1
|
Wang Y, Hu S, Chen Y, Chen M, Zhang D, Liu W, Chen C, Gan Y, Luo M, Ke B. Discovery of a novel series of pyridone amides as Na V1.8 inhibitors. Bioorg Med Chem Lett 2024; 101:129655. [PMID: 38350529 DOI: 10.1016/j.bmcl.2024.129655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
The NaV1.8 channel, mainly found in the peripheral nervous system, is recognized as one of the key factors in chronic pain. The molecule VX-150 was initially promising in targeting this channel, but the phase II trials of VX-150 did not show expected pain relief results. By analyzing the interaction mode of VX-150 and NaV1.8, we developed two series with a total of 19 molecules and examined their binding affinity to NaV1.8 in vitro and analgesic effect in vivo. One compound, named 2j, stood out with notable activity against the NaV1.8 channel and showed effective pain relief in models of chronic inflammatory pain and neuropathic pain. Our research points to 2j as a strong contender for developing safer pain-relief treatments.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhao Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meiyuan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Di Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chunxia Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Menglan Luo
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Qin H, Wei A, Wang Y, Wang L, Xu H, Zhan Y, Tian X, Zheng Y, Gao Z, Hu Y. Discovery of selective Na V1.8 inhibitors based on 5-chloro-2-(4,4-difluoroazepan-1-yl)-6-methyl nicotinamide scaffold for the treatment of pain. Eur J Med Chem 2023; 254:115371. [PMID: 37084597 DOI: 10.1016/j.ejmech.2023.115371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The NaV1.8 channel is a genetically validated target for pain and it is mostly expressed in the peripheral nervous system. Based on the disclosed structures of NaV1.8-selective inhibitors, we designed and synthesized a series of compounds by introducing bicyclic aromatic fragments based on the nicotinamide scaffold. In this research, a systematic structure-activity relationship study was carried out. While compound 2c possessed moderate inhibitory activity (IC50 = 50.18 ± 0.04 nM) in HEK293 cells stably expressing human NaV1.8 channels, it showed potent inhibitory activity in DRG neurons and isoform selectivity (>200-fold against human NaV1.1, NaV1.5 and NaV1.7 channels). Moreover, the analgesic potency of compound 2c was identified in a post-surgical mouse model. These data demonstrate that compound 2c can be further evaluated as a non-addictive analgesic agent with reduced cardiac liabilities.
Collapse
Affiliation(s)
- Hui Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
| | - Aihuan Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yunqi Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linlin Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Xuechen Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China.
| |
Collapse
|
3
|
Higerd-Rusli GP, Tyagi S, Baker CA, Liu S, Dib-Hajj FB, Dib-Hajj SD, Waxman SG. Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. Proc Natl Acad Sci U S A 2023; 120:e2215417120. [PMID: 36897973 PMCID: PMC10089179 DOI: 10.1073/pnas.2215417120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 03/12/2023] Open
Abstract
Inflammation causes pain by shifting the balance of ionic currents in nociceptors toward depolarization, leading to hyperexcitability. The ensemble of ion channels within the plasma membrane is regulated by processes including biogenesis, transport, and degradation. Thus, alterations in ion channel trafficking may influence excitability. Sodium channel NaV1.7 and potassium channel KV7.2 promote and oppose excitability in nociceptors, respectively. We used live-cell imaging to investigate mechanisms by which inflammatory mediators (IM) modulate the abundance of these channels at axonal surfaces through transcription, vesicular loading, axonal transport, exocytosis, and endocytosis. Inflammatory mediators induced a NaV1.7-dependent increase in activity in distal axons. Further, inflammation increased the abundance of NaV1.7, but not of KV7.2, at axonal surfaces by selectively increasing channel loading into anterograde transport vesicles and insertion at the membrane, without affecting retrograde transport. These results uncover a cell biological mechanism for inflammatory pain and suggest NaV1.7 trafficking as a potential therapeutic target.
Collapse
Affiliation(s)
- Grant P. Higerd-Rusli
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
- Cellular and Molecular Physiology Graduate Program, Yale University School of Medicine, New Haven, CT06520
| | - Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
- Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT06520
| | - Christopher A. Baker
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Fadia B. Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Sulayman D. Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Stephen G. Waxman
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT06510
- Department of Neurology, Yale University School of Medicine, New Haven, CT06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| |
Collapse
|
4
|
Higerd-Rusli GP, Tyagi S, Liu S, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. The fates of internalized Na V1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation. J Biol Chem 2023; 299:102816. [PMID: 36539035 PMCID: PMC9843449 DOI: 10.1016/j.jbc.2022.102816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal function relies on the maintenance of appropriate levels of various ion channels at the cell membrane, which is accomplished by balancing secretory, degradative, and recycling pathways. Neuronal function further depends on membrane specialization through polarized distribution of specific proteins to distinct neuronal compartments such as axons. Voltage-gated sodium channel NaV1.7, a threshold channel for firing action potentials in nociceptors, plays a major role in human pain, and its abundance in the plasma membrane is tightly regulated. We have recently characterized the anterograde axonal trafficking of NaV1.7 channels in Rab6A-positive vesicles, but the fate of internalized channels is not known. Membrane proteins that have undergone endocytosis can be directed into multiple pathways including those for degradation, recycling to the membrane, and transcytosis. Here, we demonstrate NaV1.7 endocytosis and dynein-dependent retrograde trafficking in Rab7-containing late endosomes together with other axonal membrane proteins using real-time imaging of live neurons. We show that some internalized NaV1.7 channels are delivered to lysosomes within the cell body, and that there is no evidence for NaV1.7 transcytosis. In addition, we show that NaV1.7 is recycled specifically to the axonal membrane as opposed to the soma membrane, suggesting a novel mechanism for the development of neuronal polarity. Together, these results shed light on the mechanisms by which neurons maintain excitable membranes and may inform efforts to target ion channel trafficking for the treatment of disorders of excitability.
