1
|
A Disproportionality Analysis of Drug-Drug Interactions of Tizanidine and CYP1A2 Inhibitors from the FDA Adverse Event Reporting System (FAERS). Drug Saf 2022; 45:863-871. [PMID: 35834155 DOI: 10.1007/s40264-022-01200-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Tizanidine is primarily metabolized via cytochrome P450 (CYP) 1A2 and therefore medications that inhibit the enzyme will affect the clearance of tizanidine, leading to increased plasma concentrations of tizanidine and potentially serious adverse events. OBJECTIVES Our aim was to study the occurrence of adverse events reported in the FDA Adverse Event Reporting System (FAERS) involving the combination of tizanidine and drugs that inhibit the metabolic activity of CYP1A2. METHODS A disproportionality analysis of FAERS reports from 2004 quarter 1 through 2020 quarter 3 was conducted to calculate the reporting odds ratio (ROR) of reports mentioning tizanidine in a suspect or interacting role or having any role, a CYP1A2 inhibitor, and the following adverse events: hypotension, bradycardia, syncope, shock, cardiorespiratory arrest, and fall or fracture. RESULTS A total of 89 reports were identified mentioning tizanidine, at least one CYP1A2 inhibitor, and one of the adverse events of interest. More than half of the reports identified tizanidine as having a suspect or interacting role (n = 59, 66.3%), and the reports more frequently involved women (n = 58, 65.1%). The median age was 56.1 years (standard deviation 17.1). Some of the important safety signals included interactions between tizanidine in a suspect or interacting role and ciprofloxacin (ROR for hypotension 28.1, 95% confidence interval [CI] 19.2-41.2) or fluvoxamine (ROR for hypotension 36.9, 95% CI 13.1-103.4), and also when reported in "any role" with ciprofloxacin (ROR for hypotension 6.3, 95% CI 4.7-8.5), fluvoxamine (ROR for hypotension 11.4, 95% CI 4.5-28.8), and zafirlukast (ROR for falls 16.0, 95% CI 6.1-42.1). CONCLUSIONS Reports involving tizanidine and a CYP1A2 inhibitor have higher odds of reporting hypotension. This study suggests that concurrent use of tizanidine with CYP1A2 inhibitors may lead to serious health consequences associated with low blood pressure such as falls and fractures.
Collapse
|
2
|
Bhatt S, Dhiman S, Kumar V, Gour A, Manhas D, Sharma K, Ojha PK, Nandi U. Assessment of the CYP1A2 Inhibition-Mediated Drug Interaction Potential for Pinocembrin Using In Silico, In Vitro, and In Vivo Approaches. ACS OMEGA 2022; 7:20321-20331. [PMID: 35721953 PMCID: PMC9202019 DOI: 10.1021/acsomega.2c02315] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 05/23/2023]
Abstract
Pinocembrin, a bioflavonoid, is extensively used in complementary/alternative medicine. It turns out as a promising candidate against neurodegenerative diseases because of its multifaceted pharmacological action toward neuroprotection. However, literature evidence is still lacking for its inhibitory action on CYP1A2, which is responsible for xenobiotic metabolism leading to the generation of toxic metabolites and bioactivation of procarcinogens. In the present study, our aim was to evaluate the CYP1A2 inhibitory potential of pinocembrin via in silico, in vitro, and in vivo investigations. From the results of in vitro studies, pinocembrin is found to be a potent and competitive inhibitor of CYP1A2. In vitro-in vivo extrapolation results indicate the potential of pinocembrin to interact with CYP1A2 substrate drugs clinically. Molecular docking-based in silico studies demonstrate the strong interaction of pinocembrin with human CYP1A2. In in vivo investigations using a rat model, pinocembrin displayed a marked alteration in the plasma exposure of CYP1A2 substrate drugs, namely, caffeine and tacrine. In conclusion, pinocembrin has a potent CYP1A2 inhibitory action to cause drug interactions, and further confirmatory study is warranted at the clinical level.
Collapse
Affiliation(s)
- Shipra Bhatt
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Vinay Kumar
- Drug Theoretics
and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhishek Gour
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Manhas
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Probir Kumar Ojha
- Drug Theoretics
and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Utpal Nandi
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Zhang M, Fisher C, Gardner I, Pan X, Kilford P, Bois F, Jamei M. Understanding Inter-individual Variability in the Drug Interaction of a Highly Extracted CYP1A2 Substrate Tizanidine: Application of a Permeability-limited Multi-compartment Liver Model in a Population Based PBPK Framework. Drug Metab Dispos 2022; 50:957-967. [PMID: 35504655 DOI: 10.1124/dmd.121.000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
Tizanidine, a centrally acting skeletal muscle relaxant, is predominantly metabolised by CYP1A2 and undergoes extensive hepatic first-pass metabolism following oral administration. As a highly extracted drug, the systemic exposure to tizanidine exhibits considerable inter-individual variability and is altered substantially when co-administered with CYP1A2 inhibitors or inducers. The aim of the current study was to compare the performance of a permeability-limited multi-compartment liver (PerMCL) model, which operates as an approximation of the dispersion model (DM), and the well-stirred model (WSM) for predicting tizanidine DDIs. Physiologically-based pharmacokinetic (PBPK) models were developed for tizanidine, incorporating the PerMCL model and the WSM, respectively, to simulate the interaction of tizanidine with a range of CYP1A2 inhibitors and inducers. While the WSM showed a tendency to under-predict the fold change of tizanidine AUC (AUC ratio) in the presence of perpetrators, the use of PerMCL model increased precision (absolute average-fold error: 1.32 - 1.42 versus 1.58) and decreased bias (average-fold error: 0.97 - 1.25 versus 0.63) for the predictions of mean AUC ratios as compared to the WSM. The PerMCL model captured the observed range of individual AUC ratios of tizanidine as well as the correlation between individual AUC ratios and CYP1A2 activities without interactions, whereas the WSM was not able to capture these. The results demonstrate the advantage of using the PerMCL model over the WSM in predicting the magnitude and inter-individual variability of DDIs for a highly extracted sensitive substrate tizanidine. Significance Statement This study demonstrates the advantages of the permeability-limited multi-compartment liver (PerMCL) model, which operates as an approximation of the dispersion model (DM), in mitigating the tendency of the well-stirred model (WSM) to under-predict the magnitude and variability of DDIs of a highly extracted CYP1A2 substrate tizanidine when it is administered with CYP1A2 inhibitors or inducers. The PBPK modelling approach described herein is valuable to the understanding of drug interactions of highly extracted substrates and the source of its inter-individual variability.
Collapse
Affiliation(s)
- Mian Zhang
- CERTARA UK Simcyp Division, United Kingdom
| | | | - Iain Gardner
- Translational sceince in DMPK, Certara USA, Inc., United Kingdom
| | - Xian Pan
- Certara UK Limited (Simcyp Division), United Kingdom
| | | | | | - Masoud Jamei
- Certara UK Limited (Simcyp Division), United Kingdom
| |
Collapse
|
4
|
Giannouchos TV, Gómez-Lumbreras A, Malone DC. Risk of tizanidine-induced adverse events after concomitant exposure to ciprofloxacin: A cohort study in the U.S. Am J Emerg Med 2022; 55:147-151. [DOI: 10.1016/j.ajem.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022] Open
|
5
|
Guo J, Zhu X, Badawy S, Ihsan A, Liu Z, Xie C, Wang X. Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2. Curr Drug Metab 2021; 22:40-49. [PMID: 33397254 DOI: 10.2174/1389200221999210101233135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Human cytochrome P450 enzyme 1A2 (CYP1A2) is one of the most important cytochrome P450 (CYP) enzymes in the liver, accounting for 13% to 15% of hepatic CYP enzymes. CYP1A2 metabolises many clinical drugs, such as phenacetin, caffeine, clozapine, tacrine, propranolol, and mexiletine. CYP1A2 also metabolises certain precarcinogens such as aflatoxins, mycotoxins, nitrosamines, and endogenous substances such as steroids. The regulation of CYP1A2 is influenced by many factors. The transcription of CYP1A2 involves not only the aromatic hydrocarbon receptor pathway but also many additional transcription factors, and CYP1A2 expression may be affected by transcription coactivators and compression factors. Degradation of CYP1A2 mRNA and protein, alternative splicing, RNA stability, regulatory microRNAs, and DNA methylation are also known to affect the regulation of CYP1A2. Many factors can lead to changes in the activity of CYP1A2. Smoking, polycyclic aromatic hydrocarbon ingestion, and certain drugs (e.g., omeprazole) increase its activity, while many clinical drugs such as theophylline, fluvoxamine, quinolone antibiotics, verapamil, cimetidine, and oral contraceptives can inhibit CYP1A2 activity. Here, we review the drugs metabolised by CYP1A2, the metabolic mechanism of CYP1A2, and various factors that influence CYP1A2 metabolism. The metabolic mechanism of CYP1A2 is of great significance in the development of personalised medicine and CYP1A2 target-based drugs.
