and employ them in genomic predictions. Results Marker association analysis identified single nucleotide polymorphisms explaining the largest average proportion of genetic variance on BTA18 in Holstein, BTA25 in Brown Swiss, and BTA15 in Jersey. Gene networks derived from the genome-wide association included 1272 genes in Holstein, 1454 genes in Brown Swiss, and 1455 genes in Jersey. Furthermore, 256 genes in Holstein network, 275 genes in the Brown Swiss network, and 253 genes in the Jersey network were within previously reported dystocia quantitative trait loci. The across-breed network included 80 genes, with 9 genes being within previously reported dystocia quantitative trait loci. The gene-gene interactions in this network differed in the different breeds. Gene ontology enrichment analysis of genes in the networks showed Regulation of ARF GTPase was very significant (FDR ≤ 0.0098) on Holstein. Neuron morphogenesis and differentiation was the term most enriched (FDR ≤ 0.0539) on the across-breed network. Genomic prediction models enriched with network-derived relationship matrices did not outperform regular GBLUP models. Conclusions Regions identified in the genome were in the proximity of previously described quantitative trait loci that would most likely affect calving difficulty by altering the feto-pelvic proportion. Inclusion of identified networks did not increase prediction accuracy. The approach used in this paper could be extended to any instance with asymmetric distribution of phenotypes, for example, resistance to disease data. Electronic supplementary material The online version of this article (10.1186/s12863-018-0606-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maria E Arceo
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, 27705, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Deciphering signature of selection affecting beef quality traits in Angus cattle. Genes Genomics 2017; 40:63-75. [PMID: 29892901 DOI: 10.1007/s13258-017-0610-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Artificial selection towards a desired phenotype/trait has modified the genomes of livestock dramatically that generated breeds that greatly differ in morphology, production and environmental adaptation traits. Angus cattle are among the famous cattle breeds developed for superior beef quality. This paper aimed at exploring genomic regions under selection in Angus cattle that are associated with meat quality traits and other associated phenotypes. The whole genome of 10 Angus cattle was compared with 11 Hanwoo (A-H) and 9 Jersey (A-J) cattle breeds using a cross-population composite likelihood ratio (XP-CLR) statistical method. The top 1% of the empirical distribution was taken as significant and annotated using UMD3.1. As a result, 255 and 210 genes were revealed under selection from A-H and A-J comparisons, respectively. The WebGestalt gene ontology analysis resulted in sixteen (A-H) and five (A-J) significantly enriched KEGG pathways. Several pathways associated with meat quality traits (insulin signaling, type II diabetes mellitus pathway, focal adhesion pathway, and ECM-receptor interaction), and feeding efficiency (olfactory transduction, tight junction, and metabolic pathways) were enriched. Genes affecting beef quality traits (e.g., FABP3, FTO, DGAT2, ACS, ACAA2, CPE, TNNI1), stature and body size (e.g., PLAG1, LYN, CHCHD7, RPS20), fertility and dystocia (e.g., ESR1, RPS20, PPP2R1A, GHRL, PLAG1), feeding efficiency (e.g., PIK3CD, DNAJC28, DNAJC3, GHRL, PLAG1), coat color (e.g., MC1-R) and genetic disorders (e.g., ITGB6, PLAG1) were found to be under positive selection in Angus cattle. The study identified genes and pathways that are related to meat quality traits and other phenotypes of Angus cattle. The findings in this study, after validation using additional or independent dataset, will provide useful information for the study of Angus cattle in particular and beef cattle in general.