Collapse
Affiliation(s)
- Grant P Higerd-Rusli
- MD/PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Sidharth Tyagi
- MD/PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Fadia B Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| |
Collapse
|
5
|
Mensink MO, Eijkelkamp N, Veldhuijzen DS, Wulffraat NM. Feasibility of quantitative sensory testing in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2022; 20:63. [PMID: 35945540 PMCID: PMC9364560 DOI: 10.1186/s12969-022-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Juvenile Idiopathic Arthritis (JIA) is a childhood-rheumatic disease with pain as a major early complaint, and in 10-17% pain remains a major symptom. Very few data exist on sensory threshold changes at the knee in JIA, a location in which inflammation often manifests. We determined whether JIA is associated with sensory threshold changes at the knee by using Quantitative Sensory Testing (QST) and established reference values at the knee of children. METHODS Sixteen patients with JIA aged 9-18 years with one affected knee and a patient-reported pain by Visual Analog Scale (VAS) > 10 on a 0-100 scale, and 16 healthy controls completed the study and were included for the analysis. QST was assessed in compliance with the German Research Network on Neuropathic Pain (DFNS) standard. Disease severity was determined using Juvenile Disease Activity Score (JADAS. Perceived pain was assessed with a visual analogue scale(0-100). Feasibility of QST was tested in patients aged 6-9. RESULTS Under the age of 9, QST testing showed not to be feasible in 3 out of 5 JIA patients. Patients with JIA aged 9 and older reported an average VAS pain score of 54.3. QST identified a significant reduction in pressure pain threshold (PPT) and increase in cold detection threshold (CDT) compared to healthy controls. PPT is reduced in both the affected and the unaffected knee, CDT is reduced in the unaffected knee, not the affected knee. CONCLUSION In a Dutch cohort of Patients with JIA, QST is only feasible from 9 years and up. Also, sensory threshold changes at the knee are restricted to pressure pain and cold detection thresholds in Patients with JIA. PERSPECTIVE This article shows that in a Dutch population, the extensive QST protocol is only feasible in the age group from 9 years and older, and a reduced set of QST tests containing at least pressure pain thresholds and cold detection thresholds could prove to be better suited to the pediatric setting with arthritis.
Collapse
Affiliation(s)
- Maarten O. Mensink
- grid.5477.10000000120346234Pediatric Rheumatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands ,Department Anesthesiology and Pain, Princess Máxima Centre for Pediatric Oncology, PO box 113, 3720 AC Bilthoven, The Netherlands
| | - Niels Eijkelkamp
- grid.5477.10000000120346234Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dieuwke S. Veldhuijzen
- grid.5132.50000 0001 2312 1970Faculty of Social and Behavioural Sciences, Health, Medical and Neuropsychology Unit & Leiden Institute for Brain and Cognition, University Leiden, Leiden, The Netherlands
| | - Nico M. Wulffraat
- Department Anesthesiology and Pain, Princess Máxima Centre for Pediatric Oncology, PO box 113, 3720 AC Bilthoven, The Netherlands
| |
Collapse
|
6
|
Higerd-Rusli GP, Alsaloum M, Tyagi S, Sarveswaran N, Estacion M, Akin EJ, Dib-Hajj FB, Liu S, Sosniak D, Zhao P, Dib-Hajj SD, Waxman SG. Depolarizing Na V and Hyperpolarizing K V Channels Are Co-Trafficked in Sensory Neurons. J Neurosci 2022; 42:4794-4811. [PMID: 35589395 PMCID: PMC9188389 DOI: 10.1523/jneurosci.0058-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Neuronal excitability relies on coordinated action of functionally distinction channels. Voltage-gated sodium (NaV) and potassium (KV) channels have distinct but complementary roles in firing action potentials: NaV channels provide depolarizing current while KV channels provide hyperpolarizing current. Mutations and dysfunction of multiple NaV and KV channels underlie disorders of excitability, including pain and epilepsy. Modulating ion channel trafficking may offer a potential therapeutic strategy for these diseases. A fundamental question, however, is whether these channels with distinct functional roles are transported independently or packaged together in the same vesicles in sensory axons. We have used Optical Pulse-Chase Axonal Long-distance imaging to investigate trafficking of NaV and KV channels and other axonal proteins from distinct functional classes in live rodent sensory neurons (from male and female rats). We show that, similar to NaV1.7 channels, NaV1.8 and KV7.2 channels are transported in Rab6a-positive vesicles, and that each of the NaV channel isoforms expressed in healthy, mature sensory neurons (NaV1.6, NaV1.7, NaV1.8, and NaV1.9) is cotransported in the same vesicles. Further, we show that multiple axonal membrane proteins with different physiological functions (NaV1.7, KV7.2, and TNFR1) are cotransported in the same vesicles. However, vesicular packaging of axonal membrane proteins is not indiscriminate, since another axonal membrane protein (NCX2) is transported in separate vesicles. These results shed new light on the development and organization of sensory neuron membranes, revealing complex sorting of axonal proteins with diverse physiological functions into specific transport vesicles.SIGNIFICANCE STATEMENT Normal neuronal excitability is dependent on precise regulation of membrane proteins, including NaV and KV channels, and imbalance in the level of these channels at the plasma membrane could lead to excitability disorders. Ion channel trafficking could potentially be targeted therapeutically, which would require better understanding of the mechanisms underlying trafficking of functionally diverse channels. Optical Pulse-chase Axonal Long-distance imaging in live neurons permitted examination of the specificity of ion channel trafficking, revealing co-packaging of axonal proteins with opposing physiological functions into the same transport vesicles. This suggests that additional trafficking mechanisms are necessary to regulate levels of surface channels, and reveals an important consideration for therapeutic strategies that target ion channel trafficking for the treatment of excitability disorders.
Collapse
Affiliation(s)
- Grant P Higerd-Rusli
- MD/PhD Program
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Matthew Alsaloum
- MD/PhD Program
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sidharth Tyagi
- MD/PhD Program
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Nivedita Sarveswaran
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Mark Estacion
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Elizabeth J Akin
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Fadia B Dib-Hajj
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Daniel Sosniak
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Peng Zhao
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
7
|
Zhang H, Li N, Li Z, Li Y, Yu Y, Zhang L. The Involvement of Caspases in Neuroinflammation and Neuronal Apoptosis in Chronic Pain and Potential Therapeutic Targets. Front Pharmacol 2022; 13:898574. [PMID: 35592413 PMCID: PMC9110832 DOI: 10.3389/fphar.2022.898574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a common, complex and unpleasant sensation following nerve injury, tissue trauma, inflammatory diseases, infection and cancer. It affects up to 25% of adults and is increasingly recognized as the leading cause of distress, disability and disease burden globally. Chronic pain is often refractory to most current analgesics, thus emphasizing the requirement for improved therapeutic medications. It is of great importance to elucidate the specific pathogenesis of chronic pain with different etiologies. Recent progress has advanced our understanding in the contribution of neuroinflammation and glial cells (microglia and astrocyte) activation in the plasticity of excitatory nociceptive synapses and the development of chronic pain phenotypes. Oxidative stress-associated neuronal apoptosis is also identified to be a pivotal step for central pain sensitization. The family of cysteine aspartate specific proteases (Caspases) has been well known to be key signaling molecules for inflammation and apoptosis in several neurological conditions. Recent studies have highlighted the unconventional and emerging role of caspases in microgliosis, astrocytes morphogenesis, chemokines release, cytokines secretion and neuronal apoptosis in initiating and maintaining synaptogenesis, synaptic strength and signal transduction in persistent pain hypersensitivity, suggesting the possibility of targeting caspases pathway for prevention and treatment of chronic pain. In this review, we will discuss and summarize the advances in the distinctive properties of caspases family in the pathophysiology of chronic pain, especially in neuropathic pain, inflammatory pain, cancer pain and musculoskeletal pain, with the aim to find the promising therapeutic candidates for the resolution of chronic pain to better manage patients undergoing chronic pain in clinics.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Nan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China.,Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Kleine-Borgmann J, Wilhelmi J, Kratel J, Baumann F, Schmidt K, Zunhammer M, Bingel U. Tilidine and dipyrone (metamizole) in cold pressor pain: A pooled analysis of efficacy, tolerability, and safety in healthy volunteers. Clin Transl Sci 2021; 14:1997-2007. [PMID: 34058081 PMCID: PMC8504837 DOI: 10.1111/cts.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022] Open
Abstract
The cold pressor test (CPT) is widely implemented and offers a simple, experimental acute pain model utilizing cold pain. Previous trials have frequently paired the CPT with opioids in order to investigate the mechanisms underlying pharmacological analgesia, due to their known analgesic efficacy. However, opioid side effects may lead to unblinding and raise concerns about the safety of the experimental setting. Despite the established clinical efficacy of dipyrone (metamizole), its efficacy, tolerability, and safety in cold pressor pain has not been systematically addressed to date. This pooled analysis included data of 260 healthy volunteers from three randomized, placebo‐controlled, double‐blind substudies using the CPT following a pre‐test‐post‐test‐design. These substudies allow for comparing a single dose of 800 mg dipyrone with two different doses of the opioid tilidine/naloxone (50/4 mg and 100/8 mg, respectively). Outcomes included pain intensity ratings, pain tolerance, medication‐attributed side effects, as well as changes of blood pressure and heart rate. We demonstrate that both opioid doses and dipyrone had a comparable, significant analgesic effect on cold pressor pain. However, dipyrone was associated with significantly less self‐reported adverse effects and these were not significantly different from those under placebo. These results indicate that the combination of dipyrone and the CPT provides a safe, tolerable, and effective experimental model for the study of pharmacological analgesia. In combination with a CPT, dipyrone may be useful as a positive control, or baseline medication for the study of analgesic modulation.