Collapse
Affiliation(s)
- Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaohui Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
7
|
Jogiraju VK, Heimbach T, Toderika Y, Taft DR. Physiologically based pharmacokinetic modeling of altered tizanidine systemic exposure by CYP1A2 modulation: Impact of drug-drug interactions and cigarette consumption. Drug Metab Pharmacokinet 2020; 37:100375. [PMID: 33561738 DOI: 10.1016/j.dmpk.2020.100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023]
Abstract
Tizanidine is an alpha2-adrenergic agonist, used to treat spasticity associated with multiple sclerosis and spinal injury. Tizanidine is primarily metabolized by CYP1A2 and is considered a sensitive index substrate for this enzyme. The physiologically based pharmacokinetic (PBPK) modeling platform Simcyp® was used to evaluate the impact of CYP1A2 modulation on tizanidine exposure through drug-drug interactions (DDIs) and host-dependent habits (cigarette smoking). A PBPK model was developed to predict tizanidine disposition in healthy volunteers following oral administration. The model was verified based on agreement between model-simulated and clinically observed systemic exposure metrics (Cmax, AUC). The model was then used to carry-out DDI simulations to predict alterations in tizanidine systemic exposure when co-administered with various CYP1A2 perpetrators including competitive inhibitors (fluvoxamine, ciprofloxacin), a mechanism-based inhibitor (rofecoxib), and an inducer (rifampin). Additional simulations were performed to evaluate the impact of cigarette smoking on systemic exposure. Under each scenario, the PBPK model was able to capture the observed fold changes in tizanidine Cmax and AUC of tizanidine when coadministered with CYP1A2 inhibitors or inducers. These results add to the available research findings in the literature on PBPK predictions of drug-drug interactions and illustrate the potential application in drug development, specifically to support product labeling.
Collapse
Affiliation(s)
- Vamshi Krishna Jogiraju
- Samuel J. and Joan B. Williamson Institute for Pharmacometrics, Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA
| | - Tycho Heimbach
- Department of PK Sciences, PBPK and Biopharmaceutics Section, Novartis Institutes for Biomedical Research, East Hanover, NJ, 07936, USA
| | - Yuliana Toderika
- Division of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA
| | - David R Taft
- Samuel J. and Joan B. Williamson Institute for Pharmacometrics, Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
8
|
Drug-Drug Interactions Involving Intestinal and Hepatic CYP1A Enzymes. Pharmaceutics 2020; 12:pharmaceutics12121201. [PMID: 33322313 PMCID: PMC7764576 DOI: 10.3390/pharmaceutics12121201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 (CYP) 1A enzymes are considerably expressed in the human intestine and liver and involved in the biotransformation of about 10% of marketed drugs. Despite this doubtless clinical relevance, CYP1A1 and CYP1A2 are still somewhat underestimated in terms of unwanted side effects and drug–drug interactions of their respective substrates. In contrast to this, many frequently prescribed drugs that are subjected to extensive CYP1A-mediated metabolism show a narrow therapeutic index and serious adverse drug reactions. Consequently, those drugs are vulnerable to any kind of inhibition or induction in the expression and function of CYP1A. However, available in vitro data are not necessarily predictive for the occurrence of clinically relevant drug–drug interactions. Thus, this review aims to provide an up-to-date summary on the expression, regulation, function, and drug–drug interactions of CYP1A enzymes in humans.
Collapse
|
9
|
Zhang W, McIntyre C, Riehl T, Forbes H, Bertran E, Choi HJ, Lee DH, Lee J. Effect of Vemurafenib on the Pharmacokinetics of a Single Dose of Tizanidine (a CYP1A2 Substrate) in Patients With BRAF V600 Mutation-Positive Malignancies. Clin Pharmacol Drug Dev 2020; 9:651-658. [PMID: 32311241 DOI: 10.1002/cpdd.788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
This phase 1 open-label, multicenter, 3-period, fixed-sequence study evaluated the effect of multiple doses of vemurafenib on the pharmacokinetics of 1 dose of tizanidine, a probe CYP1A2 substrate, in patients with BRAFV600 mutation-positive metastatic malignancy. Patients received 1 dose of tizanidine 2 mg on day 1 (period A), vemurafenib 960 mg twice daily on days 2-21 (period B), and 1 dose of tizanidine 2 mg and vemurafenib 960 mg twice daily on day 22 (period C). Log-transformed area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax ) values for tizanidine in 16 patients were compared between periods A (tizanidine alone) and C (tizanidine plus vemurafenib) using an analysis of variance model. Multiple doses of vemurafenib increased plasma exposure of 1 dose of tizanidine, with geometric mean ratios (period C/period A) for Cmax , AUCinf , and AUClast of 2.15 (90%CI, 1.71-2.71), 4.22 (90%CI, 3.37-5.28), and 4.74 (90%CI, 3.55-6.33), respectively; 90%CIs were all outside predefined limits for lack of drug-drug interaction (0.82-1.22). This study confirmed vemurafenib as a moderate inhibitor of CYP1A2 in vivo, with a statistically significant drug-drug interaction with tizanidine. Caution should be exercised when dosing vemurafenib concurrently with CYP1A2 substrates.
Collapse
Affiliation(s)
| | - Christine McIntyre
- pRED Roche Innovation Centre Welwyn, Roche Products Ltd., Welwyn Garden City, UK
| | - Todd Riehl
- Genentech, Inc., South San Francisco, California, USA
| | - Harper Forbes
- F. Hoffmann-La Roche Ltd., Mississauga, Ontario, Canada
| | - Enric Bertran
- pRED Roche Innovation Centre Basel, Roche Products Ltd., Basel, Switzerland
| | - Hye Jin Choi
- Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Dae Ho Lee
- Asan Medical Center, Seoul, Republic of Korea
| | - Jeeyun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Luther JM, Dominiczak AF, Jennings GLR, VanDevender FK, Carey RM, Peixoto AJ, Chung CP, Oates JA. Paroxysmal Hypertension Associated With Presyncope. Hypertension 2019; 74:718-725. [PMID: 31476903 DOI: 10.1161/hypertensionaha.119.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James M Luther
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.M.L., C.P.C., J.A.O.)
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (A.F.D.)
| | - Garry L R Jennings
- Sydney Medical School, University of Sydney and Baker Heart & Diabetes Institute, Melbourne, Australia (G.L.R.J.)
| | | | - Robert M Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville (R.M.C.)
| | - Aldo J Peixoto
- Section of Nephrology, Hypertension Program, Department of Internal Medicine, Yale New Haven Hospital Heart & Vascular Center, Yale School of Medicine, CT (A.J.P.)
| | - Cecilia P Chung
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.M.L., C.P.C., J.A.O.)
| | - John A Oates
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.M.L., C.P.C., J.A.O.)
| |
Collapse
|
11
|
Tornio A, Filppula AM, Niemi M, Backman JT. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin Pharmacol Ther 2019; 105:1345-1361. [PMID: 30916389 PMCID: PMC6563007 DOI: 10.1002/cpt.1435] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Many drug-drug interactions (DDIs) are based on alterations of the plasma concentrations of a victim drug due to another drug causing inhibition and/or induction of the metabolism or transporter-mediated disposition of the victim drug. In the worst case, such interactions cause more than tenfold increases or decreases in victim drug exposure, with potentially life-threatening consequences. There has been tremendous progress in the predictability and modeling of DDIs. Accordingly, the combination of modeling approaches and clinical studies is the current mainstay in evaluation of the pharmacokinetic DDI risks of drugs. In this paper, we focus on the methodology of clinical studies on DDIs involving drug metabolism or transport. We specifically present considerations related to general DDI study designs, recommended enzyme and transporter index substrates and inhibitors, pharmacogenetic perspectives, index drug cocktails, endogenous substrates, limited sampling strategies, physiologically-based pharmacokinetic modeling, complex DDIs, methodological pitfalls, and interpretation of DDI information.