Collapse
|
18
|
Müller MP, Rothammer S, Seichter D, Russ I, Hinrichs D, Tetens J, Thaller G, Medugorac I. Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with special regard to chromosome 18. J Dairy Sci 2017; 100:1987-2006. [PMID: 28109604 DOI: 10.3168/jds.2016-11506] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/20/2016] [Indexed: 01/07/2023]
Abstract
Over the last decades, a dramatic decrease in reproductive performance has been observed in Holstein cattle and fertility problems have become the most common reason for a cow to leave the herd. The premature removal of animals with high breeding values results in both economic and breeding losses. For efficient future Holstein breeding, the identification of loci associated with low fertility is of major interest and thus constitutes the aim of this study. To reach this aim, a genome-wide combined linkage disequilibrium and linkage analysis (cLDLA) was conducted using data on the following 10 calving and fertility traits in the form of estimated breeding values: days from first service to conception of heifers and cows, nonreturn rate on d 56 of heifers and cows, days from calving to first insemination, days open, paternal and maternal calving ease, paternal and maternal stillbirth. The animal data set contained 2,527 daughter-proven Holstein bulls from Germany that were genotyped with Illumina's BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For the cLDLA, 41,635 sliding windows of 40 adjacent single nucleotide polymorphisms (SNP) were used. At each window midpoint, a variance component analysis was executed using ASReml. The underlying mixed linear model included random quantitative trait locus (QTL) and polygenic effects. We identified 50 genome-wide significant QTL. The most significant peak was detected for direct calving ease at 59,179,424 bp on chromosome 18 (BTA18). Next, a mixed-linear model association (MLMA) analysis was conducted. A comparison of the cLDLA and MLMA results with special regard to BTA18 showed that the genome-wide most significant SNP from the MLMA was associated with the same trait and located on the same chromosome at 57,589,121 bp (i.e., about 1.5 Mb apart from the cLDLA peak). The results of 5 different cLDLA and 2 MLMA models, which included the fixed effects of either SNP or haplotypes, suggested that the cLDLA method outperformed the MLMA in accuracy and precision. The haplotype-based cLDLA method allowed for a more precise mapping and the definition of ancestral and derived QTL alleles, both of which are essential for the detection of underlying quantitative trait nucleotides.
Collapse
Affiliation(s)
- M-P Müller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - S Rothammer
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - D Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - I Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - D Hinrichs
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - J Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - G Thaller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - I Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
19
|
Michenet A, Barbat M, Saintilan R, Venot E, Phocas F. Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d'Aquitaine beef cattle. BMC Genet 2016; 17:88. [PMID: 27328805 PMCID: PMC4915167 DOI: 10.1186/s12863-016-0397-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/15/2016] [Indexed: 01/15/2023] Open
Abstract
Background The genetic determinism of the calving and suckling performance of beef cows is little known whereas these maternal traits are of major economic importance in beef cattle production systems. This paper aims to identify QTL regions and candidate genes that affect maternal performance traits in the Blonde d’Aquitaine breed. Three calving performance traits were studied: the maternal effect on calving score from field data, the calving score and pelvic opening recorded in station for primiparous cows. Three other traits related to suckling performance were also analysed: the maternal effect on weaning weight from field data, milk yield and the udder swelling score recorded in station for primiparous cows. A total of 2,505 animals were genotyped from various chip densities and imputed in high density chips for 706,791 SNP. The number of genotyped animals with phenotypes ranged from 1,151 to 2,284, depending on the trait considered. Results QTL detections were performed using a Bayes C approach. Evidence for a QTL was based on Bayes Factor values. Putative candidate genes were proposed for the QTL with major evidence for one of the six traits and for the QTL shared by at least two of the three traits underlying either calving or suckling performance. Nine candidate genes were proposed for calving performance among the nine highlighted QTL regions. The neuroregulin gene on chromosome 27 was notably identified as a very likely candidate gene for maternal calving performance. As for suckling abilities, seven candidate genes were identified among the 15 highlighted QTL. In particular, the Group-Specific Component gene on chromosome 6, which encodes vitamin D binding protein, is likely to have a major effect on maternal weaning weight in the Blonde d’Aquitaine breed. This gene had already been linked to milk production and clinical mastitis in dairy cattle. Conclusion In the near future, these QTL findings and the preliminary proposals of candidate genes which act on the maternal performance of beef cows should help to identify putative causal mutations based on sequence data from different cattle breeds. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0397-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexis Michenet
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78352, France. .,AURIVA, Les Nauzes, Soual, 81580, France.
