1
|
Ayalew W, Xiaoyun W, Tarekegn GM, Tessema TS, Chu M, Liang C, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Ping Y. Whole-genome sequencing of copy number variation analysis in Ethiopian cattle reveals adaptations to diverse environments. BMC Genomics 2024; 25:1088. [PMID: 39548375 DOI: 10.1186/s12864-024-10936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Genomic structural variations (GSVs), notably copy number variations (CNVs), significantly shape genetic diversity and facilitate adaptation in cattle populations. Despite their importance, the genome-wide characterization of CNVs in indigenous Ethiopian cattle breeds-Abigar, Fellata, and Gojjam-Highland remains largely unexplored. In this study, we applied a read-depth approach to whole genome sequencing (WGS) data to conduct the first comprehensive analysis of CNVs in these populations. RESULTS We identified 3,893 CNV regions (CNVRs) covering 19.15 Mb (0.71% of the cattle genome). These CNVRs ranged from 1.60 kb to 488.0 kb, with an average size of 4.92 kb. These CNVRs included deletions (1713), duplications (1929), and mixed events (251) showing notable differences in distribution among the breeds. Four out of five randomly selected CNVRs were successfully validated using real time polymerase chain reaction (qPCR). Further analyses identified candidate genes associated with high-altitude adaptation (GBE1 and SOD1), heat stress adaptation (HSPA13, DNAJC18, and DNAJC8) and resistance to tick infestations (BoLA and KRT33A). In addition, variance stabilizing transformation (VST) statistics highlighted population-specific CNVRs, emphasizing the unique genetic signatures of high-altitude adaptation in the Gojjam-Highland cattle breed. Among the detected CNVRs, 4.93% (192 out of 3,893) overlapped with 520 quantitative traits loci (QTLs) associated with six economically important trait categories suggesting that these CNVRs may significantly contribute to the genetic variation underlying these traits. CONCLUSIONS Our comprehensive analysis reveals significant CNVRs associated with key adaptive traits in Ethiopian cattle breeds highlighting their genetic diversity and resilience. These findings offer valuable insights into the genetic basis of adaptability and can inform sustainable breeding practices and conservation efforts. Future research should prioritize the functional validation of these CNVRs and their integration into breeding programs to enhance traits such as disease resistance and environmental adaptability.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Xiaoyun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China.
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- Scotland's Rural College (SRUC), Roslin Institute Building, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, Stockholm, 17177, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Yan Ping
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China.
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, P.R. China.
| |
Collapse
|
2
|
Ma C, Shi X, Li X, Zhang YP, Peng MS. Comprehensive evaluation and guidance of structural variation detection tools in chicken whole genome sequence data. BMC Genomics 2024; 25:970. [PMID: 39415108 PMCID: PMC11481438 DOI: 10.1186/s12864-024-10875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Structural variations (SVs) are widespread across genome and have a great impact on evolution, disease, and phenotypic diversity. Despite the development of numerous bioinformatic tools, commonly referred to as SV callers, tailored for detecting SVs using whole genome sequence (WGS) data and employing diverse algorithms, their performance necessitates rigorous evaluation with real data and validated SVs. Moreover, a considerable proportion of these tools have been primarily designed and optimized using human genome data. Consequently, their applicability and performance in Avian species, characterized by smaller genomes and distinct genomic architectures, remain inadequately assessed. RESULTS We performed a comprehensive assessment of the performance of ten widely used SV callers using population-level real genomic data with the validated five common types of SVs. The performance of SV callers varies with the types and sizes of SVs. As compared with other tools, GRIDSS, Lumpy, Wham, and Manta present better detection accuracy. Pindel can detect more small SVs than others. CNVnator and CNVkit can detect more medium and large copy number variations. Given the poor consistency among different SV callers, the combination calling strategy is not recommended. All tools show poor ability in the detection of insertions (especially with size > 150 bp). At least 50× read depth is required to detect more than 80% of the SVs for most tools. CONCLUSIONS This study highlights the importance and necessity of using real sequencing data, rather than simulated data only, with validated SVs for SV caller evaluation. Some practical guidance and suggestions are provided for SV detection in future researches.
Collapse
Affiliation(s)
- Cheng Ma
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Uppsala, SE-75123, Sweden
| | - Xian Shi
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Biological Big Data, Yunnan Agriculture University, Kunming, 650201, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Min-Sheng Peng
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
3
|
Zhang Y, Li X, Guo Q, Wang Z, Jiang Y, Yuan X, Chen G, Chang G, Bai H. Genome-wide association study reveals 2 copy number variations associated with the variation of plumage color in the white duck hybrid population. Poult Sci 2024; 103:104107. [PMID: 39094499 PMCID: PMC11342262 DOI: 10.1016/j.psj.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Plumage color is an intuitive external poultry characteristic with rich manifestations and complex genetic mechanisms. In our previous study, we observed that there were more dark variations in plumage color in the F2 population derived from the hybridization of 2 white duck varieties. Therefore, based on the statistics of plumage color of 308 F2 populations, we further used the resequencing data of these individuals to detect copy number variations (CNVs) in the whole genome and conducted genome-wide association studies (GWAS) to determine the genetic basis related to plumage color traits. The CNV detection revealed 9,337 CNVs, with an average length of 15,950 bp and a total length of 142.02 MB, accounting for approximately 12.91% of the reference genome. The CNV distribution on the chromosomes was relatively uniform, and the number of CNVs on each chromosome positively correlated with the length of the chromosome. In the pure black plumage group, 2,101 CNVs were only identified, and 1,714 were specifically identified in the pure white plumage group. Ten CNVs were randomly selected for validation using quantitative real-time PCR, and 9 CNVs had the same CNV types as predicted, with an accuracy of 90%. Based on GWAS, we identified 2 CNVs potentially associated with plumage color variations, with the associated CNV regions covering 9 genes. Enrichment analysis of these 9 candidate genes showed significant enrichment of 3 pathways (ribosome biogenesis in eukaryotes, RNA transport, and protein export) and 17 gene ontology terms. Among these, VWA5A can downregulate MITF by binding to the regulatory factors SOX10. The occurrence of CNV may indirectly contribute to duck plumage color variation by affecting the regulatory factors of the switch gene MITF in the melanogenesis pathway. These findings have improved the understanding of the genetic basis of duck plumage color variation and have been beneficial for developing and using plumage color traits in subsequent poultry breeding.
Collapse
Affiliation(s)
- Yi Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaofan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoya Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Wu Q, Han X, Zhang Y, Liu H, Zhou H, Wang K, Han J. One Copy Number Variation within the Angiopoietin-1 Gene Is Associated with Leizhou Black Goat Meat Quality. Animals (Basel) 2024; 14:2682. [PMID: 39335271 PMCID: PMC11428527 DOI: 10.3390/ani14182682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The ANGPT1 gene plays a crucial role in the regulation of angiogenesis and muscle growth, with previous studies identifying copy number variations (CNVs) within this gene among Leizhou black goats. In this study, we investigated three ANGPT1 CNVs in 417 individuals of LZBG using quantitative PCR (qPCR), examining the impact of different CNV types on the ANGPT1 gene expression and their associations with growth and meat quality traits. Notably, the ANGPT1 CNV-1 (ARS1_chr14:24950001-24953600) overlaps with protein-coding regions and conserved domains; its gain-of-copies genotype (copies ≥ 3) was significantly correlated with ANGPT1 mRNA expression in muscle tissue (p < 0.01). Furthermore, the gain-of-copies genotype of CNV-1 demonstrated significant correlations with various phenotypic traits, including carcass weight, body weight, shear stress, chest circumference, and cross-sectional area of longissimus dorsi muscle. These findings indicate that the CNV-1 gain-of-copies genotype in the ANGPT1 gene may serve as a valuable marker for selecting Leizhou black goats exhibiting enhanced growth and muscular development characteristics, thereby holding potential applications in targeted breeding programs aimed at improving meat quality.
Collapse
Affiliation(s)
- Qun Wu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, No. 5, Shetan Road, Xiashan Area, Zhanjiang 524013, China
| | - Xiaotao Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, No. 5, Shetan Road, Xiashan Area, Zhanjiang 524013, China
| | - Yuelang Zhang
- Hainan Institute, Zhejiang University, Sanya 572024, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, No. 5, Shetan Road, Xiashan Area, Zhanjiang 524013, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, No. 5, Shetan Road, Xiashan Area, Zhanjiang 524013, China
| | - Ke Wang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, No. 5, Shetan Road, Xiashan Area, Zhanjiang 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, No. 5, Shetan Road, Xiashan Area, Zhanjiang 524013, China
| |
Collapse
|
5
|
Yang J, Wang DF, Huang JH, Zhu QH, Luo LY, Lu R, Xie XL, Salehian-Dehkordi H, Esmailizadeh A, Liu GE, Li MH. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biol 2024; 25:148. [PMID: 38845023 PMCID: PMC11155191 DOI: 10.1186/s13059-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Collapse
Affiliation(s)
- Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiang-Hui Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ling-Yun Luo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ran Lu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Gajda Ł, Daszkowska-Golec A, Świątek P. Discovery and characterization of the α-amylases cDNAs from Enchytraeus albidus shed light on the evolution of "Enchytraeus-Eisenia type" Amy homologs in Annelida. Biochimie 2024; 221:38-59. [PMID: 38242278 DOI: 10.1016/j.biochi.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/02/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Although enchytraeids have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes responsible for hydrolyzing starch and similar polysaccharides into sugars, in Enchytraeus albidus. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of E. albidus, we used classical "gene fishing" and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that E. albidus possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm Eisenia fetida Ef-Amy genes. Different strains of E. albidus possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified "Enchytraeus-Eisenia type" α-amylase homologs in other clitellates and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores phylogenetic implications.