Collapse
Affiliation(s)
- Julian Kleine-Borgmann
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Johannes Wilhelmi
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Johannes Kratel
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Frederik Baumann
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Katharina Schmidt
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Matthias Zunhammer
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Ulrike Bingel
- Clinical Neurosciences, Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| |
Collapse
|
9
|
Alsaloum M, Higerd GP, Effraim PR, Waxman SG. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat Rev Neurol 2020; 16:689-705. [PMID: 33110213 DOI: 10.1038/s41582-020-00415-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
The effective and safe treatment of pain is an unmet health-care need. Current medications used for pain management are often only partially effective, carry dose-limiting adverse effects and are potentially addictive, highlighting the need for improved therapeutic agents. Most common pain conditions originate in the periphery, where dorsal root ganglion and trigeminal ganglion neurons feed pain information into the CNS. Voltage-gated sodium (NaV) channels drive neuronal excitability and three subtypes - NaV1.7, NaV1.8 and NaV1.9 - are preferentially expressed in the peripheral nervous system, suggesting that their inhibition might treat pain while avoiding central and cardiac adverse effects. Genetic and functional studies of human pain disorders have identified NaV1.7, NaV1.8 and NaV1.9 as mediators of pain and validated them as targets for pain treatment. Consequently, multiple NaV1.7-specific and NaV1.8-specific blockers have undergone clinical trials, with others in preclinical development, and the targeting of NaV1.9, although hampered by technical constraints, might also be moving ahead. In this Review, we summarize the clinical and preclinical literature describing compounds that target peripheral NaV channels and discuss the challenges and future prospects for the field. Although the potential of peripheral NaV channel inhibition for the treatment of pain has yet to be realized, this remains a promising strategy to achieve non-addictive analgesia for multiple pain conditions.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Grant P Higerd
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA. .,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
10
|
Siebenga PS, van Amerongen G, Okkerse P, Denney WS, Dua P, Butt RP, Hay JL, Groeneveld GJ. Reproducibility of a battery of human evoked pain models to detect pharmacological effects of analgesic drugs. Eur J Pain 2019; 23:1129-1140. [PMID: 30793411 PMCID: PMC6618124 DOI: 10.1002/ejp.1379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although reproducibility is considered essential for any method used in scientific research, it is investigated only rarely; thus, strikingly little has been published regarding the reproducibility of evoked pain models involving human subjects. Here, we studied the reproducibility of a battery of evoked pain models for demonstrating the analgesic effects of two analgesic compounds. METHODS A total of 81 healthy subjects participated in four studies involving a battery of evoked pain tests in which mechanical, thermal and electrical stimuli were used to measure pain detection and tolerance thresholds. Pharmacodynamic outcome variables were analysed using a mixed model analysis of variance, and a coefficient of variation was calculated by dividing the standard deviation by the least squares means. RESULTS A total of 76 subjects completed the studies. After being administered pregabalin, the subjects' pain tolerance thresholds in the cold pressor and pressure stimulation tests were significantly increased compared to the placebo group. Moreover, the heat pain detection threshold in UVB-irradiated skin was significantly increased in subjects who were administered ibuprofen compared to the placebo group. Variation among all evoked pain tests ranged from 2.2% to 30.6%. CONCLUSIONS Four studies using a similar design showed reproducibility with respect to the included evoked pain models. The relatively high consistency and reproducibility of two analgesics at doses known to be effective in treating clinically relevant pain supports the validity of using this pain test battery to investigate the analgesic activity and determine the active dosage of putative analgesic compounds in early clinical development. SIGNIFICANCE The consistency and reproducibility of measuring the profile of an analgesic at clinically relevant doses illustrates that this pain test battery is a valid tool for demonstrating the analgesic activity of a test compound and for determining the optimal active dose in early clinical drug development.
Collapse
Affiliation(s)
| | | | | | - William S. Denney
- Pfizer Inc.CambridgeMassachusetts
- Present address:
Human Predictions LLCCambridgeMassachusetts
| | | | | | | | - Geert J. Groeneveld
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
11
|
Taneja A, Della Pasqua O, Danhof M. Challenges in translational drug research in neuropathic and inflammatory pain: the prerequisites for a new paradigm. Eur J Clin Pharmacol 2017; 73:1219-1236. [PMID: 28894907 PMCID: PMC5599481 DOI: 10.1007/s00228-017-2301-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
AIM Despite an improved understanding of the molecular mechanisms of nociception, existing analgesic drugs remain limited in terms of efficacy in chronic conditions, such as neuropathic pain. Here, we explore the underlying pathophysiological mechanisms of neuropathic and inflammatory pain and discuss the prerequisites and opportunities to reduce attrition and high-failure rate in the development of analgesic drugs. METHODS A literature search was performed on preclinical and clinical publications aimed at the evaluation of analgesic compounds using MESH terms in PubMed. Publications were selected, which focused on (1) disease mechanisms leading to chronic/neuropathic pain and (2) druggable targets which are currently under evaluation in drug development. Attention was also given to the role of biomarkers and pharmacokinetic-pharmacodynamic modelling. RESULTS Multiple mechanisms act concurrently to produce pain, which is a non-specific manifestation of underlying nociceptive pathways. Whereas these manifestations can be divided into neuropathic and inflammatory pain, it is now clear that inflammatory mechanisms are a common trigger for both types of pain. This has implications for drug development, as the assessment of drug effects in experimental models of neuropathic and chronic pain is driven by overt behavioural measures. By contrast, the use of mechanistic biomarkers in inflammatory pain has provided the pharmacological basis for dose selection and evaluation of non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSION A different paradigm is required for the identification of relevant targets and candidate molecules whereby pain is coupled to the cause of sensorial signal processing dysfunction rather than clinical symptoms. Biomarkers which enable the characterisation of drug binding and target activity are needed for a more robust dose rationale in early clinical development. Such an approach may be facilitated by quantitative clinical pharmacology and evolving technologies in brain imaging, allowing accurate assessment of target engagement, and prediction of treatment effects before embarking on large clinical trials.