| | - Marine Barbat
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78352, France.,ALLICE, 149 rue de Bercy, Paris, 75012, France
| | - Romain Saintilan
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78352, France.,ALLICE, 149 rue de Bercy, Paris, 75012, France
| | - Eric Venot
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Florence Phocas
- UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| |
Collapse
|
20
|
Zaborski D, Grzesiak W, Pilarczyk R. Detection of difficult calvings in the Polish Holstein-Friesian Black-and-White heifers. JOURNAL OF APPLIED ANIMAL RESEARCH 2014. [DOI: 10.1080/09712119.2014.987293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Riley DG, Gill CA, Herring AD, Riggs PK, Sawyer JE, Sanders JO. Alternative parameterizations of relatedness in whole genome association analysis of pre-weaning traits of Nelore-Angus calves. Genet Mol Biol 2014; 37:518-25. [PMID: 25249774 PMCID: PMC4171760 DOI: 10.1590/s1415-47572014000400007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/12/2014] [Indexed: 12/18/2022] Open
Abstract
Gestation length, birth weight, and weaning weight of F2 Nelore-Angus calves (n = 737) with designed extensive full-sibling and half-sibling relatedness were evaluated for association with 34,957 SNP markers. In analyses of birth weight, random relatedness was modeled three ways: 1) none, 2) random animal, pedigree-based relationship matrix, or 3) random animal, genomic relationship matrix. Detected birth weight-SNP associations were 1,200, 735, and 31 for those parameterizations respectively; each additional model refinement removed associations that apparently were a result of the built-in stratification by relatedness. Subsequent analyses of gestation length and weaning weight modeled genomic relatedness; there were 40 and 26 trait-marker associations detected for those traits, respectively. Birth weight associations were on BTA14 except for a single marker on BTA5. Gestation length associations included 37 SNP on BTA21, 2 on BTA27 and one on BTA3. Weaning weight associations were on BTA14 except for a single marker on BTA10. Twenty-one SNP markers on BTA14 were detected in both birth and weaning weight analyses.
Collapse
|
22
|
Cole J, Waurich B, Wensch-Dorendorf M, Bickhart D, Swalve H. A genome-wide association study of calf birth weight in Holstein cattle using single nucleotide polymorphisms and phenotypes predicted from auxiliary traits. J Dairy Sci 2014; 97:3156-72. [DOI: 10.3168/jds.2013-7409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/28/2014] [Indexed: 02/04/2023]
|
23
|
Gray KA, Maltecca C, Bagnato A, Dolezal M, Rossoni A, Samore AB, Cassady JP. Estimates of marker effects for measures of milk flow in the Italian brown Swiss dairy cattle population. BMC Vet Res 2012; 8:199. [PMID: 23092401 PMCID: PMC3534398 DOI: 10.1186/1746-6148-8-199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 10/05/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Milkability is a complex trait that is characterized by milk flow traits including average milk flow rate, maximum milk flow rate and total milking time. Milkability has long been recognized as an economically important trait that can be improved through selection. By improving milkability, management costs of milking decrease through reduced labor and improved efficiency of the automatic milking system, which has been identified as an important factor affecting net profit. The objective of this study was to identify markers associated with electronically measured milk flow traits, in the Italian Brown Swiss population that could potentially improve selection based on genomic predictions. RESULTS Sires (n = 1351) of cows with milk flow information were genotyped for 33,074 single nucleotide polymorphism (SNP) markers distributed across 29 Bos taurus autosomes (BTA). Among the six milk flow traits collected, ascending time, time of plateau, descending time, total milking time, maximum milk flow and average milk flow, there were 6,929 (time of plateau) to 14,585 (maximum milk flow) significant SNP markers identified for each trait across all BTA. Unique regions were found for each of the 6 traits providing evidence that each individual milk flow trait offers distinct genetic information about milk flow. This study was also successful in identifying functional processes and genes associated with SNPs that influences milk flow. CONCLUSIONS In addition to verifying the presence of previously identified milking speed quantitative trait loci (QTL) within the Italian Brown Swiss population, this study revealed a number of genomic regions associated with milk flow traits that have never been reported as milking speed QTL. While several of these regions were not associated with a known gene or QTL, a number of regions were associated with QTL that have been formerly reported as regions associated with somatic cell count, somatic cell score and udder morphometrics. This provides further evidence of the complexity of milk flow traits and the underlying relationship it has with other economically important traits for dairy cattle. Improved understanding of the overall milking pattern will aid in identification of cows with lower management costs and improved udder health.