Collapse
Affiliation(s)
- Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
7
|
Sjodin BMF, Schmidt DA, Galbreath KE, Russello MA. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sci Rep 2024; 14:8568. [PMID: 38609461 PMCID: PMC11014952 DOI: 10.1038/s41598-024-59157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Danielle A Schmidt
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI, 49855, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
8
|
Li L, Quan J, Liu H, Yu H, Chen H, Xia C, Zhao S, Gao C. Identification of the genetic characteristics of copy number variations in experimental specific pathogen-free ducks using whole-genome resequencing. BMC Genomics 2024; 25:17. [PMID: 38166615 PMCID: PMC10759622 DOI: 10.1186/s12864-023-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
- College of Animal Science & Technology, Ningxia University, Yinchuan, 750021, P.R. China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China.
| |
Collapse
|
9
|
Kumar H, Panigrahi M, G Strillacci M, Sonejita Nayak S, Rajawat D, Ghildiyal K, Bhushan B, Dutt T. Detection of genome-wide copy number variation in Murrah buffaloes. Anim Biotechnol 2023; 34:3783-3795. [PMID: 37381739 DOI: 10.1080/10495398.2023.2227670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Riverine Buffaloes, especially the Murrah breed because of their adaptability to harsh climatic conditions, is farmed in many countries to convert low-quality feed into valuable dairy products and meat. Here, we investigated the copy number variations (CNVs) in 296 Murrah buffalo using the Axiom® Buffalo Genotyping Array 90K (Affymetrix, Santa Clara, CA, USA). The CNVs were detected on the autosomes, using the Copy Number Analysis Module (CNAM) using the univariate analysis. 7937 CNVs were detected in 279 Buffaloes, the average length of the CNVs was 119,048.87 bp that ranged between 7800 and 4,561,030 bp. These CNVs were accounting for 10.33% of the buffalo genome, which was comparable to cattle, sheep, and goat CNV analyses. Further, CNVs were merged and 1541 CNVRs were detected using the Bedtools-mergeBed command. 485 genes were annotated within 196 CNVRs that were identified in at least 10 animals of Murrah population. Out of these, 40 CNVRs contained 59 different genes that were associated with 69 different traits. Overall, the study identified a significant number of CNVs and CNVRs in the Murrah breed of buffalo, with a wide range of lengths and frequencies across the autosomes. The identified CNVRs contained genes associated with important traits related to production and reproduction, making them potentially important targets for future breeding and genetic improvement efforts.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Maria G Strillacci
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | | | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
10
|
Yang Y, Tang J, Yang H, Yang S, Cai M, Qi A, Lan X, Huang B, Su C, Chen H. Copy number variation of bovine S100A7 as a positional candidate affected body measurements. Anim Biotechnol 2023; 34:2141-2149. [PMID: 35815693 DOI: 10.1080/10495398.2022.2077740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Beef production is closely related to the national economy and the attention has been paid to the improvement of beef cattle by molecular markers associated. Copy number variations (CNVs) recently have been gained many researches and recognized as an important source of genetic variation. Extensive studies have indicated that CNVs have effects on a large range of economic traits by a wide range of gene copy number alteration. S100A7 is a member of S100 family which is a famous family of Ca2+-binding proteins. S100A7 plays a crucial role in many important phenotypes (progress) including inflammatory diseases, psoriasis, obesity, etc. The aim of our study was to explore the phenotypic effects of CNV located in the S100A7 gene of bovine chromosome 3. We detected S100A7 CNV by qPCR in different cattle breeds, including Qinchuan cattle, Yunling cattle, Xianan cattle and a crossbred group Pinan. The copy number was identified as gain, normal and loss type, our results showed that the gain type was the main type in three types of S100A7 CNV of the whole tested breeds. After CNV detection, association analysis between S100A7 CNV and growth traits was carried out in four cattle breeds. We found significant effects of the CNV on cattle growth traits with differently preferred CNV types such as gain type with better chest depth (p = 0.043) in QC, loss type with better body length (p = 0.008) and rump width (p = 0.014) in YL, normal with better chest girth (p = 0.001), gain with better waist width (p = 0.001) and rump width (p = 0.044) in PN. These results suggested that the S100A7 CNV could affect the phenotypic traits and be used as a promising genetic marker for cattle molecular breeding.
Collapse
Affiliation(s)
- Yu Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Jia Tang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Haiyan Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Shuling Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ao Qi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chao Su
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
11
|
Ramayo-Caldas Y, Crespo-Piazuelo D, Morata J, González-Rodríguez O, Sebastià C, Castello A, Dalmau A, Ramos-Onsins S, Alexiou KG, Folch JM, Quintanilla R, Ballester M. Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs. Microbiol Spectr 2023; 11:e0527122. [PMID: 37255458 PMCID: PMC10433821 DOI: 10.1128/spectrum.05271-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10-5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10-4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Cristina Sebastià
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Anna Castello
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Antoni Dalmau
- Animal Welfare Program, Institute of Agrifood Research and Technology, Girona, Spain
| | - Sebastian Ramos-Onsins
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Konstantinos G. Alexiou
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| |
Collapse
|
12
|
Lee YL, Bosse M, Takeda H, Moreira GCM, Karim L, Druet T, Oget-Ebrad C, Coppieters W, Veerkamp RF, Groenen MAM, Georges M, Bouwman AC, Charlier C. High-resolution structural variants catalogue in a large-scale whole genome sequenced bovine family cohort data. BMC Genomics 2023; 24:225. [PMID: 37127590 PMCID: PMC10152703 DOI: 10.1186/s12864-023-09259-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Structural variants (SVs) are chromosomal segments that differ between genomes, such as deletions, duplications, insertions, inversions and translocations. The genomics revolution enabled the discovery of sub-microscopic SVs via array and whole-genome sequencing (WGS) data, paving the way to unravel the functional impact of SVs. Recent human expression QTL mapping studies demonstrated that SVs play a disproportionally large role in altering gene expression, underlining the importance of including SVs in genetic analyses. Therefore, this study aimed to generate and explore a high-quality bovine SV catalogue exploiting a unique cattle family cohort data (total 266 samples, forming 127 trios). RESULTS We curated 13,731 SVs segregating in the population, consisting of 12,201 deletions, 1,509 duplications, and 21 multi-allelic CNVs (> 50-bp). Of these, we validated a subset of copy number variants (CNVs) utilising a direct genotyping approach in an independent cohort, indicating that at least 62% of the CNVs are true variants, segregating in the population. Among gene-disrupting SVs, we prioritised two likely high impact duplications, encompassing ORM1 and POPDC3 genes, respectively. Liver expression QTL mapping results revealed that these duplications are likely causing altered gene expression, confirming the functional importance of SVs. Although most of the accurately genotyped CNVs are tagged by single nucleotide polymorphisms (SNPs) ascertained in WGS data, most CNVs were not captured by individual SNPs obtained from a 50K genotyping array. CONCLUSION We generated a high-quality SV catalogue exploiting unique whole genome sequenced bovine family cohort data. Two high impact duplications upregulating the ORM1 and POPDC3 are putative candidates for postpartum feed intake and hoof health traits, thus warranting further investigation. Generally, CNVs were in low LD with SNPs on the 50K array. Hence, it remains crucial to incorporate CNVs via means other than tagging SNPs, such as investigation of tagging haplotypes, direct imputation of CNVs, or direct genotyping as done in the current study. The SV catalogue and the custom genotyping array generated in the current study will serve as valuable resources accelerating utilisation of full spectrum of genetic variants in bovine genomes.
Collapse
Affiliation(s)
- Young-Lim Lee
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands.
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium.
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Haruko Takeda
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | | | - Latifa Karim
- GIGA Institute, GIGA Genomics Platform, University of Liège, Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | - Claire Oget-Ebrad
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
- GIGA Institute, GIGA Genomics Platform, University of Liège, Liège, Belgium
| | - Roel F Veerkamp
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel Georges
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | - Aniek C Bouwman
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Carole Charlier
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Analysis of Copy Number Variation in the Whole Genome of Normal-Haired and Long-Haired Tianzhu White Yaks. Genes (Basel) 2022; 13:genes13122405. [PMID: 36553672 PMCID: PMC9777850 DOI: 10.3390/genes13122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Long-haired individuals in the Tianzhu white yak population are a unique genetic resource, and have important landscape value. Copy number variation (CNV) is an important source of phenotypic variation in mammals. In this study, we used resequencing technology to detect the whole genome of 10 long-haired Tianzhu white yaks (LTWY) and 10 normal-haired Tianzhu white yaks (NTWY), and analyzed the differences of CNV in the genome of LTWYs and NTWYs. A total of 110268 CNVs were identified, 2006 CNVRs were defined, and the distribution map of these CNVRs on chromosomes was constructed. The comparison of LTWYs and NTWYs identified 80 differential CNVR-harbored genes, which were enriched in lipid metabolism, cell migration and other functions. Notably, some differential genes were identified as associated with hair growth and hair-follicle development (e.g., ASTN2, ATM, COL22A1, GK5, SLIT3, PM20D1, and SGCZ). In general, we present the first genome-wide analysis of CNV in LTWYs and NTWYs. Our results can provide new insights into the phenotypic variation of different hair lengths in Tianzhu white yaks.