Collapse
Affiliation(s)
- A Taneja
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - O Della Pasqua
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, UK.,Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - M Danhof
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Schaffler K, Nicolas LB, Borta A, Brand T, Reitmeir P, Roebling R, Scholpp J. Investigation of the predictive validity of laser-EPs in normal, UVB-inflamed and capsaicin-irritated skin with four analgesic compounds in healthy volunteers. Br J Clin Pharmacol 2017; 83:1424-1435. [PMID: 28139023 DOI: 10.1111/bcp.13247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022] Open
Abstract
AIMS The aim of the present study was to assess the predictivity of laser-(radiant-heat)-evoked potentials (LEPs) from the vertex electroencephalogram, using an algesimetric procedure, testing the anti-nociceptive/anti-hyperalgesic effects of single oral doses of four marketed analgesics (of different compound classes) vs. placebo, in healthy volunteers with three skin types. METHODS This was a randomized, placebo-controlled, single-blind, five-way-crossover trial. Twenty-five healthy male/female Caucasians were included (receiving celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo) in a Williams design, with CO2 laser-induced painful stimuli to normal, ultraviolet (UV) B-inflamed and capsaicin-irritated skin. LEPs and visual analogue scale ratings were taken at baseline and hourly for 6 h postdose from all three skin types. RESULTS In normal skin, the averaged postdose LEP peak-to-peak-(PtP)-amplitudes were reduced by pregabalin (-2.68 μV; 95% confidence interval (CI) -4.16, 1.19) and duloxetine (-1.73 μV; 95% CI -3.21, -0.26) but not by lacosamide and celecoxib vs. placebo. On UVB-irradiated skin, reflecting inflammatory pain, celecoxib induced a pronounced reduction in LEP PtP amplitudes vs. placebo (-6.2 μV; 95% CI -7.88, -4.51), with a smaller reduction by duloxetine (-4.54 μV; 95% CI -6.21, -2.87) and pregabalin (-3.72 μV; 95% CI -5.40, -2.04), whereas lacosamide was inactive. LEP PtP amplitudes on capsaicin-irritated skin, reflecting peripheral/spinal sensitization, as in neuropathic pain, were reduced by pregabalin (-3.78 μV; 95% CI -5.31, -2.25) and duloxetine (-2.32 μV; 95% CI -3.82, -0.82) but not by celecoxib or lacosamide vs. placebo, which was in agreement with known clinical profiles. Overall, PtP amplitude reductions were in agreement with subjective ratings. CONCLUSIONS LEP algesimetry is sensitive to analgesics with different modes of action and may enable the effects of novel analgesics to be assessed during early clinical development.
Collapse
Affiliation(s)
| | - Laurent B Nicolas
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas Borta
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tobias Brand
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Reitmeir
- HPR, Human Pharmacodynamic Research GmbH, Munich, Germany
| | - Robert Roebling
- Medicine, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joachim Scholpp
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
13
|
Hansen MS, Wetterslev J, Pipper CB, Asghar MS, Dahl JB. Heat pain detection threshold is associated with the area of secondary hyperalgesia following brief thermal sensitization: a study of healthy male volunteers. J Pain Res 2017; 10:265-274. [PMID: 28184167 PMCID: PMC5291329 DOI: 10.2147/jpr.s121189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction The area of secondary hyperalgesia following brief thermal sensitization (BTS) of the skin and heat pain detection thresholds (HPDT) may both have predictive abilities in regards to pain sensitivity and clinical pain states. The association between HPDT and secondary hyperalgesia, however, remains unsettled, and the dissimilarities in physiologic properties suggest that they may represent 2 distinctively different pain entities. The aim of this study was to investigate the association between HPDT and BTS-induced secondary hyperalgesia. Methods A sample of 121 healthy male participants was included and tested on 2 separate study days with BTS (45°C, 3 minutes), HPDT, and pain during thermal stimulation (45°C, 1 minute). Areas of secondary hyperalgesia were quantified after monofilament pinprick stimulation. The pain catastrophizing scale (PCS) and hospital anxiety and depression scale (HADS) were also applied. Results A significant association between HPDT and the size of the area of secondary hyperalgesia (p<0.0001) was found. The expected change in area of secondary hyperalgesia due to a 1-degree increase in HPDT was estimated to be −27.38 cm2, 95% confidence interval (CI) of −37.77 to −16.98 cm2, with an R2 of 0.19. Likewise, a significant association between HADS-depression subscore and area of secondary hyperalgesia (p=0.046) was found, with an estimated expected change in secondary hyperalgesia to a 1-point increase in HADS-depression subscore of 11 cm2, 95% CI (0.19–21.82), and with R2 of 0.03. We found no significant associations between secondary hyperalgesia area and PCS score or pain during thermal stimulation. Conclusion HPDT and the area of secondary hyperalgesia after BTS are significantly associated; however, with an R2 of only 19%, HPDT only offers a modest explanation of the inter-participant variation in the size of the secondary hyperalgesia area elicited by BTS.