Collapse
Affiliation(s)
- Aleksi Tornio
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Elgart A, Rabinovich‐Guilatt L, Eyal E, Gross A, Spiegelstein O. Pharmacokinetics and safety of single and multiple doses of rasagiline in healthy Japanese and caucasian subjects. Basic Clin Pharmacol Toxicol 2018; 124:273-284. [PMID: 30218626 DOI: 10.1111/bcpt.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Eli Eyal
- Teva Pharmaceuticals Ltd. Netanya Israel
| | | | | |
Collapse
|
13
|
Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev 2018. [PMID: 29514871 DOI: 10.1124/pr.117.014407] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|
14
|
Tod M, Bourguignon L, Bleyzac N, Goutelle S. A Model for Predicting the Interindividual Variability of Drug-Drug Interactions. AAPS JOURNAL 2016; 19:497-509. [PMID: 27924615 DOI: 10.1208/s12248-016-0021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022]
Abstract
Pharmacokinetic drug-drug interactions are frequently characterized and quantified by an AUC ratio (Rauc). The typical value of the AUC ratio in case of cytochrome-mediated interactions may be predicted by several approaches, based on in vitro or in vivo data. Prediction of the interindividual variability of Rauc would help to anticipate more completely the consequences of a drug-drug interaction. We propose and evaluate a simple approach for predicting the standard deviation (sd) of Ln(Rauc), a metric close to the interindividual coefficient of variation of Rauc. First, a model was derived to link sd(Ln Rauc) with the substrate fraction metabolized by each cytochrome and the potency of the interactors, in case of induction or inhibition. Second, the parameters involved in these equations were estimated by a Bayesian hierarchical model, using the data from 56 interaction studies retrieved from the literature. Third, the model was evaluated by several metrics based on the fold prediction error (PE) of sd(Ln Rauc). The median PE was 0.998 (the ideal value is 1) and the interquartile range was 0.96-1.03. The PE was in the acceptable interval (0.5 to 2) in 52 cases out of 56. Fourth, a surface plot of sd(Ln Rauc) as a function of the characteristics of the substrate and the interactor has been built. The minimal value of sd(Ln Rauc) was about 0.08 (obtained for Rauc = 1) while the maximal value, 0.7, was obtained for interactions involving highly metabolized substrates with strong interactors.
Collapse
Affiliation(s)
- M Tod
- Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France. .,EMR3738, Faculté de médecine Lyon-sud, Université Lyon 1, Lyon, France. .,Faculté de pharmacie, Université Lyon 1, Lyon, France.
| | - L Bourguignon
- Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France.,Faculté de pharmacie, Université Lyon 1, Lyon, France.,UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Lyon, France
| | - N Bleyzac
- EMR3738, Faculté de médecine Lyon-sud, Université Lyon 1, Lyon, France.,Pharmacie, Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - S Goutelle
- Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France.,Faculté de pharmacie, Université Lyon 1, Lyon, France.,UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Lyon, France
| |
Collapse
|
15
|
Haraya K, Kato M, Chiba K, Sugiyama Y. Prediction of inter-individual variability on the pharmacokinetics of CYP1A2 substrates in non-smoking healthy volunteers. Drug Metab Pharmacokinet 2016; 31:276-84. [DOI: 10.1016/j.dmpk.2016.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
|
16
|
Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers. Clin Pharmacokinet 2016; 55:977-90. [DOI: 10.1007/s40262-016-0371-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Ota T, Kamada Y, Hayashida M, Iwao-Koizumi K, Murata S, Kinoshita K. Combination analysis in genetic polymorphisms of drug-metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Int J Med Sci 2015; 12:78-82. [PMID: 25552922 PMCID: PMC4278879 DOI: 10.7150/ijms.10263] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022] Open
Abstract
The Cytochrome P450 is the major enzyme involved in drug metabolism. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is one important factor that contributes to drug therapy failure. We have developed a new straightforward TaqMan PCR genotyping assay to investigate the prevalence of the most common allelic variants of polymorphic CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Moreover, we focused on the combination of each genotype for clinical treatment. The genotype analysis identified a total of 139 out of 483 genotype combinations of five genes in the 1,003 Japanese subjects. According to our results, most of subjects seemed to require dose modification during clinical treatment. In the near future, modifications should be considered based on the individual patient genotype of each treatment.
Collapse
Affiliation(s)
- Tomoko Ota
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-Cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuka Kamada
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-Cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Mariko Hayashida
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-Cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Kyoko Iwao-Koizumi
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-Cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Shigenori Murata
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-Cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Kenji Kinoshita
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-Cho, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
18
|
Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules 2013; 18:14470-95. [PMID: 24287985 PMCID: PMC4216474 DOI: 10.3390/molecules181214470] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/28/2022] Open
Abstract
With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes, however, the details of the structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis.
Collapse
|
19
|
Fujioka Y, Kunze KL, Isoherranen N. Risk assessment of mechanism-based inactivation in drug-drug interactions. Drug Metab Dispos 2012; 40:1653-7. [PMID: 22685217 DOI: 10.1124/dmd.112.046649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Drug-drug interactions (DDIs) that occur via mechanism-based inactivation of cytochrome P450 are of serious concern. Although several predictive models have been published, early risk assessment of MBIs is still challenging. For reversible inhibitors, the DDI risk categorization using [I]/K(i) ([I], the inhibitor concentration; K(i), the inhibition constant) is widely used in drug discovery and development. Although a simple and reliable methodology such as [I]/K(i) categorization for reversible inhibitors would be useful for mechanism-based inhibitors (MBIs), comprehensive analysis of an analogous measure reflecting in vitro potency for inactivation has not been reported. The aim of this study was to evaluate whether the term λ/k(deg) (λ, first-order inactivation rate at a given MBI concentration; k(deg), enzyme degradation rate constant) would be useful in the prediction of the in vivo DDI risk of MBIs. Twenty-one MBIs with both in vivo area under the curve (AUC) change of marker substrates and in vitro inactivation parameters were identified in the literature and analyzed. The results of this analysis show that in vivo DDIs with >2-fold change of object drug AUC can be identified with the cutoff value of λ/k(deg) = 1, where unbound steady-state C(max) is used for inhibitor concentration. However, the use of total C(max) led to great overprediction of DDI risk. The risk assessment using λ/k(deg) coupled with unbound C(max) can be useful for the DDI risk evaluation of MBIs in drug discovery and development.
Collapse
Affiliation(s)
- Yasushi Fujioka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
20
|
Chromatographic techniques in analysis of cyclooxygenase-2 inhibitors in drugs and biological samples. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0029-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNon-steroidal anti-inflammatory drugs, as a therapeutic class, are among the most often used active pharmaceutical ingredients in heath care in the world. They are mostly available without prescription and often used for treatment of fever and pain. An extensive research of the literature published in analytical and pharmaceutical chemistry journals has been conducted and the chromatographic methods which were used for the purity, stability and pharmacokinetic studies of the cyclooxygenase-2 inhibitors, in formulations and biological materials have been reviewed. The methodology for the analysis of selected drugs is very well documented and many examples are available in the literature. The common use of chromatographic techniques with various detection attachments provide possibility for monitoring of drugs in therapy.