Collapse
|
14
|
Avecilla G, Chuong JN, Li F, Sherlock G, Gresham D, Ram Y. Neural networks enable efficient and accurate simulation-based inference of evolutionary parameters from adaptation dynamics. PLoS Biol 2022; 20:e3001633. [PMID: 35622868 PMCID: PMC9140244 DOI: 10.1371/journal.pbio.3001633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these 2 parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based likelihood-free inference approaches. We tested the suitability of 2 evolutionary models: a standard Wright-Fisher model and a chemostat model. We evaluated 2 likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models, we show that NPE has several advantages over ABC-SMC and that a Wright-Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be 10-4.7 to 10-4 CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our inference-based estimates using 2 distinct experimental methods-barcode lineage tracking and pairwise fitness assays-which provide independent confirmation of the accuracy of our approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the utility of novel neural network-based likelihood-free inference methods for inferring the rates and effects of evolutionary processes from empirical data with possible applications ranging from tumor to viral evolution.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Julie N. Chuong
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Fangfei Li
- Department of Genetics, Stanford University, California, Stanford, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, California, Stanford, United States of America
| | - David Gresham
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Wang M, Liu Y, Bi X, Ma H, Zeng G, Guo J, Guo M, Ling Y, Zhao C. Genome-Wide Detection of Copy Number Variants in Chinese Indigenous Horse Breeds and Verification of CNV-Overlapped Genes Related to Heat Adaptation of the Jinjiang Horse. Genes (Basel) 2022; 13:genes13040603. [PMID: 35456409 PMCID: PMC9033042 DOI: 10.3390/genes13040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, genome-wide CNVs were detected in a total of 301 samples from 10 Chinese indigenous horse breeds using the Illumina Equine SNP70 Bead Array, and the candidate genes related to adaptability to high temperature and humidity in Jinjiang horses were identified and validated. We determined a total of 577 CNVs ranging in size from 1.06 Kb to 2023.07 Kb on the 31 pairs of autosomes. By aggregating the overlapping CNVs for each breed, a total of 495 CNVRs were detected in the 10 Chinese horse breeds. As many as 211 breed-specific CNVRs were determined, of which 64 were found in the Jinjiang horse population. By removing repetitive CNV regions between breeds, a total of 239 CNVRs were identified in the Chinese indigenous horse breeds including 102 losses, 133 gains and 4 of both events (losses and gains in the same region), in which 131 CNVRs were novel and only detected in the present study compared with previous studies. The total detected CNVR length was 41.74 Mb, accounting for 1.83% of the total length of equine autosomal chromosomes. The coverage of CNVRs on each chromosome varied from 0.47% to 15.68%, with the highest coverage on ECA 12, but the highest number of CNVRs was detected on ECA1 and ECA24. A total of 229 genes overlapping with CNVRs were detected in the Jinjiang horse population, which is an indigenous horse breed unique to the southeastern coast of China exhibiting adaptability to high temperature and humidity. The functional annotation of these genes showed significant relation to cellular heat acclimation and immunity. The expression levels of the candidate genes were validated by heat shock treatment of various durations on fibroblasts of horses. The results show that the expression levels of HSPA1A were significantly increased among the different heat shock durations. The expression level of NFKBIA and SOCS4 declined from the beginning of heat shock to 2 h after heat shock and then showed a gradual increase until it reached the highest value at 6 h and 10 h of heat shock, respectively. Breed-specific CNVRs of Chinese indigenous horse breeds were revealed in the present study, and the results facilitate mapping CNVs on the whole genome and also provide valuable insights into the molecular mechanisms of adaptation to high temperature and humidity in the Jinjiang horse.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Xiaokun Bi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Hongying Ma
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Guorong Zeng
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Jintu Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Minghao Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Yao Ling
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
| | - Chunjiang Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
- Correspondence:
| |
Collapse
|
16
|
Yao Z, Li J, Zhang Z, Chai Y, Liu X, Li J, Huang Y, Li L, Huang W, Yang G, Chen F, Shi Q, Ru B, Lei C, Wang E, Huang Y. The relationship between MFN1 copy number variation and growth traits of beef cattle. Gene 2022; 811:146071. [PMID: 34864096 DOI: 10.1016/j.gene.2021.146071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
Copy number variation, as a kind of genetic submicroscopic structural variation, refers to the deletion or repetition of a large segment of genomic DNA, involving a segment size ranging from 50 bp to several MB. Mitochondrial fusion protein (MFN1) gene regulates the fusion of mitochondrial outer membrane in cells and maintains the dynamic needs of reticular mitochondria in cells. In this study, we conducted to tested the dstribution characteristics of MFN1-CNV in 522 cattles across Xianan cattle (XN), Pinan cattle (PN), Qinchuan cattle (QC), Jiaxian cattle (JX), Yunling cattle (YL), and correlated it with phenotypic traits. Then we observed the expression of MFN1 in various tissues of QC cattle (n = 3), and the expression levels were higher in lung and muscle. The results showed that there was significant correlation between MFN1 gene CNV and hucklebone width of QC cattle, hip width and height at sacrum of JX red cattle, chest width and rump length of YL cattle (P < 0.05). Individuals with duplication type were better than the type of normal or deletion in phenotypic traits. In conclusion, our data showed the correlation between MFN1 gene and growth traits of Chinese cattle. MFN1 gene can be used as a molecular marker for cattle selection and breeding, and accelerate the improvement of Chinese cattle.
Collapse
Affiliation(s)
- Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Jiaxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Yanan Chai
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Jungang Li
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Yajun Huang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Lijuan Li
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Weihong Huang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Guojie Yang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan 467100, People's Republic of China
| | - Fuying Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Qiaoting Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shanxi, 712100, People's Republic of China.
| |
Collapse
|
17
|
Prunier J, Carrier A, Gilbert I, Poisson W, Albert V, Taillon J, Bourret V, Côté SD, Droit A, Robert C. CNVs with adaptive potential in Rangifer tarandus: genome architecture and new annotated assembly. Life Sci Alliance 2021; 5:5/3/e202101207. [PMID: 34911809 PMCID: PMC8711850 DOI: 10.26508/lsa.202101207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
Rangifer tarandus has experienced recent drastic population size reductions throughout its circumpolar distribution and preserving the species implies genetic diversity conservation. To facilitate genomic studies of the species populations, we improved the genome assembly by combining long read and linked read and obtained a new highly accurate and contiguous genome assembly made of 13,994 scaffolds (L90 = 131 scaffolds). Using de novo transcriptome assembly of RNA-sequencing reads and similarity with annotated human gene sequences, 17,394 robust gene models were identified. As copy number variations (CNVs) likely play a role in adaptation, we additionally investigated these variations among 20 genomes representing three caribou ecotypes (migratory, boreal and mountain). A total of 1,698 large CNVs (length > 1 kb) showing a genome distribution including hotspots were identified. 43 large CNVs were particularly distinctive of the migratory and sedentary ecotypes and included genes annotated for functions likely related to the expected adaptations. This work includes the first publicly available annotation of the caribou genome and the first assembly allowing genome architecture analyses, including the likely adaptive CNVs reported here.
Collapse
Affiliation(s)
- Julien Prunier
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - William Poisson
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Steeve D Côté
- Caribou Ungava, département de biologie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| |
Collapse
|
18
|
Wang X, Wang Y, Cao X, Huang Y, Li P, Lan X, Buren C, Hu L, Chen H. Copy number variations of the KAT6A gene are associated with body measurements of Chinese sheep breeds. Anim Biotechnol 2021:1-8. [PMID: 34842492 DOI: 10.1080/10495398.2021.2005616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Copy number variation (CNV) is one kind of genomic structure variations and presents as gains and losses of genomic fragments. More recently, we have made an atlas of CNV maps for livestock. In the future, it is a primary focus to determine the phenotypic effects of candidate CNVs. Lysine Acetyltransferase 6 A (KAT6A) is a protein coding gene and plays a critical role in many cellular processes. However, the effects of KAT6A CNVs on sheep body measurements remains unknown. In this study, we performed quantitative polymerase chain reaction (qPCR) to detect the presences and distributions of three CNV regions within KAT6A gene in 672 sheep from four Chinese breeds. Association analysis indicated that the three CNVs of KAT6A gene were significantly associated with body measurement(s) in Small-tailed Han sheep (STH) and Hu sheep (HU) (p < 0.05), while no effects on Large-tailed Han sheep (LTH) were observed (p > 0.05) were observed. Additionally, only one CNV was significantly associated with body measurement (body length) in Chaka sheep (CK) (p < 0.05). Our study provided evidence that the CNV(s) of KAT6A gene could be used as candidate marker(s) for molecular breedings of STH, HU, and CK breeds.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiru Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yongzhen Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pi Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
19
|
Wang Z, Guo Y, Liu S, Meng Q. Genome-Wide Assessment Characteristics of Genes Overlapping Copy Number Variation Regions in Duroc Purebred Population. Front Genet 2021; 12:753748. [PMID: 34721540 PMCID: PMC8552909 DOI: 10.3389/fgene.2021.753748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are important structural variations that can cause significant phenotypic diversity. Reliable CNVs mapping can be achieved by identification of CNVs from different genetic backgrounds. Investigations on the characteristics of overlapping between CNV regions (CNVRs) and protein-coding genes (CNV genes) or miRNAs (CNV-miRNAs) can reveal the potential mechanisms of their regulation. In this study, we used 50 K SNP arrays to detect CNVs in Duroc purebred pig. A total number of 211 CNVRs were detected with a total length of 118.48 Mb, accounting for 5.23% of the autosomal genome sequence. Of these CNVRs, 32 were gains, 175 losses, and four contained both types (loss and gain within the same region). The CNVRs we detected were non-randomly distributed in the swine genome and were significantly enriched in the segmental duplication and gene density region. Additionally, these CNVRs were overlapping with 1,096 protein-coding genes (CNV-genes), and 39 miRNAs (CNV-miRNAs), respectively. The CNV-genes were enriched in terms of dosage-sensitive gene list. The expression of the CNV genes was significantly higher than that of the non-CNV genes in the adult Duroc prostate. Of all detected CNV genes, 22.99% genes were tissue-specific (TSI > 0.9). Strong negative selection had been underway in the CNV-genes as the ones that were located entirely within the loss CNVRs appeared to be evolving rapidly as determined by the median dN plus dS values. Non-CNV genes tended to be miRNA target than CNV-genes. Furthermore, CNV-miRNAs tended to target more genes compared to non-CNV-miRNAs, and a combination of two CNV-miRNAs preferentially synergistically regulated the same target genes. We also focused our efforts on examining CNV genes and CNV-miRNAs functions, which were also involved in the lipid metabolism, including DGAT1, DGAT2, MOGAT2, miR143, miR335, and miRLET7. Further molecular experiments and independent large studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Qingli Meng
- Beijing Breeding Swine Center, Beijing, China
| |
Collapse
|
20
|
Fernandes AC, da Silva VH, Goes CP, Moreira GCM, Godoy TF, Ibelli AMG, Peixoto JDO, Cantão ME, Ledur MC, de Rezende FM, Coutinho LL. Genome-wide detection of CNVs and their association with performance traits in broilers. BMC Genomics 2021; 22:354. [PMID: 34001004 PMCID: PMC8130382 DOI: 10.1186/s12864-021-07676-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated into segments and association analyses were performed with linear mixed models considering a genomic relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age. Results We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value = 0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value = 0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes regulation and potassium channels. Conclusions Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07676-1.