Collapse
Affiliation(s)
- Morten Sejer Hansen
- Department of Anesthesiology, 4231, Centre of Head and Orthopedics, Rigshospitalet
| | - Jørn Wetterslev
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812
| | | | | | - Jørgen Berg Dahl
- Department of Anesthesiology, Department Z, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Quantitative sensory testing and pain-evoked cytokine reactivity: comparison of patients with sickle cell disease to healthy matched controls. Pain 2017; 157:949-956. [PMID: 26713424 DOI: 10.1097/j.pain.0000000000000473] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder associated with significant morbidity, which includes severe episodic pain, and, often, chronic pain. Compared to healthy individuals, patients with SCD report enhanced sensitivity to thermal detection and pain thresholds and have altered inflammatory profiles, yet no studies to date have examined biomarker reactivity after laboratory-induced pain. We sought to examine this relationship in patients with SCD compared to healthy control participants. We completed quantitative sensory testing in 83 patients with SCD and sequential blood sampling in 27 of them, whom we matched (sex, age, race, body mass index, and education) to 27 healthy controls. Surprisingly, few quantitative sensory testing differences emerged between groups. Heat pain tolerance, pressure pain threshold at the trapezius, thumb, and quadriceps, and thermal temporal summation at 45°C differed between groups in the expected direction, whereas conditioned pain modulation and pain ratings to hot water hand immersion were counterintuitive, possibly because of tailoring the water temperature to a perceptual level; patients with SCD received milder temperatures. In the matched subsample, group differences and group-by-time interactions were observed in biomarkers including tumor necrosis factor alpha, interleukin-1ß, interleukin-4, and neuropeptide Y. These findings highlight the utility of laboratory pain testing methods for understanding individual differences in inflammatory cytokines. Our findings suggest amplified pain-evoked proinflammatory cytokine reactivity among patients with SCD relative to carefully matched controls. Future research is warranted to evaluate the impact of enhanced pain-related cytokine response and whether it is predictive of clinical characteristics and the frequency/severity of pain crises in patients with SCD.
Collapse
|
15
|
Okkerse P, van Amerongen G, de Kam ML, Stevens J, Butt RP, Gurrell R, Dahan A, van Gerven JM, Hay JL, Groeneveld GJ. The use of a battery of pain models to detect analgesic properties of compounds: a two-part four-way crossover study. Br J Clin Pharmacol 2017; 83:976-990. [PMID: 27862179 DOI: 10.1111/bcp.13183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022] Open
Abstract
AIM The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. METHODS The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)-pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg-1 , phenytoin 300 mg, (S)-ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post-dose. Endpoints were analysed using a mixed model analysis of variance. RESULTS Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)-ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)-ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. CONCLUSION This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered.
Collapse
Affiliation(s)
- Pieter Okkerse
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | | | | | - Jasper Stevens
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - Richard P Butt
- Neuroscience and Pain Research Unit, Pfizer Worldwide Research and Development, Cambridge, UK
| | - Rachel Gurrell
- Neuroscience and Pain Research Unit, Pfizer Worldwide Research and Development, Cambridge, UK
| | - Albert Dahan
- Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Justin L Hay
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | | |
Collapse
|
16
|
Okkerse P, Hay JL, Sitsen E, Dahan A, Klaassen E, Houghton W, Groeneveld GJ. Pharmacokinetics and pharmacodynamics of intrathecally administered Xen2174, a synthetic conopeptide with norepinephrine reuptake inhibitor and analgesic properties. Br J Clin Pharmacol 2016; 83:751-763. [PMID: 27987228 DOI: 10.1111/bcp.13176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 01/01/2023] Open
Abstract
AIM Xen2174 is a synthetic 13-amino acid peptide that binds specifically to the norepinephrine transporter, which results in inhibition of norepinephrine uptake. It is being developed as a possible treatment for moderate to severe pain and is delivered intrathecally. The current study was performed to assess the pharmacodynamics (PD) and the cerebrospinal fluid (CSF) pharmacokinetics (PK) of Xen2174 in healthy subjects. METHODS This was a randomized, blinded, placebo-controlled study in healthy subjects. The study was divided into three treatment arms. Each group consisted of eight subjects on active treatment and two or three subjects on placebo. The CSF was sampled for 32 h using an intrathecal catheter. PD assessments were performed using a battery of nociceptive tasks (electrical pain, pressure pain and cold pressor tasks). RESULTS Twenty-five subjects were administered Xen2174. CSF PK analysis showed a higher area under the CSF concentration-time curve of Xen2174 in the highest dose group than allowed by the predefined safety margin based on nonclinical data. The most common adverse event was post-lumbar puncture syndrome, with no difference in incidence between treatment groups. Although no statistically significant differences were observed in the PD assessments between the different dosages of Xen2174 and placebo, pain tolerability in the highest dose group was higher than in the placebo group [contrast least squares mean pressure pain tolerance threshold of Xen2174 2.5 mg-placebo (95% confidence interval), 22.2% (-5.0%, 57.1%); P = 0.1131]. CONCLUSIONS At the Xen2174 dose level of 2.5 mg, CSF concentrations exceeded the prespecified exposure limit based on the nonclinical safety margin. No statistically significant effects on evoked pain tests were observed.
Collapse
Affiliation(s)
- Pieter Okkerse
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - Justin L Hay
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - Elske Sitsen
- Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Albert Dahan
- Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Erica Klaassen
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
Okkerse P, Alvarez-Jimenez R, Hay JL, Tehim A, Kumar R, de Kam ML, Groeneveld GJ. No evidence of potentiation of buprenorphine by milnacipran in healthy subjects using a nociceptive test battery. Eur J Pain 2016; 21:494-506. [PMID: 27651026 DOI: 10.1002/ejp.943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Serotonin-norepinephrine reuptake inhibitors inhibit the reuptake of serotonin and noradrenalin and are used in the treatment of neuropathic pain. Animal studies suggest that milnacipran co-administered with opioids may potentiate the analgesic effect of μ-opioid receptor agonists. This study hypothesized that co-administration of milnacipran and buprenorphine would have a synergistic effect in evoked pain models in healthy subjects. METHODS This was a randomized double-blinded, placebo-controlled, four-way cross-over, multiple dose clinical trial to investigate the analgesic effects of buprenorphine (placebo, 0.5, 1 and 3 μg/kg) in combination with milnacipran (placebo, 25 and 50 mg) in healthy subjects. RESULTS 11 healthy men were enrolled in the study. Buprenorphine alone showed a dose-response relationship indicative of anti-nociception in the pain tests. Following milnacipran administration, no changes were seen in the pharmacodynamic measurements for pain, psychomotor function, body stability or eye movements. For the electrical tests, cold pressor test and pressure pain test, buprenorphine alone was superior when compared with buprenorphine plus milnacipran. No differences in pharmacodynamic variables, besides an increase in pupil/iris ratio, were observed after repeated administration of milnacipran 50 mg. Single and multiple doses of 25 or 50 mg milnacipran did not further potentiate the anti-nociceptive effects of buprenorphine. CONCLUSIONS Buprenorphine showed dose-dependent effects consistent with its pharmacological profile. Milnacipran alone did not affect any of the pain variables. The combination of both buprenorphine and milnacipran did not potentiate or show a synergistic effect on the pain models used in this study. SIGNIFICANCE Buprenorphine is known to be a potent opioid agonist. Animal studies suggest that milnacipran co-administered with opioids may potentiate the analgesic effect of μ-opioid receptor agonists. Here, we found that buprenorphine showed a dose-dependent analgesic effect, but that no potentiation or synergy on a battery of evoked pain tasks could be observed after co-administration of both milnacipran and buprenorphine.