Collapse
|
21
|
Neuvonen PJ. Towards Safer and More Predictable Drug Treatment - Reflections from Studies of the First BCPT Prize Awardee. Basic Clin Pharmacol Toxicol 2012; 110:207-18. [DOI: 10.1111/j.1742-7843.2012.00858.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pertti J. Neuvonen
- Department of Clinical Pharmacology; University of Helsinki, and HUSLAB, Helsinki University Central Hospital; Helsinki; Finland
| |
Collapse
|
22
|
Jordan MA, Foste K, Gandhi A, Mohebbi N, Tehrani L. Assessment of herbal weight loss supplement counseling provided to patients by pharmacists and nonpharmacists in community settings. J Am Pharm Assoc (2003) 2011; 51:499-509, 1 p following 509. [PMID: 21752773 DOI: 10.1331/japha.2011.09233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the extent of appropriate counseling provided to patients by pharmacists and nonpharmacists in retail settings regarding herbal dietary supplements for weight loss. DESIGN Descriptive, exploratory, nonexperimental study. SETTING Phoenix, AZ, metropolitan area, from June 2008 to January 2009. PARTICIPANTS Pharmacists and nonpharmacists (e.g., cashiers, sales clerks, pharmacy technicians) working in retail locations selling herbal dietary supplements (e.g., grocery stores, health food stores, pharmacies). INTERVENTION Investigators posing as patients sought herbal weight loss supplement product recommendations and counseling on potential safety, drug interaction, and adverse effect issues from pharmacists or nonpharmacists. MAIN OUTCOME MEASURES Level of knowledge regarding safety and efficacy of herbal dietary supplements for weight loss. RESULTS 52 sites were visited, and 27 unique product recommendations were given. In general, counseling provided to investigators/patients by pharmacists versus nonpharmacists varied significantly (P < 0.05) except when participants were asked about expected weight loss (P = 0.39) or use of herbal supplements during pregnancy (P = 0.07) and breast-feeding (P = 0.48). Pharmacists were more reluctant to recommend herbal products for weight loss than nonpharmacists and tended to question the safety and/or efficacy of these products or refer the patient to an alternate health care provider. CONCLUSION The counseling that investigators/patients received regarding herbal products for weight loss in various retail settings from both pharmacists and non-pharmacists varied greatly. Efforts are needed from the medical and herbal communities to ensure that patients are adequately informed about herbal products at the point of purchase.
Collapse
Affiliation(s)
- Melanie A Jordan
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | |
Collapse
|
23
|
Kaddar N, Vigneault P, Pilote S, Patoine D, Simard C, Drolet B. Tizanidine (Zanaflex): a muscle relaxant that may prolong the QT interval by blocking IKr. J Cardiovasc Pharmacol Ther 2011; 17:102-9. [PMID: 21317414 DOI: 10.1177/1074248410395020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tizanidine (Zanaflex) is a centrally acting imidazoline muscle relaxant that is structurally similar to clonidine (α(2)-adrenergic agonist) but not to other myorelaxants such as baclofen or benzodiazepines. Interestingly, cardiac arrhythmias and QT interval prolongation have been reported with tizanidine. OBJECTIVE To evaluate the effects of tizanidine on cardiac ventricular repolarization. METHODS (1) Whole-cell patch-clamp experiments: HERG- or KCNQ1+KCNE1-transfected cells were exposed to tizanidine 0.1-100 µmol/L (n = 29 cells, total) to assess drug effect on the rapid (I(Kr)) and slow (I(Ks)) components of the delayed rectifier potassium current. (2) Langendorff retroperfusion experiments: isolated hearts from male Hartley guinea pigs (n = 6) were exposed to tizanidine 1 µmol/L to assess drug-induced prolongation of monophasic action potential duration measured at 90% repolarization (MAPD(90)). (3) In vivo wireless cardiac telemetry experiments: guinea pigs (n = 6) implanted with radio transmitters were injected a single intraperitoneal (ip) dose of tizanidine 0.25 mg/kg and 24 hours electrocardiography (ECG) recordings were made. RESULTS (1) Patch-clamp experiments revealed an estimated IC(50) for tizanidine on I(Kr) above 100 µmol/L. Moreover, tizanidine 1 µmol/L had hardly any effect on I(Ks) (5.23% ± 4.54% inhibition, n = 5 cells). (2) While pacing the hearts at stimulation cycle lengths of 200 or 250 ms, tizanidine 1 µmol/L prolonged MAPD(90) by 8.22 ± 2.03 (6.7%) and 11.70 ± 3.08 ms (8.5%), respectively (both P < .05 vs baseline). (3) Tizanidine 0.25 mg/kg ip caused a maximal 11.93 ± 1.49 ms prolongation of corrected QT interval (QTc), 90 minutes after injection. CONCLUSION Tizanidine prolongs the QT interval by blocking I(Kr). Patients could be at risk of cardiac proarrhythmia during impaired drug elimination, such as in case of CYP1A2 inhibition during drug interactions.
Collapse
Affiliation(s)
- Nisrin Kaddar
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC Canada
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Caffeine, theophylline, theobromine, and paraxanthine administered to animals and humans distribute in all body fluids and cross all biological membranes. They do not accumulate in organs or tissues and are extensively metabolized by the liver, with less than 2% of caffeine administered excreted unchanged in human urine. Dose-independent and dose-dependent pharmacokinetics of caffeine and other dimethylxanthines may be observed and explained by saturation of metabolic pathways and impaired elimination due to the immaturity of hepatic enzyme and liver diseases. While gender and menstrual cycle have little effect on their elimination, decreased clearance is seen in women using oral contraceptives and during pregnancy. Obesity, physical exercise, diseases, and particularly smoking and the interactions of drugs affect their elimination owing to either stimulation or inhibition of CYP1A2. Their metabolic pathways exhibit important quantitative and qualitative differences in animal species and man. Chronic ingestion or restriction of caffeine intake in man has a small effect on their disposition, but dietary constituents, including broccoli and herbal tea, as well as alcohol were shown to modify their plasma pharmacokinetics. Using molar ratios of metabolites in plasma and/or urine, phenotyping of various enzyme activities, such as cytochrome monooxygenases, N-acetylation, 8-hydroxylation, and xanthine oxidase, has become a valuable tool to identify polymorphisms and to understand individual variations and potential associations with health risks in epidemiological surveys.
Collapse
Affiliation(s)
- Maurice J Arnaud
- Nutrition and Biochemistry, Bourg-Dessous 2A, La Tour-de-Peilz, Switzerland.