Collapse
Affiliation(s)
- Anna Carolina Fernandes
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | | | - Thaís Fernanda Godoy
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | | | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves: Empresa Brasileira de Pesquisa Agropecuária Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves: Empresa Brasileira de Pesquisa Agropecuária Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves: Empresa Brasileira de Pesquisa Agropecuária Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
21
|
Strillacci MG, Moradi-Shahrbabak H, Davoudi P, Ghoreishifar SM, Mokhber M, Masroure AJ, Bagnato A. A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics 2021; 22:305. [PMID: 33902439 PMCID: PMC8077898 DOI: 10.1186/s12864-021-07604-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In Iran, river buffalo is of great importance. It plays an important role in the economy of the Country, because its adaptation to harsh climate conditions and long productive lifespan permitting its farming across the Country and to convert low-quality feed into valuable milk. The genetic variability in Iranian buffalo breeds have been recently studied using SNPs genotyping data, but a whole genome Copy Number Variants (CNVs) mapping was not available. The aim of this study was to perform a genome wide CNV scan in 361 buffaloes of the three Iranian river breeds (Azeri, Khuzestani and Mazandarani) through the analysis of data obtained using the Axiom® Buffalo Genotyping Array 90 K. RESULTS CNVs detection resulted in a total of 9550 CNVs and 302 CNVRs identified in at least 5% of samples within breed, covering around 1.97% of the buffalo genome. and A total of 22 CNVRs were identified in all breeds and a different proportion of regions were in common among the three populations. Within the more represented CNVRs (n = 302) mapped a total of 409 buffalo genes, some of which resulted associated with morphological, healthy, milk, meat and reproductive traits, according to Animal Genome Cattle database. CONCLUSIONS This work provides a step forward in the interpretation of genomic variation within and among the buffalo populations, releasing a first map of CNVs and providing insights about their recent selection and adaptation to environment. The presence of the set of genes and QTL traits harbored in the CNVRs could be possibly linked with the buffalo's natural adaptive history together to a recent selection for milk used as primary food source from this species.
Collapse
Affiliation(s)
- Maria G. Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3 Canada
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agriculture and Natural resources, Urmia University, 11Km Sero Road, P. O. Box: 165, Urmia, 57561-51818 Iran
| | - Anoar Jamai Masroure
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
22
|
Guan D, Castelló A, Luigi-Sierra MG, Landi V, Delgado JV, Martínez A, Amills M. Estimating the copy number of the agouti signaling protein (ASIP) gene in goat breeds with different color patterns. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Dorant Y, Cayuela H, Wellband K, Laporte M, Rougemont Q, Mérot C, Normandeau E, Rochette R, Bernatchez L. Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Mol Ecol 2020; 29:4765-4782. [DOI: 10.1111/mec.15565] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Kyle Wellband
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Rémy Rochette
- Department of Biology University of New Brunswick Saint John NB Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| |
Collapse
|
24
|
Guan D, Martínez A, Castelló A, Landi V, Luigi-Sierra MG, Fernández-Álvarez J, Cabrera B, Delgado JV, Such X, Jordana J, Amills M. A genome-wide analysis of copy number variation in Murciano-Granadina goats. Genet Sel Evol 2020; 52:44. [PMID: 32770942 PMCID: PMC7414533 DOI: 10.1186/s12711-020-00564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In this work, our aim was to generate a map of the copy number variations (CNV) segregating in a population of Murciano-Granadina goats, the most important dairy breed in Spain, and to ascertain the main biological functions of the genes that map to copy number variable regions. RESULTS Using a dataset that comprised 1036 Murciano-Granadina goats genotyped with the Goat SNP50 BeadChip, we were able to detect 4617 and 7750 autosomal CNV with the PennCNV and QuantiSNP software, respectively. By applying the EnsembleCNV algorithm, these CNV were assembled into 1461 CNV regions (CNVR), of which 486 (33.3% of the total CNVR count) were consistently called by PennCNV and QuantiSNP and used in subsequent analyses. In this set of 486 CNVR, we identified 78 gain, 353 loss and 55 gain/loss events. The total length of all the CNVR (95.69 Mb) represented 3.9% of the goat autosomal genome (2466.19 Mb), whereas their size ranged from 2.0 kb to 11.1 Mb, with an average size of 196.89 kb. Functional annotation of the genes that overlapped with the CNVR revealed an enrichment of pathways related with olfactory transduction (fold-enrichment = 2.33, q-value = 1.61 × 10-10), ABC transporters (fold-enrichment = 5.27, q-value = 4.27 × 10-04) and bile secretion (fold-enrichment = 3.90, q-value = 5.70 × 10-03). CONCLUSIONS A previous study reported that the average number of CNVR per goat breed was ~ 20 (978 CNVR/50 breeds), which is much smaller than the number we found here (486 CNVR). We attribute this difference to the fact that the previous study included multiple caprine breeds that were represented by small to moderate numbers of individuals. Given the low frequencies of CNV (in our study, the average frequency of CNV is 1.44%), such a design would probably underestimate the levels of the diversity of CNV at the within-breed level. We also observed that functions related with sensory perception, metabolism and embryo development are overrepresented in the set of genes that overlapped with CNV, and that these loci often belong to large multigene families with tens, hundreds or thousands of paralogous members, a feature that could favor the occurrence of duplications or deletions by non-allelic homologous recombination.
Collapse
Affiliation(s)
- Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Anna Castelló
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Vincenzo Landi
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain.,Department of Veterinary Medicine, University of Bari "Aldo Moro", SP. 62 per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Fernández-Álvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340, Granada, Spain
| | - Betlem Cabrera
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
25
|
Bretani G, Rossini L, Ferrandi C, Russell J, Waugh R, Kilian B, Bagnaresi P, Cattivelli L, Fricano A. Segmental duplications are hot spots of copy number variants affecting barley gene content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1073-1088. [PMID: 32338390 PMCID: PMC7496488 DOI: 10.1111/tpj.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/31/2023]
Abstract
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low-copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD-rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome-wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.
Collapse
Affiliation(s)
- Gianluca Bretani
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Laura Rossini
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Chiara Ferrandi
- Parco Tecnologico PadanoLoc. C.na CodazzaVia Einstein26900LodiItaly
| | | | - Robbie Waugh
- James Hutton Institute, InvergowrieDundeeDD2 5DAUK
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 306466GaterslebenGermany
- Global Crop Diversity TrustPlatz der Vereinten Nationen 753113BonnGermany
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| |
Collapse
|
26
|
Bai H, He Y, Ding Y, Chu Q, Lian L, Heifetz EM, Yang N, Cheng HH, Zhang H, Chen J, Song J. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek's disease using next generation sequencing. BMC Genet 2020; 21:77. [PMID: 32677890 PMCID: PMC7364486 DOI: 10.1186/s12863-020-00884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/05/2020] [Indexed: 11/13/2022] Open
Abstract
Background Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD. Results In the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using quantitative real-time PCR (qPCR), all of which were successfully confirmed. Finally, qPCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study. Conclusions Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.,Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yi Ding
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Qin Chu
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Eliyahu M Heifetz
- Faculty of Health Sciences, Jerusalem College of Technology, 9116001, Jerusalem, Israel
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hans H Cheng
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
27
|
Yang Z, Cao X, Ma Y, Cheng J, Song C, Jiang R, Wang X, Huang Y, Buren C, Lan X, Ibrahim EE, Hu L, Chen H. Novel copy number variation of the BAG4 gene is associated with growth traits in three Chinese sheep populations. Anim Biotechnol 2020; 32:461-469. [PMID: 32022644 DOI: 10.1080/10495398.2020.1719124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Copy number variation (CNV) as an important source of genetic phenotypic and variation is related to complex phenotypic traits. The aim of this study was to investigate the potential associations of BAG4 (Bcl-2-associated athanogene 4) copy numbers variations with sheep growth traits in three Chinese sheep breeds (CKS, STHS, and HS). BAG4 is located within the stature and udder attachment quantitative trait loci (QTL) in sheep. Expression profiling revealed that the BAG4 gene was widely expressed in the tissues of sheep. The distribution of BAG4 gene copy number showed that the loss of copy number was more dominant in CKS and HS which was different from that in STHS. Statistical analysis revealed that the BAG4 CNV was significantly associated with body height in CKS (p < 0.05), with body slanting length in HS (p < 0.05), and with body height and hip cross height in STHS (p < 0.05). The χ2 values showed significant differences in the BAG4 CNV distribution frequency between varieties. In conclusion, the results establish the association between BAG4 CNV and sheep traits and suggest that BAG4 CNV may be a promising marker for the molecular breeding of Chinese sheep.