Collapse
Affiliation(s)
- P Okkerse
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | | | - J L Hay
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - A Tehim
- Dr. Reddy's Laboratories, Hyderabad, India
| | - R Kumar
- Dr. Reddy's Laboratories, Hyderabad, India
| | - M L de Kam
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - G J Groeneveld
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| |
Collapse
|
18
|
Hansen MS, Asghar MS, Wetterslev J, Pipper CB, Johan Mårtensson J, Becerra L, Christensen A, Nybing JD, Havsteen I, Boesen M, Dahl JB. Is the Volume of the Caudate Nuclei Associated With Area of Secondary Hyperalgesia? - Protocol for a 3-Tesla MRI Study of Healthy Volunteers. JMIR Res Protoc 2016; 5:e117. [PMID: 27317630 PMCID: PMC4930528 DOI: 10.2196/resprot.5680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/08/2016] [Indexed: 11/13/2022] Open
Abstract
Background Experience and development of pain may be influenced by a number of physiological, psychological, and psychosocial factors. In a previous study we found differences in neuronal activation to noxious stimulation, and microstructural neuroanatomical differences, when comparing healthy volunteers with differences in size of the area of secondary hyperalgesia following a standardized burn injury. Objective We aim to investigate the degree of association between the volume of pain-relevant structures in the brain and the size of the area of secondary hyperalgesia following brief thermal sensitization. Methods The study consists of one experimental day, in which whole-brain magnetic resonance imaging (MRI) scans will be conducted including T1-weighed three-dimensional anatomy scan, diffusion tensor imaging, and resting state functional MRI. Before the experimental day, all included participants will undergo experimental pain testing in a parallel study (Clinicaltrials.gov Identifier: NCT02527395). Results from this experimental pain testing, as well as the size of the area of secondary hyperalgesia from the included participants, will be extracted from this parallel study. Results The association between the volume of pain-relevant structures in the brain and the area of secondary hyperalgesia will be investigated by linear regression of the estimated best linear unbiased predictors on the individual volumes of the pain relevant brain structures. Conclusions We plan to investigate the association between experimental pain testing parameters and the volume, connectivity, and resting state activity of pain-relevant structures in the brain. These results may improve our knowledge of the mechanisms responsible for the development of acute and chronic pain. ClinicalTrial Danish Research Ethics Committee (identifier: H-15010473). Danish Data Protection Agency (identifier: RH-2015-149). Clinicaltrials.gov NCT02567318; http://clinicaltrials.gov/ct2/show/NCT02567318 (Archived by WebCite at http://www.webcitation.org/6i4OtP0Oi)
Collapse
Affiliation(s)
- Morten Sejer Hansen
- Department of Anaesthesiology, 4231, Centre of head and orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hansen MS, Wetterslev J, Pipper CB, Asghar MS, Dahl JB. Is heat pain detection threshold associated with the area of secondary hyperalgesia following brief thermal sensitization? A study of healthy volunteers - design and detailed plan of analysis. BMC Anesthesiol 2016; 16:28. [PMID: 27246322 PMCID: PMC4888470 DOI: 10.1186/s12871-016-0193-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background Several factors are believed to influence the development and experience of pain. Human clinical pain models are central tools, in the investigation of basic physiologic pain responses, and can be applied in patients as well as in healthy volunteers. Each clinical pain model investigates different aspects of the human pain response. Brief thermal sensitization induces a mild burn injury, resulting in development of primary hyperalgesia at the site of stimulation, and secondary hyperalgesia surrounding the site of stimulation. Central sensitization is believed to play an important role in the development of secondary hyperalgesia; however, a possible association of secondary hyperalgesia following brief thermal sensitization and other heat pain models remains unknown. Our aim with this study is to investigate how close the heat pain detection threshold is associated with the size of the area of secondary hyperalgesia induced by the clinical heat pain model: Brief thermal sensitization. Methods and design We aim to include 120 healthy participants. The participants will be tested on two separate study days with the following procedures: i) Brief thermal sensitization, ii) heat pain detection threshold and iii) pain during thermal stimulation. Additionally, the participants will be tested with the Pain Catastrophizing Scale and Hospital Anxiety and Depression Scale questionnaires. We conducted statistical simulations based on data from our previous study, to estimate an empirical power of 99.9 % with α of 0.05. We define that an R2 < 0.25 and predictive intervals larger than +/−150 cm2 are indications of a weak association. Discussion The area of secondary hyperalgesia may serve as a quantitative measure of the central sensitization induced by cutaneous heat stimulation, and thus may be a biomarker of an individual’s pain sensitivity. The number of studies investigating secondary hyperalgesia is growing; however basic knowledge of the physiologic aspects of secondary hyperalgesia in humans is still incomplete. We therefore find it interesting to investigate if HPDT, a known quantitative sensory test, is associated with areas of secondary hyperalgesia following brief thermal sensitization Trial registration Clinicaltrials.gov (Identifier: NCT02527395). Danish Research Ethics Committee (Identifier: H-8-2014-012). Danish Data Protection Agency (Identifier: 30-1436). Electronic supplementary material The online version of this article (doi:10.1186/s12871-016-0193-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morten Sejer Hansen
- Department of Anaesthesiology, 4231, Centre of Head and Orthopaedics, Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark.
| | - Jørn Wetterslev
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, dep. 7812, Blegdamsvej 9, Copenhagen, 2100, Denmark
| | - Christian Bressen Pipper
- Section of Biostatistics, Faculty of Health, Copenhagen University, Øster Farigmagsgade 5, Copenhagen, 1014, Denmark
| | - Mohammad Sohail Asghar
- Department of Anaesthesiology, 4231, Centre of Head and Orthopaedics, Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark
| | - Jørgen Berg Dahl
- Department of Anaesthesiology, dep. Z, Bispebjerg Hospital, Bispebjerg Bakke 23, Copenhagen, 2400, Denmark
| |
Collapse
|
20
|
Arout CA, Perrino AC, Ralevski E, Acampora G, Koretski J, Limoncelli D, Newcomb J, Petrakis IL. Effect of Intravenous Ethanol on Capsaicin-Induced Hyperalgesia in Human Subjects. Alcohol Clin Exp Res 2016; 40:1425-9. [PMID: 27218476 DOI: 10.1111/acer.13095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The objective of this study was to assess ethanol's (EtOH's) effects on capsaicin-induced hyperalgesia in healthy participants. Specifically, we investigated the change in area of capsaicin-induced hyperalgesia following 3 interventions: intravenous EtOH at 2 targeted breath alcohol concentrations (BrAC), or placebo. METHODS Eighteen participants participated in 3 test days in a randomized order. Each test day, participants received an intradermal capsaicin injection on the volar surface of the forearm, followed by either infusion of high concentration EtOH (targeted BrAC = 0.100 g/dl), low concentration EtOH (targeted BrAC = 0.040 g/dl), or placebo. The area of hyperalgesia was determined by von Frey technique at 2 time points, prior to EtOH infusion, and again when target BrAC was reached. The primary outcome was the percent change in the area of capsaicin-induced hyperalgesia. Additional outcome measures included the visual analogue scale of mood states (VAS), which was administered at each time point. RESULTS There was a marked 30% reduction in the area of capsaicin-induced hyperalgesia with infusion of a high concentration of EtOH (p < 0.05). Low concentration EtOH produced a 10% reduction in hyperalgesia area, although this finding did not reach significance. Further, participants reported significant feelings of euphoria and drowsiness at high concentrations of EtOH (p < 0.05), as measured by the VAS. CONCLUSIONS In a human model examining pain phenomena related to central sensitization, this study is the first to demonstrate that capsaicin-induced hyperalgesia is markedly attenuated by EtOH. The capsaicin experimental pain paradigm employed provides a novel approach to evaluate EtOH's effects on pain processing. The antihyperalgesic effects of EtOH observed have important clinical implications for the converging fields of substance abuse and pain medicine and may inform why patients with chronic pain often report alcohol use as a form of self-medication.