| |
Collapse
|
25
|
Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010; 42:268-354. [PMID: 19961320 DOI: 10.3109/03602530903286476] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human CYP1A2 is one of the major CYPs in human liver and metabolizes a number of clinical drugs (e.g., clozapine, tacrine, tizanidine, and theophylline; n > 110), a number of procarcinogens (e.g., benzo[a]pyrene and aromatic amines), and several important endogenous compounds (e.g., steroids). CYP1A2 is subject to reversible and/or irreversible inhibition by a number of drugs, natural substances, and other compounds. The CYP1A gene cluster has been mapped on to chromosome 15q24.1, with close link between CYP1A1 and 1A2 sharing a common 5'-flanking region. The human CYP1A2 gene spans almost 7.8 kb comprising seven exons and six introns and codes a 515-residue protein with a molecular mass of 58,294 Da. The recently resolved CYP1A2 structure has a relatively compact, planar active site cavity that is highly adapted for the size and shape of its substrates. The architecture of the active site of 1A2 is characterized by multiple residues on helices F and I that constitutes two parallel substrate binding platforms on either side of the cavity. A large interindividual variability in the expression and activity of CYP1A2 has been observed, which is largely caused by genetic, epigenetic and environmental factors (e.g., smoking). CYP1A2 is primarily regulated by the aromatic hydrocarbon receptor (AhR) and CYP1A2 is induced through AhR-mediated transactivation following ligand binding and nuclear translocation. Induction or inhibition of CYP1A2 may provide partial explanation for some clinical drug interactions. To date, more than 15 variant alleles and a series of subvariants of the CYP1A2 gene have been identified and some of them have been associated with altered drug clearance and response and disease susceptibility. Further studies are warranted to explore the clinical and toxicological significance of altered CYP1A2 expression and activity caused by genetic, epigenetic, and environmental factors.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- Discpline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
26
|
Characterization of the Ascending Colon Fluids in Ulcerative Colitis. Pharm Res 2010; 27:1620-6. [DOI: 10.1007/s11095-010-0158-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/08/2010] [Indexed: 12/11/2022]
|
27
|
Henney HR, Chez M. Pediatric safety of tizanidine: clinical adverse event database and retrospective chart assessment. Paediatr Drugs 2010; 11:397-406. [PMID: 19877725 DOI: 10.2165/11316090-000000000-00000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Tizanidine is an imidazoline with central alpha(2)-adrenoceptor agonist activity at both spinal and supraspinal levels, which is indicated as a short-acting drug for the management of spasticity. Despite being used in pediatric populations, there is no adequate information or well controlled studies to document the safety and efficacy of tizanidine in this group. OBJECTIVE To evaluate the safety of tizanidine in the pediatric population. We compared spontaneous adverse event reports in the Acorda Therapeutics worldwide clinical adverse event database for children (< or = 16 years; n = 99) and adults (>16 years; n = 1153) who had received tizanidine and for whom at least one adverse event was reported, and performed a retrospective chart review of the safety of tizanidine in children (< or = 16 years; n = 76) at a large US pediatric neurology practice. Causality of adverse events in our worldwide clinical adverse event database were neither assessed nor assigned by the company. RESULTS When adverse events from the clinical adverse event database were collapsed into the 25 Medical Dictionary for Regulatory Activities (MedDRA; version 9.0) organ system classes, five classes were more frequent in adults (general disorders and administration site conditions [p = 0.0006], hepatobiliary disorders [p = 0.0031], nervous system disorders [p = 0.0108], skin and subcutaneous disorders [p = 0.0063], and vascular disorders [p = 0.0029]), while one class was more frequent in children (psychiatric disorders [p < 0.0001]). The most common adverse event classes in children were psychiatric disorders (52.5%) followed by nervous system disorders (29.3%), and gastrointestinal disorders (16.2%), whereas the most common adverse event classes in adults were nervous system disorders (42.4%), general disorders and administration site conditions (28.6%), and gastrointestinal disorders (21.3%). Serious adverse events were substantially less frequent in children than adults (19.2% vs 45.9%) in the clinical adverse event database. In the pediatric practice chart review, the incidence of adverse events in the MedDRA psychiatric disorders class was very similar (52.6%) to that for children in the clinical adverse event database, while the next most common classes were gastrointestinal disorders (14.5%), and nervous system disorders (13.2%). There were three deaths in children across the databases, including one from accidental exposure and two from cardiac events; the relationship of cardiac events in relation to tizanidine or other causes was difficult to assess with the limited available information.The major causes of death in adults were related to suicide or overdose. Minor, transient liver transaminase increases were occasionally reported; the effect of tizanidine could not be ruled out. CONCLUSION The overall safety of tizanidine in the pediatric group appeared good; however, the adverse event profile differed from that in adults. This difference most likely reflects the off-label use of tizanidine as adjunctive treatment for attention disorders and autism. The frequency and nature of adverse events in adults were consistent with the tizanidine prescribing information as reported for its approved indication, i.e. management of spasticity.
Collapse
Affiliation(s)
- Herbert R Henney
- Medical Affairs Department, Acorda Therapeutics, Inc., Hawthorne, New York, New York, USA.
| | | |
Collapse
|
28
|
Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther 2009; 125:230-48. [PMID: 19951720 DOI: 10.1016/j.pharmthera.2009.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023]
Abstract
The aim of the present paper was to present an overview of the current status of the methods used to predict the magnitude of pharmacokinetic drug-drug interactions (DDIs) which are caused by apparent changes in cytochrome P450 (CYP) activity with an emphasis on a method using in vivo information. In addition, more than a hundred representative CYP substrates, inhibitor and inducer drugs involved in significant pharmacokinetic DDIs were selected from the literature and are listed. Although the magnitude of DDIs has been conventionally predicted based on in vitro experiments, their predictability is restricted occasionally due to several difficulties, including a precise determination of the unbound inhibitor concentrations at the enzyme site and a reliable in vitro measurement of the inhibition constant (K(i)). Alternatively, a simple method has been recently proposed for the prediction of the magnitude of DDIs based on information fully available from in vivo clinical studies. The new in vivo-based method would be applicable to the adjustment of dose regimens in actual pharmacotherapy situations although it requires a prior clinical study for the prediction. In this review, theoretical and quantitative relationships between the in vivo- and the in vitro-based prediction methods are considered. One of the interesting outcomes of the consideration is that the K(i)-normalized dose (dose/in vitro K(i)) of larger than approximately 20L (2-200L, when variability is considered) may be a pragmatic index which predicts significant in vivo DDIs. In the last part of the article, the relevance of the inclusion of the in vivo-based method into the process of new drug development is discussed for good prediction of in vivo DDIs.
Collapse
Affiliation(s)
- Akihiro Hisaka
- Pharmacology and Pharmacokinetics, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
29
|
Momo K, Homma M, Osaka Y, Inomata SI, Tanaka M, Kohda Y. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics. J Clin Pharmacol 2009; 50:331-7. [PMID: 19789372 DOI: 10.1177/0091270009341961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim of this study was to determine whether mexiletine, a CYP1A2 inhibitor, altered the pharmacokinetics and pharmacodynamics of tizanidine. The pharmacokinetics of tizanidine were examined in an open-label study in 12 healthy participants after a single dose of tizanidine (2 mg) with and without mexiletine coadministration (50 mg, 3 times as a pretreatment for a day and 2 times on the study day). Compared with tizanidine alone, mexiletine coadministration increased the peak plasma concentration (1.8 +/- 0.8 vs 5.3 +/- 1.8 ng/mL), area under the curve (4.5 +/- 2.2 vs 15.4 +/- 6.5 ng x h/mL), and the half-life (1.3 +/- 0.2 vs 1.8 +/- 0.7 h) of tizanidine, respectively (P < .05). Reduction in systolic blood pressure (-10 +/- 8 vs -24 +/- 7 mm Hg) and diastolic blood pressure (-10 +/- 7 vs -18 +/- 8 mm Hg) after tizanidine administration was also significantly enhanced by coadministration of mexiletine (P < .01). Of the 15 patients treated with tizanidine and mexiletine, 4 suffered tizanidine-induced adverse effects such as drowsiness and dry mouth in the retrospective survey. Present results suggested that coadministration of mexiletine increased blood tizanidine concentrations and enhanced tizanidine pharmacodynamics in terms of reduction in blood pressure and adverse symptoms.
Collapse
Affiliation(s)
- Kenji Momo
- Department of Pharmaceutical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Zhou ZW, Zhou SF. Application of mechanism-based CYP inhibition for predicting drug-drug interactions. Expert Opin Drug Metab Toxicol 2009; 5:579-605. [PMID: 19466877 DOI: 10.1517/17425250902926099] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND A mechanism-based inhibition of CYPs is characterized by NADPH-, time- and concentration-dependent enzyme inactivation and substrate protection. A significant inactivation of CYPs and particularly the main human hepatic and intestinal CYPs could result in clinical drug-drug interactions (DDIs) and adverse drug reactions. OBJECTIVE To address whether DDIs owing to mechanism-based CYP inhibition is predictable based on in vitro inhibitory data. METHOD Medline (by means of PubMed up to 26 March 2009) has been searched using proper relevant terms. RESULT/CONCLUSION It is possible to predict DDIs caused by mechanism-based CYP inhibition, although the in vitro data do not necessarily translate directly into relative extents of inhibition in vivo because in vivo clinical consequences depend on additional factors that are not easily accounted for in vitro and for reversible inhibition. Incorporation of other important parameters such as CYP degradation rate (k(deg)), relative contribution of the CYP inactivated to the victim drug elimination (f(m(CYP))) and inhibition of intestinal CYP-mediated first-pass metabolism of the object drug (F'(gut)/F(gut) ratio) into the prediction models significantly improves the prediction. Uncertainty of the prediction is mainly from the variability in the estimates of these critical parameters.