Collapse
Affiliation(s)
- Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilei Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaogang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Elsaeid Elnour Ibrahim
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Wang X, Cao X, Wen Y, Ma Y, Elnour IE, Huang Y, Lan X, Chaogetu B, Hu L, Chen H. Associations of ORMDL1 gene copy number variations with growth traits in four Chinese sheep breeds. Arch Anim Breed 2019; 62:571-578. [PMID: 31807669 PMCID: PMC6853131 DOI: 10.5194/aab-62-571-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022] Open
Abstract
Copy number variations (CNVs) are gains and losses of genomic sequence of more
than 50 bp between two individuals of a species. Also, CNV is considered to be one
of the main elements affecting the phenotypic diversity and evolutionary
adaptation of animals. ORMDL sphingolipid biosynthesis regulator 1
(ORMDL1) is a protein-coding gene associated with diseases and development. In our
study, the polymorphism of ORMDL1 gene copy numbers in four Chinese sheep breeds
(abbreviated CK, HU, STH, and LTH) was detected. In addition, we analyzed the
transcriptional expression level of ORMDL1 gene in different tissues of sheep and
examined the association of ORMDL1 CNV with growth traits. The statistical
analysis revealed that ORMDL1 CNV was remarkably correlated with body height,
heart girth, and circumference of cannon bone in HU sheep (P<0.05),
and there are significant effects on body weight, body height, body length,
chest depth, and height of hip cross in STH sheep (P<0.05). In
conclusion, our results provide a basis for the relationship between CNV of
ORMDL1 gene and sheep growth traits, suggesting that ORMDL1 CNV may be considered a promising marker for the molecular breeding of Chinese sheep.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiukai Cao
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Wen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yilei Ma
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ibrahim Elsaeid Elnour
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai 817000, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Identification of Copy Number Variation in Domestic Chicken Using Whole-Genome Sequencing Reveals Evidence of Selection in the Genome. Animals (Basel) 2019; 9:ani9100809. [PMID: 31618984 PMCID: PMC6826909 DOI: 10.3390/ani9100809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chickens have been bred for meat and egg production as a source of animal protein. With the increase of productivity as the main purpose of domestication, factors such as metabolism and immunity were boosted, which are detectable signs of selection on the genome. This study focused on copy number variation (CNV) to find evidence of domestication on the genome. CNV was detected from whole-genome sequencing of 65 chickens including Red Jungle Fowl, broilers, and layers. After that, CNV region, the overlapping region of CNV between individuals, was made to identify which genomic regions showed copy number differentiation. The 663 domesticated-specific CNV regions were associated with various functions such as metabolism and organ development. Also, by performing population differentiation analyses such as clustering analysis and ANOVA test, we found that there are a lot of genomic regions with different copy number patterns between broilers and layers. This result indicates that different genetic variations can be found, depending on the purpose of artificial selection and provides considerations for future animal breeding. Abstract Copy number variation (CNV) has great significance both functionally and evolutionally. Various CNV studies are in progress to find the cause of human disease and to understand the population structure of livestock. Recent advances in next-generation sequencing (NGS) technology have made CNV detection more reliable and accurate at whole-genome level. However, there is a lack of CNV studies on chickens using NGS. Therefore, we obtained whole-genome sequencing data of 65 chickens including Red Jungle Fowl, Cornish (broiler), Rhode Island Red (hybrid), and White Leghorn (layer) from the public databases for CNV region (CNVR) detection. Using CNVnator, a read-depth based software, a total of 663 domesticated-specific CNVRs were identified across autosomes. Gene ontology analysis of genes annotated in CNVRs showed that mainly enriched terms involved in organ development, metabolism, and immune regulation. Population analysis revealed that CN and RIR are closer to each other than WL, and many genes (LOC772271, OR52R1, RD3, ADH6, TLR2B, PRSS2, TPK1, POPDC3, etc.) with different copy numbers between breeds found. In conclusion, this study has helped to understand the genetic characteristics of domestic chickens at CNV level, which may provide useful information for the development of breeding systems in chickens.
Collapse
|
30
|
Wang Y, Zhang T, Wang C. Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip. J Anim Breed Genet 2019; 137:166-176. [PMID: 31506991 DOI: 10.1111/jbg.12435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Copy number variation (CNV) is an important source of genetic variability in human or animal genomes and play key roles in phenotypic diversity and disease susceptibility. In the present study, we performed a genome-wide analysis for CNV detection using SNP genotyping data of 857 Large White pigs. A total of 312 CNV regions (CNVRs) were detected with the PennCNV algorithm, which covered 57.76 Mb of the pig genome and correspond to 2.36% of the genome sequence. The length of the CNVRs on autosomes ranged from 1.77 Kb to 1.76 Mb with an average of 185.11 Kb. Of these, 220 completely or partially overlapped with 1,092 annotated genes, which enriched a wide variety of biological processes. Comparisons with previously reported pig CNVR revealed 92 (29.49%) novel CNVRs. Experimentally, 80% of CNVRs selected randomly were validated by quantitative PCR (qPCR). We also performed an association analysis between some of the CNVRs and reproductive traits, with results demonstrating the potential importance of CNVR61 and CNVR283 associated with litter sizes. Notably, the GPER1 gene located in CNVR61 plays a key role in reproduction. Our study is an important complement to the CNV map in the pig genome and provides valuable information for investigating the association between genomic variation and economic traits.
Collapse
Affiliation(s)
- Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tingrong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Shi SY, Li LJ, Zhang ZJ, Wang EY, Wang J, Xu JW, Liu HB, Wen YF, He H, Lei CZ, Chen H, Huang YZ. Copy number variation of MYLK4 gene and its growth traits of Capra hircus (goat). Anim Biotechnol 2019; 31:532-537. [PMID: 31280665 DOI: 10.1080/10495398.2019.1635137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Copy number variation (CNV) is a form of genetic variation caused by genome rearrangement, with abnormal fragments ranging from 50 bp to Mb. And, CNV is closely related to disease, growth and reproductive shape of livestock. As a member of myosin light chain kinase (MYLK) family with serine/threonine specificity, MYLK4 belongs to an enzyme encoded by MYLK4 gene. Although MYLK4 is a recognized kinase, its function has yet to be revealed in subsequent studies. This study aims to analyze CNV and genetic effects of MYLK4 gene in goats. We used qPCR to detect CNV of MYLK4 gene in African Nubian goat (n = 32), Guizhou black goat (n = 196) and Guizhou white goat (n = 95), respectively, and correlated CNV data of MYLK4 gene with goat growth traits in Chinese goats. The results showed that the effect of MYLK4 gene CNV on body weight, body length and body height of goats had significantly different (p < 0.05, Q < 0.05), in which CNV showed better growth traits in type of deletion. Therefore, CNV of MYLK4 gene can be used as a molecular marker for assisted selection of goat growth traits, which provides a theoretical basis for the genetic improvement of goat breeds in China.
Collapse
Affiliation(s)
- Shu-Yue Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Li-Juan Li
- Guizhou University of Engineering Science, Institute of Bijie Test Area, Guizhou, People's Republic of China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Er-Yao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Jia-Wei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong-Bing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Yi-Fan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hua He
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
32
|
Zhu C, Li M, Qin S, Zhao F, Fang S. Detection of copy number variation and selection signatures on the X chromosome in Chinese indigenous sheep with different types of tail. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1378-1386. [PMID: 31480185 PMCID: PMC7468164 DOI: 10.5713/ajas.18.0661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Objective Chinese indigenous sheep breeds can be classified into the following three categories by their tail morphology: fat-tailed, fat-rumped and thin-tailed sheep. The typical sheep breeds corresponding to fat-tailed, fat-rumped, and thin-tailed sheep are large-tailed Han, Altay, and Tibetan sheep, respectively. Detection of copy number variation (CNV) and selection signatures provides information on the genetic mechanisms underlying the phenotypic differences of the different sheep types. Methods In this study, PennCNV software and F-statistics (FST) were implemented to detect CNV and selection signatures, respectively, on the X chromosome in three Chinese indigenous sheep breeds using ovine high-density 600K single nucleotide polymorphism arrays. Results In large-tailed Han, Altay, and Tibetan sheep, respectively, a total of six, four and 22 CNV regions (CNVRs) with lengths of 1.23, 0.93, and 7.02 Mb were identified on the X chromosome. In addition, 49, 34, and 55 candidate selection regions with respective lengths of 27.49, 16.47, and 25.42 Mb were identified in large-tailed Han, Altay, and Tibetan sheep, respectively. The bioinformatics analysis results indicated several genes in these regions were associated with fat, including dehydrogenase/reductase X-linked, calcium voltage-gated channel subunit alpha1 F, and patatin like phospholipase domain containing 4. In addition, three other genes were identified from this analysis: the family with sequence similarity 58 member A gene was associated with energy metabolism, the serine/arginine-rich protein specific kinase 3 gene was associated with skeletal muscle development, and the interleukin 2 receptor subunit gamma gene was associated with the immune system. Conclusion The results of this study indicated CNVRs and selection regions on the X chromosome of Chinese indigenous sheep contained several genes associated with various heritable traits.