Collapse
Affiliation(s)
- Kent A Gray
- Animal Breeding and Genetics, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Guo J, Jorjani H, Carlborg Ö. A genome-wide association study using international breeding-evaluation data identifies major loci affecting production traits and stature in the Brown Swiss cattle breed. BMC Genet 2012; 13:82. [PMID: 23031427 PMCID: PMC3548702 DOI: 10.1186/1471-2156-13-82] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genome-wide association study (GWAS) is a useful approach to identify genes affecting economically important traits in dairy cattle. Here, we report the results from a GWAS based on high-density SNP genotype data and estimated breeding values for nine production, fertility, body conformation, udder health and workability traits in the Brown Swiss cattle population that is part of the international genomic evaluation program. RESULT GWASs were performed using 50 k SNP chip data and deregressed estimated breeding values (DEBVs) for nine traits from between 2061 and 5043 bulls that were part of the international genomic evaluation program coordinated by Interbull Center. The nine traits were milk yield (MY), fat yield (FY), protein yield (PY), lactating cow's ability to recycle after calving (CRC), angularity (ANG), body depth (BDE), stature (STA), milk somatic cell score (SCS) and milk speed (MSP). Analyses were performed using a linear mixed model correcting for population confounding. A total of 74 SNPs were detected to be genome-wide significantly associated with one or several of the nine analyzed traits. The strongest signal was identified on chromosome 25 for milk production traits, stature and body depth. Other signals were on chromosome 11 for angularity, chromosome 24 for somatic cell score, and chromosome 6 for milking speed. Some signals overlapped with earlier reported QTL for similar traits in other cattle populations and were located close to interesting candidate genes worthy of further investigations. CONCLUSIONS Our study shows that international genetic evaluation data is a useful resource for identifying genetic factors influencing complex traits in livestock. Several genome wide significant association signals could be identified in the Brown Swiss population, including a major signal on BTA25. Our findings report several associations and plausible candidate genes that deserve further exploration in other populations and molecular dissection to explore the potential economic impact and the genetic mechanisms underlying these production traits in cattle.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Northwest A&F University,Yangling, Shaanxi 712100, People’s Republic of China.
| | | | | |
Collapse
|
25
|
Cole JB, Newman S, Foertter F, Aguilar I, Coffey M. BREEDING AND GENETICS SYMPOSIUM: Really big data: Processing and analysis of very large data sets1. J Anim Sci 2012; 90:723-33. [DOI: 10.2527/jas.2011-4584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. B. Cole
- Animal Improvement Programs Laboratory, ARS, USDA, Beltsville, MD 20705-2350
| | | | | | - I. Aguilar
- Instituto Nacional de Investigación Agropecuaria (INIA) Las Brujas, Las Piedras, Canelones, Uruguay, 90200
| | - M. Coffey
- Scottish Agricultural College, Easter Bush Campus, Midlothian, United Kingdom EH25 9RG
| |
Collapse
|