Collapse
Affiliation(s)
- Zhi-Wei Zhou
- RMIT University, Discipline of Chinese Medicine, School of Health Sciences, Bundoora, Victoria, Australia
| | | |
Collapse
|
31
|
Henney HR, Fitzpatrick A, Stewart J, Runyan JD. Relative bioavailability of tizanidine hydrochloride capsule formulation compared with capsule contents administered in applesauce: a single-dose, open-label, randomized, two-way, crossover study in fasted healthy adult subjects. Clin Ther 2009; 30:2263-71. [PMID: 19167586 DOI: 10.1016/j.clinthera.2008.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The alpha2-adrenergic agonist tizanidine has been reported to have a narrow therapeutic index. A multiparticulate capsule formulation of tizanidine has been developed in an attempt to improve patient tolerability. OBJECTIVE This study assessed bioequivalence between a single, intact, 6-mg capsule of tizanidine and the capsule contents sprinkled in applesauce in fasted healthy subjects. METHODS Healthy male and female subjects aged 18 to 45 years completed 2 treatment periods: one with a tizanidine 6-mg capsule administered intact and the other with capsule contents sprinkled in applesauce. The 2 treatment periods had a 6-day washout period between administrations. Plasma tizanidine concentrations were determined for blood samples collected over 24 hours after administration. All treatment-emergent adverse events were recorded and graded by intensity and relationship to the study drug (not, improbable, possible, probable, definite) by the attending physician based on his or her clinical impression. RESULTS A total of 19 men and 9 women (mean age, 26 years) completed the trial. Geometric mean natural logarithm-transformed AUC values (AUC(0-infinity) [AUC to infinity] and AUC(0-t) [AUC to the last measurable time point]) and C(max) ratios were significantly (P <or= 0.035) increased to 1.14 (90% CI, 105.47%-127.01%), 1.16 (90% CI, 106.80%-130.53%), and 1.17 (90% CI, 103.95%-133.66%), respectively, when the contents were sprinkled, with 90% CIs laying outside the 0.80 to 1.25 ratio established by regulatory authorities for bioequivalence. A total of 31 adverse events were reported by 17 of the 28 subjects (61%), including 15 subjects (54%) with the intact capsule reporting 18 events and 11 subjects (39%) with the sprinkled contents reporting 13 events. No serious adverse events or deaths were reported, and no subjects were discontinued due to adverse events. CONCLUSIONS The contents of the tizanidine capsule sprinkled in applesauce were not bioequivalent to the intact 6-mg capsule in these fasted healthy volunteers. Therefore, if switching from the intact capsule to the capsule contents mixed in applesauce, monitoring for adverse events is recommended; in this situation, dose adjustment could be necessary.
Collapse
|
32
|
Abstract
Cytochrome P450 (P450) is the superfamily of enzymes responsible for biotransformation of endobiotics and xenobiotics. However, their large isoform multiplicity, inducibility, diverse structure, widespread distribution, polymorphic expression, and broad overlapping substrate specificity make it difficult to measure the precise role of each individual P450 to the metabolism of drugs (or carcinogens) and hamper the understanding of the relationship between the genetic/environmental factors that regulate P450 phenotype and the responses of the individual P450s to drugs. The antibodies against P450s have been useful tools for the quantitative determination of expression level and contribution of the epitope-specific P450 to the metabolism of a drug or carcinogen substrate in tissues containing multiple P450 isoforms and for implications in pharmacogenetics and human risk assessment. In particular, the inhibitory antibodies are uniquely suited for reaction phenotyping that helps to predict human pharmacokinetics for clinical drug-drug interaction potential in drug discovery and development.
Collapse
Affiliation(s)
- Magang Shou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 30E-2-B, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
33
|
Malanga G, Reiter RD, Garay E. Update on tizanidine for muscle spasticity and emerging indications. Expert Opin Pharmacother 2008; 9:2209-15. [PMID: 18671474 DOI: 10.1517/14656566.9.12.2209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tizanidine hydrochloride, an alpha(2)-adrenergic receptor agonist, is a widely used medication for the treatment of muscle spasticity. Clinical studies have supported its use in the management of spasticity caused by multiple sclerosis (MS), acquired brain injury or spinal cord injury. It has also been shown to be clinically effective in the management of pain syndromes, such as: myofascial pain, lower back pain and trigeminal neuralgia. This review summarizes the recent findings on the clinical application of tizanidine. OBJECTIVE Our objective was to review and summarize the medical literature regarding the evidence for the usefulness of tizanidine in the management of spasticity and in pain syndromes such as myofascial pain. METHODS We reviewed the current medical and pharmacology literature through various internet literature searches. This information was then synthesized and presented in paragraph and table form. RESULTS/CONCLUSION Tizanidine hydrochloride is a very useful medication in patients suffering from spasticity caused by MS, acquired brain injury or spinal cord injury. It can also be helpful in patients suffering from chronic neck and/or lower back pain who have a myofascial component to their pain. Doses should be started at low dose and gradually titrated to effect.
Collapse
Affiliation(s)
- Gerard Malanga
- Clinical Professor, Physical Medicine and Rehabilitation, Director Overlook Pain Center, Associates in Rehabilitation Medicine, 11 Overlook Road, MAC II, Suite B110, Summit, NJ 07091, USA.
| | | | | |
Collapse
|
34
|
Mandlekar SV, Rose AV, Cornelius G, Sleczka B, Caporuscio C, Wang J, Marathe PH. Development of anin vivorat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 2008; 37:923-42. [PMID: 17896322 DOI: 10.1080/00498250701570269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the advent of polytherapy, drug interactions have become a common clinical problem. Although in vitro data are routinely used for the prediction of drug interactions, in vitro systems are not dynamic and sometimes fail to predict drug interactions. We sought to use the rat as an in vivo screening model to predict pharmacokinetic interactions with ketoconazole. The pharmacokinetic studies were conducted following an oral dose of CYP3A substrates and an optimized oral regimen of ketoconazole. In vitro reaction phenotyping was conducted using individual human and rat cDNA-expressed CYP enzymes and human or rat liver microsomes in the presence of ketoconazole. The in vitro experiments indicated that the test compounds were largely metabolized by CYP3A in both human and rat. The compounds could be rank-ordered with respect to the increase in C(max) and area under the curve (AUC) values relative to midazolam in the presence of ketoconazole. The degree of pharmacokinetic interaction with ketoconazole was dependent, in part, upon their in vitro metabolism in the presence of rat CYP3A1/3A2 and in rat and human microsomes, co-incubated with ketoconazole, and on their fraction metabolized (f(m)) in the rat relative to other disposition pathways. Based on the rank-order of interaction, the compounds could be prioritized for further preclinical development.
Collapse
Affiliation(s)
- S V Mandlekar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Karjalainen MJ, Neuvonen PJ, Backman JT. In vitroInhibition of CYP1A2 by Model Inhibitors, Anti-Inflammatory Analgesics and Female Sex Steroids: Predictability ofin vivoInteractions. Basic Clin Pharmacol Toxicol 2008; 103:157-65. [DOI: 10.1111/j.1742-7843.2008.00252.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Shou M, Hayashi M, Pan Y, Xu Y, Morrissey K, Xu L, Skiles GL. Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab Dispos 2008; 36:2355-70. [PMID: 18669588 DOI: 10.1124/dmd.108.020602] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
CYP3A4 induction is not generally considered to be a concern for safety; however, serious therapeutic failures can occur with drugs whose exposure is lower as a result of more rapid metabolic clearance due to induction. Despite the potential therapeutic consequences of induction, little progress has been made in quantitative predictions of CYP3A4 induction-mediated drug-drug interactions (DDIs) from in vitro data. In the present study, predictive models have been developed to facilitate extrapolation of CYP3A4 induction measured in vitro to human clinical DDIs. The following parameters were incorporated into the DDI predictions: 1) EC(50) and E(max) of CYP3A4 induction in primary hepatocytes; 2) fractions unbound of the inducers in human plasma (f(u, p)) and hepatocytes (f(u, hept)); 3) relevant clinical in vivo concentrations of the inducers ([Ind](max, ss)); and 4) fractions of the victim drugs cleared by CYP3A4 (f(m, CYP3A4)). The values for [Ind](max, ss) and f(m, CYP3A4) were obtained from clinical reports of CYP3A4 induction and inhibition, respectively. Exposure differences of the affected drugs in the presence and absence of the six individual inducers (bosentan, carbamazepine, dexamethasone, efavirenz, phenobarbital, and rifampicin) were predicted from the in vitro data and then correlated with those reported clinically (n = 103). The best correlation was observed (R(2) = 0.624 and 0.578 from two hepatocyte donors) when f(u, p) and f(u, hept) were included in the predictions. Factors that could cause over- or underpredictions (potential outliers) of the DDIs were also analyzed. Collectively, these predictive models could add value to the assessment of risks associated with CYP3A4 induction-based DDIs by enabling their determination in the early stages of drug development.