Collapse
Affiliation(s)
- Caiye Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Mingna Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuping Zhao
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Suli Fang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
33
|
González-Prendes R, Mármol-Sánchez E, Quintanilla R, Castelló A, Zidi A, Ramayo-Caldas Y, Cardoso TF, Manunza A, Cánovas Á, Amills M. About the existence of common determinants of gene expression in the porcine liver and skeletal muscle. BMC Genomics 2019; 20:518. [PMID: 31234802 PMCID: PMC6591854 DOI: 10.1186/s12864-019-5889-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The comparison of expression QTL (eQTL) maps obtained in different tissues is an essential step to understand how gene expression is genetically regulated in a context-dependent manner. In the current work, we have compared the transcriptomic and eQTL profiles of two porcine tissues (skeletal muscle and liver) which typically show highly divergent expression profiles, in 103 Duroc pigs genotyped with the Porcine SNP60 BeadChip (Illumina) and with available microarray-based measurements of hepatic and muscle mRNA levels. Since structural variation could have effects on gene expression, we have also investigated the co-localization of cis-eQTLs with copy number variant regions (CNVR) segregating in this Duroc population. RESULTS The analysis of differential expresssion revealed the existence of 1204 and 1490 probes that were overexpressed and underexpressed in the gluteus medius muscle when compared to liver, respectively (|fold-change| > 1.5, q-value < 0.05). By performing genome scans in 103 Duroc pigs with available expression and genotypic data, we identified 76 and 28 genome-wide significant cis-eQTLs regulating gene expression in the gluteus medius muscle and liver, respectively. Twelve of these cis-eQTLs were shared by both tissues (i.e. 42.8% of the cis-eQTLs identified in the liver were replicated in the gluteus medius muscle). These results are consistent with previous studies performed in humans, where 50% of eQTLs were shared across tissues. Moreover, we have identified 41 CNVRs in a set of 350 pigs from the same Duroc population, which had been genotyped with the Porcine SNP60 BeadChip by using the PennCNV and GADA softwares, but only a small proportion of these CNVRs co-localized with the cis-eQTL signals. CONCLUSION Despite the fact that there are considerable differences in the gene expression patterns of the porcine liver and skeletal muscle, we have identified a substantial proportion of common cis-eQTLs regulating gene expression in both tissues. Several of these cis-eQTLs influence the mRNA levels of genes with important roles in meat (CTSF) and carcass quality (TAPT1), lipid metabolism (TMEM97) and obesity (MARC2), thus evidencing the practical importance of dissecting the genetic mechanisms involved in their expression.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Departament de Producció Animal-Agrotecnio Center, Universitat de Lleida, 191 Rovira Roure, 25198, Lleida, Spain
| | - Emilio Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Anna Castelló
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ali Zidi
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Yuliaxis Ramayo-Caldas
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Tainã Figueiredo Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia D. F, Zip Code 70.040-020, Brazil
| | - Arianna Manunza
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Cánovas
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
34
|
Zhang GW, Wu Y, Luo Z, Guan J, Wang L, Luo X, Zuo F. Comparison of Y-chromosome-linked TSPY, TSPY2, and PRAMEY genes in Taurus cattle, yaks, and interspecific hybrid bulls. J Dairy Sci 2019; 102:6263-6275. [PMID: 31103297 DOI: 10.3168/jds.2018-15680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 12/28/2022]
Abstract
Domestic yaks (Bos grunniens) and domestic Taurus cattle (Bos taurus) are closely related. An interesting phenomenon in interspecific crossings is male sterility in the F1 hybrid (yattle) and F2 backcross, with no late meiotic cells or spermatids in the seminiferous tubules. The mammalian Y chromosome is crucial for spermatogenesis and male fertility. This study investigated the copy number variations and mRNA of Y-transitional region genes TSPY2 (testis specific protein, Y-linked 2 and testis-specific Y-encoded protein 3-like) and PRAMEY (preferentially expressed antigen in melanoma, Y-linked), and Y-ampliconic region genes TSPY (testis-specific Y-encoded protein 1-like), ZNF280BY (zinc finger protein 280B, Y-linked) and HSFY (heat-shock transcription factor, Y-linked) in mature testes from Taurus cattle, yaks, and yattle. Phylogenetic trees divided 33 copies of TSPY into major 2 types (TSPY-T1 and TSPY-T2), 19 copies of TSPY2 into 2 types (TSPY2-T1 and T2), and 8 copies of PRAMEY into 4 types (PRAMEY-T1 to T4). Searching by the Basic Local Alignment Search Tool of the TSPY2 coding sequences in GenBank revealed that TSPY2 was conserved in Bovidae. The TSPY2-T2 sequences were absent, whereas PRAMEY-T2 and PRAMEY-T4 were amplified on the yak Y chromosome. The average copy numbers of TSPY-T2 and ZNF280BY were significantly different between cattle and yaks. The TSPY-T2, TSPY2, PRAMEY, ZNF280BY, and HSFY genes were uniquely or predominantly expressed in testes. Reverse-transcription quantitative PCR showed that the TSPY-T2, PRAMEY-T2, HSFY, ZNF280BY, protamine 1 (PRM1), and protamine 2 (PRM2) genes were almost not expressed in yattle. The PRM1 and PRM2 genes are used as positive markers for spermatozoa. Thus, our results showed that the genomic structure of the Y-transitional and Y-ampliconic region differed between Taurus cattle and yaks. Dysregulated expression of Y-ampliconic region genes TSPY-T2, HSPY, ZNF280BY, and Y-transitional region gene PRAMEY-T2 may be associated with hybrid male sterility in yattle.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460.
| | - Yuhui Wu
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460
| | - Zonggang Luo
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460
| | - Jiuqiang Guan
- Yak Research Institution, Sichuan Academy of Grassland Science, Chengdu, Sichuan, China 611731
| | - Ling Wang
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460
| | - Xiaolin Luo
- Yak Research Institution, Sichuan Academy of Grassland Science, Chengdu, Sichuan, China 611731
| | - Fuyuan Zuo
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460.
| |
Collapse
|
35
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
36
|
Stafuzza NB, Silva RMDO, Fragomeni BDO, Masuda Y, Huang Y, Gray K, Lourenco DAL. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics 2019; 20:321. [PMID: 31029102 PMCID: PMC6487013 DOI: 10.1186/s12864-019-5687-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background In this study we integrated the CNV (copy number variation) and WssGWAS (weighted single-step approach for genome-wide association) analyses to increase the knowledge about number of piglets born alive, an economically important reproductive trait with significant impact on production efficiency of pigs. Results A total of 3892 samples were genotyped with the Porcine SNP80 BeadChip. After quality control, a total of 57,962 high-quality SNPs from 3520 Duroc pigs were retained. The PennCNV algorithm identified 46,118 CNVs, which were aggregated by overlapping in 425 CNV regions (CNVRs) ranging from 2.5 Kb to 9718.4 Kb and covering 197 Mb (~ 7.01%) of the pig autosomal genome. The WssGWAS identified 16 genomic regions explaining more than 1% of the additive genetic variance for number of piglets born alive. The overlap between CNVR and WssGWAS analyses identified common regions on SSC2 (4.2–5.2 Mb), SSC3 (3.9–4.9 Mb), SSC12 (56.6–57.6 Mb), and SSC17 (17.3–18.3 Mb). Those regions are known for harboring important causative variants for pig reproductive traits based on their crucial functions in fertilization, development of gametes and embryos. Functional analysis by the Panther software identified 13 gene ontology biological processes significantly represented in this study such as reproduction, developmental process, cellular component organization or biogenesis, and immune system process, which plays relevant roles in swine reproductive traits. Conclusion Our research helps to improve the understanding of the genetic architecture of number of piglets born alive, given that the combination of GWAS and CNV analyses allows for a more efficient identification of the genomic regions and biological processes associated with this trait in Duroc pigs. Pig breeding programs could potentially benefit from a more accurate discovery of important genomic regions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5687-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Department of Exact Science, School of Agricultural and Veterinarian Sciences (FCAV), Sao Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Rafael Medeiros de Oliveira Silva
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.,National Center for Cool and Cold Water Aquaculture (NCCCWA), Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA
| | | | - Yutaka Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Yijian Huang
- Smithfield Premium Genetics Group, Rose Hill, NC, USA
| | - Kent Gray
- Smithfield Premium Genetics Group, Rose Hill, NC, USA
| | | |
Collapse
|
37
|
Lye ZN, Purugganan MD. Copy Number Variation in Domestication. TRENDS IN PLANT SCIENCE 2019; 24:352-365. [PMID: 30745056 DOI: 10.1016/j.tplants.2019.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
Domesticated plants have long served as excellent models for studying evolution. Many genes and mutations underlying important domestication traits have been identified, and most causal mutations appear to be SNPs. Copy number variation (CNV) is an important source of genetic variation that has been largely neglected in studies of domestication. Ongoing work demonstrates the importance of CNVs as a source of genetic variation during domestication, and during the diversification of domesticated taxa. Here, we review how CNVs contribute to evolutionary processes underlying domestication, and review examples of domestication traits caused by CNVs. We draw from examples in plant species, but also highlight cases in animal systems that could illuminate the roles of CNVs in the domestication process.
Collapse
Affiliation(s)
- Zoe N Lye
- Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
38
|
Liu M, Fang L, Liu S, Pan MG, Seroussi E, Cole JB, Ma L, Chen H, Liu GE. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins. BMC Genomics 2019; 20:181. [PMID: 30845913 PMCID: PMC6407259 DOI: 10.1186/s12864-019-5552-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variations (CNVs) are structural variants consisting of large-scale insertions and deletions of genomic fragments. Exploring CNVs and estimating their effects on phenotypes are useful for genome selection but remain challenging in the livestock. RESULTS We identified 1043 CNV regions (CNVRs) from array comparative genomic hybridization (CGH) data of 47 Holstein bulls. Using a probe-based CNV association approach, we detected 87 CNVRs significantly (Bonferroni-corrected P value < 0.05) associated with at least one out of 41 complex traits. Within them, 39 CNVRs were simultaneously associated with at least 2 complex traits. Notably, 24 CNVRs were markedly related to daughter pregnancy rate (DPR). For example, CNVR661 containing CYP4A11 and CNVR213 containing CTR9, respectively, were associated with DPR and other traits related to reproduction, production, and body conformation. CNVR758 was also significantly related to DPR, with a nearby gene CAPZA3, encoding one of F-actin-capping proteins which play a role in determining sperm architecture and male fertility. We corroborated these CNVRs by examining their overlapped quantitative trait loci and comparing with previously published CNV results. CONCLUSION To our knowledge, this is one of the first genome-wide association studies based on CNVs called by array CGH in Holstein cattle. Our results contribute substantial information about the potential CNV impacts on reproduction, health, production, and body conformation traits, which lay the foundation for incorporating CNV into the future dairy cattle breeding program.
Collapse
Affiliation(s)
- Mei Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, 712100 Shaanxi China
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Lingzhao Fang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Michael G. Pan
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, Department of Quantitative and Molecular Genetics, HaMaccabim Road, P.O.B 15159, 7528809 Rishon LeTsiyon, Israel
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD USA
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, 712100 Shaanxi China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
39
|
Wang C, Chen H, Wang X, Wu Z, Liu W, Guo Y, Ren J, Ding N. Identification of copy number variations using high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1809-1815. [PMID: 30744341 PMCID: PMC6819687 DOI: 10.5713/ajas.18.0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Objective Copy number variations (CNVs) are a major source of genetic diversity complementary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to perform a comprehensive genomic analysis of CNVs based on high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. Methods We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dongxiang spotted pigs. Then, the next generation sequence data was used to confirm the detected CNVs. Next, functional analysis was performed for gene contents in copy number variation regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones and quantitative trait loci (QTL) in the pig QTL database. Results We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. Moreover, functional annotation showed that these CNVRs are involved in a variety of molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic traits. Conclusion The findings improve the catalog of pig CNVs and provide insights and novel molecular markers for further genetic analyses of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Chengbin Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaopeng Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
40
|
Di Gerlando R, Sardina MT, Tolone M, Sutera AM, Mastrangelo S, Portolano B. Genome-wide detection of copy-number variations in local cattle breeds. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to identify copy-number variations (CNVs) in Cinisara (CIN) and Modicana (MOD) cattle breeds on the basis of signal intensity (logR ratio) and B allele frequency of each marker, using Illumina’s BovineSNP50K Genotyping BeadChip. The CNVs were detected with the PennCNV and SVS 8.7.0 software and were aggregated into CNV regions (CNVRs). PennCNV identified 487 CNVs in CIN that aggregated into 86 CNVRs, and 424 CNVs in MOD that aggregated into 81 CNVRs. SVS identified a total of 207 CNVs in CIN that aggregated into 39 CNVRs, and 181 CNVs in MOD that aggregated into 41 CNVRs. The CNVRs identified with the two softwares contained 29 common CNVRs in CIN and 17 common CNVRs in MOD. Only a small number of CNVRs identified in the present study have been identified elsewhere, probably because of the limitations of the array used. In total, 178 and 208 genes were found within the CNVRs of CIN and MOD respectively. Gene Ontology and KEGG pathway analyses showed that several of these genes are involved in milk production, reproduction and behaviour, the immune response, and resistance/susceptibility to infectious diseases. Our results have provided significant information for the construction of more-complete CNV maps of the bovine genome and offer an important resource for the investigation of genomic changes and traits of interest in the CIN and MOD cattle breeds. Our results will also be valuable for future studies and constitute a preliminary report of the CNV distribution resources in local cattle genomes.