Collapse
Affiliation(s)
- Magang Shou
- Department of Pharmacokinetics and Drug Metabolism, 30E-2-B, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Lobo ED, Bergstrom RF, Reddy S, Quinlan T, Chappell J, Hong Q, Ring B, Knadler MP. In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet 2008; 47:191-202. [PMID: 18307373 DOI: 10.2165/00003088-200847030-00005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To determine whether duloxetine is a substrate, inhibitor or inducer of cytochrome P450 (CYP) 1A2 enzyme, using in vitro and in vivo studies in humans. METHODS Human liver microsomes or cells with expressed CYP enzymes and specific CYP inhibitors were used to identify which CYP enzymes catalyse the initial oxidation steps in the metabolism of duloxetine. The potential of duloxetine to inhibit CYP1A2 activity was determined using incubations with human liver microsomes and phenacetin, the CYP1A2 substrate. The potential for duloxetine to induce CYP1A2 activity was determined using human primary hepatocytes treated with duloxetine for 72 hours. Studies in humans were conducted using fluvoxamine, a potent CYP1A2 inhibitor, and theophylline, a CYP1A2 substrate, as probes. The subjects were healthy men and women aged 18-65 years. Single-dose duloxetine was administered either intravenously as a 10-mg infusion over 30 minutes or orally as a 60-mg dose in the presence or absence of steady-state fluvoxamine (100 mg orally once daily). Single-dose theophylline was given as 30-minute intravenous infusions of aminophylline 250 mg in the presence or absence of steady-state duloxetine (60 mg orally twice daily). Plasma concentrations of duloxetine, its metabolites and theophylline were determined using liquid chromatography with tandem mass spectrometry. Pharmacokinetic parameters were estimated using noncompartmental methods and evaluated using mixed-effects ANOVA. Safety measurements included vital signs, clinical laboratory tests, a physical examination, ECG readings and adverse event reports. RESULTS The in vitro results indicated that duloxetine is metabolized by CYP1A2; however, duloxetine was predicted not to be an inhibitor or inducer of CYP1A2 in humans. Following oral administration in the presence of fluvoxamine, the duloxetine area under the plasma concentration-time curve from time zero to infinity (AUC(infinity)) and the maximum plasma drug concentration (C(max)) significantly increased by 460% (90% CI 359, 584) and 141% (90% CI 93, 200), respectively. In the presence of fluvoxamine, the oral bioavailability of duloxetine increased from 42.8% to 81.9%. In the presence of duloxetine, the theophylline AUC(infinity) and C(max) increased by only 13% (90% CI 7, 18) and 7% (90% CI 2, 14), respectively. Coadministration of duloxetine with fluvoxamine or theophylline did not result in any clinically important safety concerns, and these combinations were generally well tolerated. CONCLUSION Duloxetine is metabolized primarily by CYP1A2; therefore, coadministration of duloxetine with potent CYP1A2 inhibitors should be avoided. Duloxetine does not seem to be a clinically significant inhibitor or inducer of CYP1A2; therefore, dose adjustment of CYP1A2 substrates may not be necessary when they are coadministered with duloxetine.
Collapse
|
39
|
Kamen L, Henney HR, Runyan JD. A practical overview of tizanidine use for spasticity secondary to multiple sclerosis, stroke, and spinal cord injury. Curr Med Res Opin 2008; 24:425-39. [PMID: 18167175 DOI: 10.1185/030079908x261113] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Tizanidine is an imidazoline central alpha(2)-adrenoceptor agonist widely used to manage spasticity secondary to conditions such as multiple sclerosis (MS), stroke, and spinal cord injury (SCI). While there is widespread use of tizanidine in clinical practice, little practical information is available to assist prescribers with the effective use of tizanidine for spasticity management. The aim of this review is to provide an up-to-date overview of tizanidine and its use in the management of spasticity associated with acquired (SCI), static (stroke), and progressive neurological (MS) diseases. SCOPE An unfiltered literature search of the term 'tizanidine' was undertaken on the Medline database resulting in 311 papers. As the review focused on tizanidine clinical pharmacokinetics, efficacy, and tolerability, with comparisons limited to the oral antispastic agents baclofen, diazepam, and dantrolene, 53 articles were selected for detailed assessment. FINDINGS Tizanidine, an alpha(2)-adrenoceptor agonist, is a short-acting drug with larger interpatient variability, and linear pharmacokinetics that is dosage form-dependent. Clinical trials have demonstrated that the efficacy of tizanidine is comparable to that of baclofen or diazepam with global tolerability data favoring tizanidine. A clinical case presentation demonstrated the effective use of tizanidine in combination with baclofen as a logical avenue for improved spasticity control. CONCLUSIONS There is a large body of evidence for the effective use of tizanidine monotherapy in the management of spasticity. A case study demonstrates that combination therapy can effectively control spasticity while better managing dose-dependent adverse events, although additional studies need to be performed to confirm these results.
Collapse
Affiliation(s)
- Leonard Kamen
- Albert Einstein Medical Center, Moss Rehabilitation Outpatient Center, Philadelphia, PA, USA
| | | | | |
Collapse
|
40
|
Henney HR, Runyan JD. A clinically relevant review of tizanidine hydrochloride dose relationships to pharmacokinetics, drug safety and effectiveness in healthy subjects and patients. Int J Clin Pract 2008; 62:314-24. [PMID: 18199279 DOI: 10.1111/j.1742-1241.2007.01660.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS Tizanidine, one of the few oral antispastic therapies approved for use in the USA, has a narrow therapeutic index that can often make optimal patient dosing difficult. We surveyed the published literature for data on potential tizanidine dose relationships to pharmacokinetics, drug safety and effectiveness, as well as to provide practical drug dosing advice. RESULTS The number of primary studies that describe tizanidine dose proportionality relationships was somewhat limited, even when including studies that used doses above those currently recommended or data from drug-drug interaction studies that resulted in supra-therapeutic tizanidine concentrations. DISCUSSION AND CONCLUSIONS There is substantial evidence to show that plasma tizanidine concentrations are linearly related to dose in healthy subjects and patients, although there is a high degree of intersubject variability. The most common adverse events and pharmacodynamic effects are related to plasma concentrations. The clinical implications of the large interpatient variability in plasma tizanidine concentrations and its narrow therapeutic index make it necessary to individualise patient therapy. Practical advice on tizanidine dosing and/or switching between formulations is provided.
Collapse
Affiliation(s)
- H R Henney
- Medical Affairs Department, Acorda Therapeutics, Inc., Hawthorne, NY, USA.
| | | |
Collapse
|
41
|
Zhang H, Davis CD, Sinz MW, Rodrigues AD. Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opin Drug Metab Toxicol 2008; 3:667-87. [PMID: 17916054 DOI: 10.1517/17425255.3.5.667] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is now widely accepted that the fraction of the dose metabolized by a given drug-metabolizing enzyme is one of the major factors governing the magnitude of a drug interaction and the impact of a polymorphism on (total) drug clearance. Therefore, most pharmaceutical companies determine the enzymes involved in the metabolism of a new chemical entity (NCE) in vitro, in conjunction with human data on absorption, distribution, metabolism and excretion. This so called reaction-phenotyping, or isozyme-mapping, usually involves the use of multiple reagents (e.g., recombinant proteins, liver subcellular fractions, enzyme-selective chemical inhibitors and antibodies). For the human CYPs, reagents are readily available and in vitro reaction-phenotyping data are now routinely included in most regulatory documents. Ideally, the various metabolites have been definitively identified, incubation conditions have afforded robust kinetic analyses, and well characterized (high quality) reagents and human tissues have been employed. It is also important that the various in vitro data are consistent (e.g., scaled turnover with recombinant CYP proteins, CYP inhibition and correlation data with human liver microsomes) and enable an integrated in vitro CYP reaction-phenotype. Results of the in vitro CYP reaction-phenotyping are integrated with clinical data (e.g., human radiolabel and drug interaction studies) and a complete package is then submitted for regulatory review. If the NCE receives market approval, information on key routes of clearance and their associated potential for drug-drug interactions are included in the product label. The present review focuses on in vitro CYP reaction-phenotyping and the integration of data. Relatively simple strategies enabling the design and prioritization of follow up clinical studies are also discussed.