Collapse
|
41
|
Genova F, Longeri M, Lyons LA, Bagnato A, Strillacci MG. First genome-wide CNV mapping in FELIS CATUS using next generation sequencing data. BMC Genomics 2018; 19:895. [PMID: 30526495 PMCID: PMC6288940 DOI: 10.1186/s12864-018-5297-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
Background Copy Number Variations (CNVs) have becoming very significant variants, representing a major source of genomic variation. CNVs involvement in phenotypic expression and different diseases has been widely demonstrated in humans as well as in many domestic animals. However, genome wide investigation on these structural variations is still missing in Felis catus. The present work is the first CNV mapping from a large data set of Next Generation Sequencing (NGS) data in the domestic cat, performed within the 99 Lives Consortium. Results Reads have been mapped on the reference assembly_6.2 by Maverix Biomics. CNV detection with cn.MOPS and CNVnator detected 592 CNVs. These CNVs were used to obtain 154 CNV Regions (CNVRs) with BedTools, including 62 singletons. CNVRs covered 0.26% of the total cat genome with 129 losses, 19 gains and 6 complexes. Cluster Analysis and Principal Component Analysis of the detected CNVRs showed that breeds tend to cluster together as well as cats sharing the same geographical origins. The 46 genes identified within the CNVRs were annotated. Conclusion This study has improved the genomic characterization of 14 cat breeds and has provided CNVs information that can be used for studies of traits in cats. It can be considered a sound starting point for genomic CNVs identification in this species. Electronic supplementary material The online version of this article (10.1186/s12864-018-5297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Genova
- Department of Veterinary Medicine, University of Milan, 20122, Milan, Italy
| | - M Longeri
- Department of Veterinary Medicine, University of Milan, 20122, Milan, Italy
| | - L A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - A Bagnato
- Department of Veterinary Medicine, University of Milan, 20122, Milan, Italy
| | | | - M G Strillacci
- Department of Veterinary Medicine, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
42
|
Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D. Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 2018; 16:e3000069. [PMID: 30562346 PMCID: PMC6298651 DOI: 10.1371/journal.pbio.3000069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Copy number variants (CNVs) are a pervasive source of genetic variation and evolutionary potential, but the dynamics and diversity of CNVs within evolving populations remain unclear. Long-term evolution experiments in chemostats provide an ideal system for studying the molecular processes underlying CNV formation and the temporal dynamics with which they are generated, selected, and maintained. Here, we developed a fluorescent CNV reporter to detect de novo gene amplifications and deletions in individual cells. We used the CNV reporter in Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which encodes the general amino acid permease, in different nutrient-limited chemostat conditions. We find that under strong selection, GAP1 CNVs are repeatedly generated and selected during the early stages of adaptive evolution, resulting in predictable dynamics. Molecular characterization of CNV-containing lineages shows that the CNV reporter detects different classes of CNVs, including aneuploidies, nonreciprocal translocations, tandem duplications, and complex CNVs. Despite GAP1's proximity to repeat sequences that facilitate intrachromosomal recombination, breakpoint analysis revealed that short inverted repeat sequences mediate formation of at least 50% of GAP1 CNVs. Inverted repeat sequences are also found at breakpoints at the DUR3 locus, where CNVs are selected in urea-limited chemostats. Analysis of 28 CNV breakpoints indicates that inverted repeats are typically 8 nucleotides in length and separated by 40 bases. The features of these CNVs are consistent with origin-dependent inverted-repeat amplification (ODIRA), suggesting that replication-based mechanisms of CNV formation may be a common source of gene amplification. We combined the CNV reporter with barcode lineage tracking and found that 102-104 independent CNV-containing lineages initially compete within populations, resulting in extreme clonal interference. However, only a small number (18-21) of CNV lineages ever constitute more than 1% of the CNV subpopulation, and as selection progresses, the diversity of CNV lineages declines. Our study introduces a novel means of studying CNVs in heterogeneous cell populations and provides insight into their dynamics, diversity, and formation mechanisms in the context of adaptive evolution.
Collapse
Affiliation(s)
- Stephanie Lauer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Grace Avecilla
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Gunjan Sethia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Sasha F. Levy
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford University, Stanford, California, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
43
|
Drobik-Czwarno W, Wolc A, Fulton JE, Dekkers JCM. Detection of copy number variations in brown and white layers based on genotyping panels with different densities. Genet Sel Evol 2018; 50:54. [PMID: 30400769 PMCID: PMC6219011 DOI: 10.1186/s12711-018-0428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background Copy number variations (CNV) are an important source of genetic variation that has gained increasing attention over the last couple of years. In this study, we performed CNV detection and functional analysis for 18,719 individuals from four pure lines and one commercial cross of layer chickens. Samples were genotyped on four single nucleotide polymorphism (SNP) genotyping platforms, i.e. the Illumina 42K, Affymetrix 600K, and two different customized Affymetrix 50K chips. CNV recovered from the Affymetrix chips were identified by using the Axiom® CNV Summary Tools and PennCNV software and those from the Illumina chip were identified by using the cnvPartition in the Genome Studio software. Results The mean number of CNV per individual varied from 0.50 to 4.87 according to line or cross and size of the SNP genotyping set. The length of the detected CNV across all datasets ranged from 1.2 kb to 3.2 Mb. The number of duplications exceeded the number of deletions for most lines. Between the lines, there were considerable differences in the number of detected CNV and their distribution. Most of the detected CNV had a low frequency, but 19 CNV were identified with a frequency higher than 5% in birds that were genotyped on the 600K panel, with the most common CNV being detected in 734 birds from three lines. Conclusions Commonly used SNP genotyping platforms can be used to detect segregating CNV in chicken layer lines. The sample sizes for this study enabled a detailed characterization of the CNV landscape within commercially relevant lines. The size of the SNP panel used affected detection efficiency, with more CNV detected per individual on the higher density 600K panel. In spite of the high level of inter-individual diversity and a large number of CNV observed within individuals, we were able to detect 19 frequent CNV, of which, 57.9% overlapped with annotated genes and 89% overlapped with known quantitative trait loci. Electronic supplementary material The online version of this article (10.1186/s12711-018-0428-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wioleta Drobik-Czwarno
- Department of Animal Science, Iowa State University, 806 Stange Road, 239E Kildee Hall, Ames, IA, 50010, USA. .,Department of Animal Genetics and Breeding, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Anna Wolc
- Department of Animal Science, Iowa State University, 806 Stange Road, 239E Kildee Hall, Ames, IA, 50010, USA.,Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Janet E Fulton
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 806 Stange Road, 239E Kildee Hall, Ames, IA, 50010, USA
| |
Collapse
|
44
|
Prunier J, Giguère I, Ryan N, Guy R, Soolanayakanahally R, Isabel N, MacKay J, Porth I. Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Mol Ecol 2018; 28:1476-1490. [PMID: 30270494 DOI: 10.1111/mec.14836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Gene copy number variations (CNVs) involved in phenotypic variations have already been shown in plants, but genomewide testing of CNVs for adaptive variation was not doable until recent technological developments. Thus, reports of the genomic architecture of adaptation involving CNVs remain scarce to date. Here, we investigated F1 progenies of an intraprovenance cross (north-north cross, 58th parallel) and an interprovenances cross (north-south cross, 58th/49th parallels) for CNVs using comparative genomic hybridization on arrays of probes targeting gene sequences in balsam poplar (Populus balsamifera L.), a widespread North American forest tree. A total of 1,721 genes were found in varying copy numbers over the set of 19,823 tested genes. These gene CNVs presented an estimated average size of 8.3 kb and were distributed over poplar's 19 chromosomes including 22 hotspot regions. Gene CNVs number was higher for the interprovenance progeny in accordance with an expected higher genetic diversity related to the composite origin of this family. Regression analyses between gene CNVs and seven adaptive trait variations resulted in 23 significant links; among these adaptive gene CNVs, 30% were located in hotspots. One-to-five gene CNVs were found related to each of the measured adaptive traits and annotated for both biotic and abiotic stress responses. These annotations can be related to the occurrence of a higher pathogenic pressure in the southern parts of balsam poplar's distribution, and higher photosynthetic assimilation rates and water-use efficiency at high latitudes. Overall, our findings suggest that gene CNVs typically having higher mutation rates than SNPs may in fact represent efficient adaptive variations against fast-evolving pathogens.
Collapse
Affiliation(s)
- Julien Prunier
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec, Québec, Canada.,Centre for Forest Research, Université Laval, Québec, Quebec, Canada
| | - Isabelle Giguère
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec, Québec, Canada.,Centre for Forest Research, Université Laval, Québec, Quebec, Canada
| | - Natalie Ryan
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raju Soolanayakanahally
- Indian Head Research Farm, Agriculture and Agri-Food Canada, Indian Head, Saskatchewan, Canada
| | - Nathalie Isabel
- Laurentian Forest Centre, Canadian Forest Service, Natural Resources Canada, Québec, Quebec, Canada
| | - John MacKay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Ilga Porth
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec, Québec, Canada.,Centre for Forest Research, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
45
|
Schurink A, da Silva VH, Velie BD, Dibbits BW, Crooijmans RPMA, Franҫois L, Janssens S, Stinckens A, Blott S, Buys N, Lindgren G, Ducro BJ. Copy number variations in Friesian horses and genetic risk factors for insect bite hypersensitivity. BMC Genet 2018; 19:49. [PMID: 30060732 PMCID: PMC6065148 DOI: 10.1186/s12863-018-0657-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 07/19/2018] [Indexed: 12/04/2022] Open
Abstract
Background Many common and relevant diseases affecting equine welfare have yet to be tested regarding structural variants such as copy number variations (CNVs). CNVs make up a substantial proportion of total genetic variability in populations of many species, resulting in more sequence differences between individuals than SNPs. Associations between CNVs and disease phenotypes have been established in several species, but equine CNV studies have been limited. Aim of this study was to identify CNVs and to perform a genome-wide association (GWA) study in Friesian horses to identify genomic loci associated with insect bite hypersensitivity (IBH), a common seasonal allergic dermatitis observed in many horse breeds worldwide. Results Genotypes were obtained using the Axiom® Equine Genotyping Array containing 670,796 SNPs. After quality control of genotypes, 15,041 CNVs and 5350 CNV regions (CNVRs) were identified in 222 Friesian horses. Coverage of the total genome by CNVRs was 11.2% with 49.2% of CNVRs containing genes. 58.0% of CNVRs were novel (i.e. so far only identified in Friesian horses). A SNP- and CNV-based GWA analysis was performed, where about half of the horses were affected by IBH. The SNP-based analysis showed a highly significant association between the MHC region on ECA20 and IBH in Friesian horses. Associations between the MHC region on ECA20 and IBH were also detected based on the CNV-based analysis. However, CNVs associated with IBH in Friesian horses were not often in close proximity to SNPs identified to be associated with IBH. Conclusions CNVs were identified in a large sample of the Friesian horse population, thereby contributing to our knowledge on CNVs in horses and facilitating our understanding of the equine genome and its phenotypic expression. A clear association was identified between the MHC region on ECA20 and IBH in Friesian horses based on both SNP- and CNV-based GWA studies. These results imply that MHC contributes to IBH sensitivity in Friesian horses. Although subsequent analyses are needed for verification, nucleotide differences, as well as more complex structural variations like CNVs, seem to contribute to IBH sensitivity. IBH should be considered as a common disease with a complex genomic architecture. Electronic supplementary material The online version of this article (10.1186/s12863-018-0657-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anouk Schurink
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands.
| | - Vinicius H da Silva
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 75007, Uppsala, Sweden.,Department of Animal Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708, PB, Wageningen, the Netherlands
| | - Brandon D Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 75007, Uppsala, Sweden
| | - Bert W Dibbits
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands
| | - Liesbeth Franҫois
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Steven Janssens
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Anneleen Stinckens
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Sarah Blott
- Reproductive Biology, Faculty of Medicine and Health Sciences, The University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Nadine Buys
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 75007, Uppsala, Sweden
| | - Bart J Ducro
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands
| |
Collapse
|
46
|
Janiak MC. No Evidence of Copy Number Variation in Acidic Mammalian Chitinase Genes (CHIA) in New World and Old World Monkeys. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
da Silva VH, Laine VN, Bosse M, Oers KV, Dibbits B, Visser ME, M A Crooijmans RP, Groenen MAM. CNVs are associated with genomic architecture in a songbird. BMC Genomics 2018; 19:195. [PMID: 29703149 PMCID: PMC6389189 DOI: 10.1186/s12864-018-4577-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Understanding variation in genome structure is essential to understand phenotypic differences within populations and the evolutionary history of species. A promising form of this structural variation is copy number variation (CNV). CNVs can be generated by different recombination mechanisms, such as non-allelic homologous recombination, that rely on specific characteristics of the genome architecture. These structural variants can therefore be more abundant at particular genes ultimately leading to variation in phenotypes under selection. Detailed characterization of CNVs therefore can reveal evolutionary footprints of selection and provide insight in their contribution to phenotypic variation in wild populations. Results Here we use genotypic data from a long-term population of great tits (Parus major), a widely studied passerine bird in ecology and evolution, to detect CNVs and identify genomic features prevailing within these regions. We used allele intensities and frequencies from high-density SNP array data from 2,175 birds. We detected 41,029 CNVs concatenated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75% of the CNVs tested by qPCR, which were sampled at different frequencies and sizes. A mother-daughter family structure allowed for the evaluation of the inheritance of a number of these CNVs. Thereby, only CNVs with 40 probes or more display segregation in accordance with Mendelian inheritance, suggesting a high rate of false negative calls for smaller CNVs. As CNVRs are a coarse-grained map of CNV loci, we also inferred the frequency of coincident CNV start and end breakpoints. We observed frequency-dependent enrichment of these breakpoints at homologous regions, CpG sites and AT-rich intervals. A gene ontology enrichment analyses showed that CNVs are enriched in genes underpinning neural, cardiac and ion transport pathways. Conclusion Great tit CNVs are present in almost half of the genes and prominent at repetitive-homologous and regulatory regions. Although overlapping genes under selection, the high number of false negatives make neutrality or association tests on CNVs detected here difficult. Therefore, CNVs should be further addressed in the light of their false negative rate and architecture to improve the comprehension of their association with phenotypes and evolutionary history. Electronic supplementary material The online version of this article (10.1186/s12864-018-4577-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinicius H da Silva
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands. .,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands.
| | - Veronika N Laine
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands.,Swedish University of Agricultural Sciences (SLU), Ulls väg 26, Uppsala, 750 07, Sweden
| | - Mirte Bosse
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Kees van Oers
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Bert Dibbits
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Marcel E Visser
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
48
|
Karimi K, Esmailizadeh A, Wu DD, Gondro C. Mapping of genome-wide copy number variations in the Iranian indigenous cattle using a dense SNP data set. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this study was to present the first map of the copy number variations (CNVs) in Iranian indigenous cattle based on a high-density single nucleotide polymorphism (SNP) dataset. A total of 90 individuals were genotyped using the Illumina BovineHD BeadChip containing 777 962 SNPs. The QuantiSNP algorithm was used to perform a genome-wide CNV detection across autosomal genome. After merging the overlapping CNV, a total of 221 CNV regions were identified encompassing 36.4 Mb or 1.44% of the bovine autosomal genome. The length of the CNV regions ranged from 3.5 to 2252.8 Kb with an average of 163.8 Kb. These regions included 147 loss (66.52%) and 74 gain (33.48%) events containing a total of 637 annotated Ensembl genes. Gene ontology analysis revealed that most of genes in the CNV regions were involved in environmental responses, disease susceptibility and immune system functions. Furthermore, 543 of these genes corresponded to the human orthologous genes, which involved in a wide range of biological functions. Altogether, 73% of the 221 CNV regions overlapped either completely or partially with those previously reported in other cattle studies. Moreover, novel CNV regions involved several quantitative trait loci (QTL)-related to adaptative traits of Iranian indigenous cattle. These results provided a basis to conduct future studies on association between CNV regions and phenotypic variations in the Iranian indigenous cattle.
Collapse
|
49
|
Yan J, Blair HT, Liu M, Li W, He S, Chen L, Dittmer KE, Garrick DJ, Biggs PJ, Dukkipati VS. Genome-wide detection of autosomal copy number variants in several sheep breeds using Illumina OvineSNP50 BeadChips. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Prunier J, Caron S, Lamothe M, Blais S, Bousquet J, Isabel N, MacKay J. Gene copy number variations in adaptive evolution: The genomic distribution of gene copy number variations revealed by genetic mapping and their adaptive role in an undomesticated species, white spruce (Picea glauca). Mol Ecol 2017; 26:5989-6001. [PMID: 28833771 DOI: 10.1111/mec.14337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/26/2017] [Accepted: 08/05/2017] [Indexed: 01/09/2023]
Abstract
Gene copy number variation (CNV) has been associated with phenotypic variability in animals and plants, but a genomewide understanding of their impacts on phenotypes is largely restricted to human and agricultural systems. As such, CNVs have rarely been considered in investigations of the genomic architecture of adaptation in wild species. Here, we report on the genetic mapping of gene CNVs in white spruce, which lacks a contiguous assembly of its large genome (~20 Gb), and their relationships with adaptive phenotypic variation. We detected 3,911 gene CNVs including de novo structural variations using comparative genome hybridization on arrays (aCGH) in a large progeny set. We inferred the heterozygosity at CNV loci within parents by comparing haploid and diploid tissues and genetically mapped 82 gene CNVs. Our analysis showed that CNVs were distributed over 10 linkage groups and identified four CNV hotspots that we predict to occur in other species of the Pinaceae. Significant relationships were found between 29 of the gene CNVs and adaptive traits based on regression analyses with timings of bud set and bud flush, and height growth, suggesting a role for CNVs in climate adaptation. The importance of CNVs in adaptive evolution of white spruce was also indicated by functional gene annotations and the clustering of 31% of the mapped adaptive gene CNVs in CNV hotspots. Taken together, these results illustrate the feasibility of studying CNVs in undomesticated species and represent a major step towards a better understanding of the roles of CNVs in adaptive evolution.
Collapse
Affiliation(s)
- Julien Prunier
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada
| | - Sébastien Caron
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Laurentian Forest Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - Sylvie Blais
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - Jean Bousquet
- Institute for System and Integrative Biology (IBIS), Université Laval, Québec, QC, Canada.,Centre for Forest Research, Université Laval, Québec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - Nathalie Isabel
- Laurentian Forest Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada
| | - John MacKay
- Centre for Forest Research, Université Laval, Québec, QC, Canada.,Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC, Canada.,Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|