Collapse
Affiliation(s)
- Hongjian Zhang
- Bristol-Myers Squibb Research and Development, Pharmaceutical Candidate Optimization, PO Box 4000, Princeton, NJ 08543, USA.
| | | | | | | |
Collapse
|
42
|
Celecoxib is a CYP1A2 inhibitor in vitro but not in vivo. Eur J Clin Pharmacol 2008; 64:511-9. [DOI: 10.1007/s00228-007-0456-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/20/2007] [Indexed: 11/30/2022]
|
43
|
Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol 2007; 64:17-24. [PMID: 17955229 DOI: 10.1007/s00228-007-0389-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/20/2007] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We studied the effects of gender and smoking on the pharmacokinetics and effects of the cytochrome P450 (CYP) 1A2 substrate tizanidine. METHODS Seventy-one healthy young volunteers (male and female nonsmokers, male smokers) ingested 4 mg tizanidine. Plasma concentrations and pharmacodynamics of tizanidine were measured, and a caffeine test was performed. RESULTS Among nonsmokers, the peak concentration (C(max)) and area under concentration-time curve from 0 to infinity [AUC(0-infinity)] of tizanidine did not differ significantly between females and males. However, the half-life (t(1/2)) was 9% shorter in female nonsmokers than in male nonsmokers (P < 0.05). In male smokers, the t(1/2) was 10% shorter and the weight-adjusted AUC(0-infinity) 33% smaller than in male nonsmokers (P < 0.05). The caffeine/paraxanthine ratio was 35-40% smaller (P = 0.001) in male smokers than in nonsmoking males or females, but did not differ between males and females. Tizanidine lowered blood pressure and caused drowsiness significantly (P < 0.05) more in females than in either male groups. The effects on blood pressure were smallest in male smokers (P < 0.05). CONCLUSIONS Gender by itself seems to have no clinically significant effect on the pharmacokinetics of tizanidine, whereas smoking reduces plasma concentrations and effects of tizanidine. Any possible effect of gender and smoking is largely outweighed by individual variability in CYP1A2 activity due to genetic and environmental factors and in body weight. Careful dosing of tizanidine is warranted in small females, whereas male smokers can require higher than average doses.
Collapse
|
44
|
Karjalainen MJ, Neuvonen PJ, Backman JT. Tolfenamic acid is a potent CYP1A2 inhibitor in vitro but does not interact in vivo: correction for protein binding is needed for data interpretation. Eur J Clin Pharmacol 2007; 63:829-36. [PMID: 17618427 DOI: 10.1007/s00228-007-0335-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 06/01/2007] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Our aim was to correlate the in vitro and in vivo CYP1A2 inhibition potential of tolfenamic acid, an NSAID highly (99.7%) bound to plasma proteins, to study the significance of protein binding of inhibitor in metabolic drug interactions. METHODS The effect of tolfenamic acid on CYP1A2 (phenacetin O-deethylation) was studied using human liver microsomes, with and without albumin (0-10 mg/ml). In a randomized, crossover study, 10 volunteers took 200 mg tolfenamic acid or placebo t.i.d. for 3 days. On day 2, a caffeine test was performed. On day 3, each ingested 4 mg of the CYP1A2 substrate tizanidine. Plasma tizanidine, its metabolites (M) and tolfenamic acid, and pharmacodynamic variables were measured. RESULTS Tolfenamic acid strongly inhibited phenacetin-O-deethylation in vitro (IC(50) 1.8 microM without albumin). Albumin decreased its inhibitory effect in a concentration-dependent manner; the IC(50) exceeded 100 microM with 10 mg/ml of albumin. Tolfenamic acid had no effect on the area under the concentration-time curve (AUC(0-oo)), peak concentration, time of peak concentration or half-life of tizanidine or M-3; only the AUC(0-oo) of secondary metabolite M-4 was slightly decreased (13%, P = 0.004). The caffeine test and the pharmacodynamic effects of tizanidine were unchanged. CONCLUSIONS Tolfenamic acid potently inhibits CYP1A2 in vitro when studied without albumin, but not in vivo. This apparent discrepancy is due to the high protein binding of tolfenamic acid. To avoid overestimation of the interaction potential, the inhibitory effect of highly albumin-bound compounds should also be studied in vitro with albumin, or their exact unbound plasma concentration should be used in predictions.
Collapse
Affiliation(s)
- Marjo J Karjalainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
45
|
|
46
|
Lilja JJ, Backman JT, Neuvonen PJ. Effects of Daily Ingestion of Cranberry Juice on the Pharmacokinetics of Warfarin, Tizanidine, and Midazolam—Probes of CYP2C9, CYP1A2, and CYP3A4. Clin Pharmacol Ther 2007; 81:833-9. [PMID: 17392729 DOI: 10.1038/sj.clpt.6100149] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Case reports suggest that cranberry juice can increase the anticoagulant effect of warfarin. We investigated the effects of cranberry juice on R-S-warfarin, tizanidine, and midazolam; probes of CYP2C9, CYP1A2, and CYP3A4. Ten healthy volunteers took 200 ml cranberry juice or water t.i.d. for 10 days. On day 5, they ingested 10 mg racemic R-S-warfarin, 1 mg tizanidine, and 0.5 mg midazolam, with juice or water, followed by monitoring of drug concentrations and thromboplastin time. Cranberry juice did not increase the peak plasma concentration or area under concentration-time curve (AUC) of the probe drugs or their metabolites, but slightly decreased (7%; P=0.051) the AUC of S-warfarin. Cranberry juice did not change the anticoagulant effect of warfarin. Daily ingestion of cranberry juice does not inhibit the activities of CYP2C9, CYP1A2, or CYP3A4. A pharmacokinetic mechanism for the cranberry juice-warfarin interaction seems unlikely.
Collapse
Affiliation(s)
- J J Lilja
- Department of Clinical Pharmacology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | |
Collapse
|
47
|
Karjalainen MJ, Neuvonen PJ, Backman JT. Rofecoxib is a potent, metabolism-dependent inhibitor of CYP1A2: implications for in vitro prediction of drug interactions. Drug Metab Dispos 2006; 34:2091-6. [PMID: 16985100 DOI: 10.1124/dmd.106.011965] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rofecoxib was recently found to greatly increase plasma concentrations of the CYP1A2 substrate drug tizanidine in humans, but there are no published in vitro studies on the CYP1A2-inhibiting effects of rofecoxib. Our objective was to investigate whether rofecoxib is a direct-acting or metabolism-dependent inhibitor of CYP1A2 in vitro. The effect of rofecoxib on the O-deethylation of phenacetin (20 microM) was studied using human liver microsomes. The effect of preincubation time on the inhibitory potential of rofecoxib was also studied, and the inhibitor concentration that supports half the maximal rate of inactivation (KI) and the maximal rate of inactivation (kinact) were determined. Rofecoxib moderately inhibited phenacetin O-deethylation (IC50 23.0 microM), and a 30-min preincubation with microsomes and NADPH considerably increased its inhibitory effect (IC50 4.2 microM). Inactivation of CYP1A2 by rofecoxib required NADPH, and was characterized by a KI of 4.8 microM and a kinact of 0.07 min(-1). Glutathione, superoxide dismutase, mannitol, or dialysis could not reverse the inactivation of CYP1A2 caused by rofecoxib. Fluvoxamine decreased the rofecoxib-caused inactivation of CYP1A2 in a concentration-dependent manner. In conclusion, rofecoxib is a potent, metabolism-dependent inhibitor of CYP1A2, a cytochrome P450 form contributing to rofecoxib metabolism. The results provide a mechanistic explanation for the interactions of rofecoxib with CYP1A2 substrates and may partially explain its nonlinear pharmacokinetics.
Collapse
Affiliation(s)
- Marjo J Karjalainen
- Department of Clinical Pharmacology, University of Helsinki, Haartmaninkatu 4, FIN-00290 Helsinki, Finland
| | | | | |
Collapse
|