Collapse
Affiliation(s)
- Caroline A Arout
- Department of Psychiatry, Center for Translational Neuroscience of Alcoholism and VA Alcohol Research Center, Yale University School of Medicine, West Haven, Connecticut
| | - Albert C Perrino
- Department of Anesthesiology, VA Connecticut Healthcare System, Yale University School of Medicine, West Haven, Connecticut
| | - Elizabeth Ralevski
- Department of Psychiatry, Center for Translational Neuroscience of Alcoholism and VA Alcohol Research Center, Yale University School of Medicine, West Haven, Connecticut
| | - Gregory Acampora
- Department of Psychiatry, Massachusetts General Hospital, Harvard Center for Addiction Medicine, Boston, Massachusetts
| | - Julia Koretski
- Department of Psychiatry, Center for Translational Neuroscience of Alcoholism and VA Alcohol Research Center, Yale University School of Medicine, West Haven, Connecticut
| | - Diana Limoncelli
- Department of Psychiatry, Center for Translational Neuroscience of Alcoholism and VA Alcohol Research Center, Yale University School of Medicine, West Haven, Connecticut
| | - Jenelle Newcomb
- Department of Psychiatry, Center for Translational Neuroscience of Alcoholism and VA Alcohol Research Center, Yale University School of Medicine, West Haven, Connecticut
| | - Ismene L Petrakis
- Department of Psychiatry, Center for Translational Neuroscience of Alcoholism and VA Alcohol Research Center, Yale University School of Medicine, West Haven, Connecticut
| |
Collapse
|
21
|
Hay JL, Okkerse P, van Amerongen G, Groeneveld GJ. Determining Pain Detection and Tolerance Thresholds Using an Integrated, Multi-Modal Pain Task Battery. J Vis Exp 2016. [PMID: 27166581 DOI: 10.3791/53800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human pain models are useful in the assessing the analgesic effect of drugs, providing information about a drug's pharmacology and identify potentially suitable therapeutic populations. The need to use a comprehensive battery of pain models is highlighted by studies whereby only a single pain model, thought to relate to the clinical situation, demonstrates lack of efficacy. No single experimental model can mimic the complex nature of clinical pain. The integrated, multi-modal pain task battery presented here encompasses the electrical stimulation task, pressure stimulation task, cold pressor task, the UVB inflammatory model which includes a thermal task and a paradigm for inhibitory conditioned pain modulation. These human pain models have been tested for predicative validity and reliability both in their own right and in combination, and can be used repeatedly, quickly, in short succession, with minimum burden for the subject and with a modest quantity of equipment. This allows a drug to be fully characterized and profiled for analgesic effect which is especially useful for drugs with a novel or untested mechanism of action.
Collapse
|
22
|
Not an Aspirin: No Evidence for Acute Anti-Nociception to Laser-Evoked Pain After Motor Cortex rTMS in Healthy Humans. Brain Stimul 2016; 9:48-57. [DOI: 10.1016/j.brs.2015.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023] Open
|
23
|
Taneja A, Oosterholt SP, Danhof M, Della Pasqua O. Biomarker exposure-response relationships as the basis for rational dose selection: Lessons from a simulation exercise using a selective COX-2 inhibitor. J Clin Pharmacol 2015; 56:609-21. [DOI: 10.1002/jcph.629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/26/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Amit Taneja
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Sean P. Oosterholt
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Meindert Danhof
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Oscar Della Pasqua
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
- Clinical Pharmacology & Therapeutics; University College London; London UK
- Clinical Pharmacology Modelling & Simulation; GlaxoSmithKline; Stockley Park UK
| |
Collapse
|
24
|
Pereira MP, Werner MU, Dahl JB, Pereira MP, Utke Werner M, Berg Dahl J. Effect of a high-dose target-controlled naloxone infusion on pain and hyperalgesia in patients following groin hernia repair: study protocol for a randomized controlled trial. Trials 2015; 16:511. [PMID: 26554360 PMCID: PMC4640219 DOI: 10.1186/s13063-015-1021-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/20/2015] [Indexed: 12/04/2022] Open
Abstract
Background Central sensitization is modulated by the endogenous opioid system and plays a major role in the development and maintenance of pain. Recent animal studies performed following resolution of inflammatory pain showed reinstatement of tactile hypersensitivity induced by administration of a mu-opioid-antagonist, suggesting latent sensitization is mediated by endogenous opioids. In a recent crossover study in healthy volunteers, following resolution of a first-degree burn, 4 out of 12 volunteers developed large secondary areas of hyperalgesia areas after a naloxone infusion, while no volunteer developed significant secondary hyperalgesia after the placebo infusion. In order to consistently demonstrate latent sensitization in humans, a pain model inducing deep tissue inflammation, as used in animal studies, might be necessary. The aim of the present study is to examine whether a high-dose target-controlled naloxone infusion can reinstate pain and hyperalgesia following recovery from open groin hernia repair and thus consistently demonstrate opioid-mediated latent sensitization in humans. Methods/Design Patients submitted to unilateral, primary, open groin hernia repair will be included in this randomized, placebo-controlled, double-blind, crossover study. The experimental days take place 6–8 weeks after surgery, time-points at which patients are expected to be almost pain- free. Prior to administration of naloxone or placebo, the primary outcome (a summated measure of pain: at rest, during transition from supine to standing position, and evoked by pressure algometry) and the secondary outcomes (secondary hyperalgesia/allodynia, pressure pain thresholds, assessed at the surgical site and at the mirror-site in the contralateral groin, and, opioid withdrawal symptoms) will be assessed. These assessments will be repeated at each step of the target-controlled infusion of placebo or naloxone at estimated median (95 % CI) plasma concentrations of 344 ng/ml (130;567), 1059 ng/ml (400;1752) and 3196 ng/ml (1205;5276). Discussion We aim to demonstrate opioid-mediated latent sensitization in a post-surgical setting, using pain as a clinical relevant variable. Impairment of the protective endogenous opioid system may play an important role in the transition from acute to chronic pain. In order to sufficiently block the endogenous opioid system, a high-dose target-controlled naloxone-infusion is used, in accordance with recent findings in animal studies. Trial registration number EUDRACT: 2015-000793-36 (Registration date: 16 February 2015) Clinicaltrials.gov: NCT01992146 (Registration date: 12 December 2014)
Collapse
Affiliation(s)
- M P Pereira
- Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| | - M U Werner
- Multidisciplinary Pain Center, Neuroscience Center, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| | - J B Dahl
- Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| | - Manuel Pedro Pereira
- Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark. .,Multidisciplinary Pain Center, Neuroscience Center, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| | - Mads Utke Werner
- Multidisciplinary Pain Center, Neuroscience Center, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| | - Joergen Berg Dahl
- Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| |
Collapse
|
25
|
Campbell CM, Buenaver LF, Raja SN, Kiley KB, Swedberg LJ, Wacnik PW, Cohen SP, Erdek MA, Williams KA, Christo PJ. Dynamic Pain Phenotypes are Associated with Spinal Cord Stimulation-Induced Reduction in Pain: A Repeated Measures Observational Pilot Study. PAIN MEDICINE 2015; 16:1349-60. [PMID: 25800088 DOI: 10.1111/pme.12732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) has become a widely used treatment option for a variety of pain conditions. Substantial variability exists in the degree of benefit obtained from SCS and patient selection is a topic of expanding interest and importance. However, few studies have examined the potential benefits of dynamic quantitative sensory testing (QST) to develop objective measures of SCS outcomes or as a predictive tool to help patient selection. Psychological characteristics have been shown to play an important role in shaping individual differences in the pain experience and may aid in predicting responses to SCS. Static laboratory pain-induction measures have also been examined in their capacity for predicting SCS outcomes. METHODS The current study evaluated clinical, psychological and laboratory pain measures at baseline, during trial SCS lead placement, as well as 1 month and 3 months following permanent SCS implantation in chronic pain patients who received SCS treatment. Several QST measures were conducted, with specific focus on examination of dynamic models (central sensitization and conditioned pain modulation [CPM]) and their association with pain outcomes 3 months post SCS implantation. RESULTS Results suggest few changes in QST over time. However, central sensitization and CPM at baseline were significantly associated with clinical pain at 3 months following SCS implantation, controlling for psycho/behavioral factors and pain at baseline. Specifically, enhanced central sensitization and reduced CPM were associated with less self-reported pain 3 months following SCS implantation. CONCLUSIONS These findings suggest a potentially important role for dynamic pain assessment in individuals undergoing SCS, and hint at potential mechanisms through which SCS may impart its benefit.
Collapse
Affiliation(s)
- Claudia M Campbell
- Departments of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Luis F Buenaver
- Departments of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Srinivasa N Raja
- Anesthesiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Kasey B Kiley
- Departments of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Lauren J Swedberg
- Departments of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | | | - Steven P Cohen
- Anesthesiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Michael A Erdek
- Anesthesiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Kayode A Williams
- Anesthesiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Paul J Christo
- Anesthesiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
26
|
Helfert SM, Reimer M, Höper J, Baron R. Individualized pharmacological treatment of neuropathic pain. Clin Pharmacol Ther 2014; 97:135-42. [PMID: 25670518 DOI: 10.1002/cpt.19] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022]
Abstract
Patients with the same disease may suffer from completely different pain symptoms yet receive the same drug treatment. Several studies elucidate neuropathic pain and treatment response in human surrogate pain models. They show promising results toward a patient stratification according to the mechanisms underlying the pain, as reflected in their symptoms. Several promising new drugs produced negative study results in clinical phase III trials. However, retrospective analysis of treatment response based on baseline pain phenotyping could demonstrate positive results for certain subgroups of patients. Thus, a prospective classification of patients according to pain phenotype may play an increasingly important role in personalized treatment of neuropathic pain states. A recent prospective study using stratification based on pain-related sensory abnormalities confirmed the concept of personalized pharmacological treatment of neuropathic pain.
Collapse
Affiliation(s)
- S M Helfert
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital, Kiel, Germany
| | | | | | | |
Collapse
|
27
|
Cornelissen L, Donado C, Kim J, Chiel L, Zurakowski D, Logan DE, Meier P, Sethna NF, Blankenburg M, Zernikow B, Sundel RP, Berde CB. Pain hypersensitivity in juvenile idiopathic arthritis: a quantitative sensory testing study. Pediatr Rheumatol Online J 2014; 12:39. [PMID: 25249820 PMCID: PMC4171552 DOI: 10.1186/1546-0096-12-39] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Juvenile Idiopathic Arthritis (JIA) is the most common cause of non-infectious joint inflammation in children. Synovial inflammation results in pain, swelling and stiffness. Animal and adult human studies indicate that localized joint-associated inflammation may produce generalized changes in pain sensitivity. The aim was to characterize pain sensitivity in children with JIA to mechanical and thermal stimulus modalities using quantitative sensory testing (QST) at an affected inflamed joint, and compare to children in clinical remission. Generalized hypersensitivity was evaluated by comparing QST measures at the thenar eminence between JIA and healthy control children. METHODS 60 children aged 7-17 years with JIA participated. QST assessed sensory detection threshold and pain threshold at two sites: (1) affected joint (clinically active or inactive), (2) contralateral thenar eminence. Joint site included finger, wrist, knee and ankle. Clinical status was measured using objective and subjective markers of disease severity. Questionnaires assessed pain intensity and frequency, functional disability, anxiety, pain catastrophization and fatigue. QST data collected from joints were compared within JIA patients: active vs. inactive inflammation; and data from the contralateral thenar eminence were compared between JIA and healthy control cohorts in Europe [EU, (n = 151)] and the US (n = 92). Statistical analyses were performed using Kruskal-Wallis with Dunn's post-hoc comparison, Mann-Whitney or Fisher's exact test, where appropriate. RESULTS Overall, children with JIA reported low pain scores and low degrees of functional disability. Sensory detection thresholds and pain thresholds were similar in "active" compared to "inactive" joints. Despite this, children with JIA had generalized hypersensitivity at the thenar eminence when compared to healthy children for pressure (vs. EU p < 0.001), light touch (vs. EU p < 0.001), cold (vs EU, p < 0.01; vs US, p < 0.001) and heat pain (vs EU, p < 0.05; vs US p < 0.001). CONCLUSIONS JIA is associated with increased sensitivity to painful mechanical and thermal stimuli, even in absence of pain reports, or markers of disease activity. Future research investigating mechanisms underlying pain hypersensitivity in JIA is warranted; this will in turn guide pharmacologic and non-pharmacologic interventions to prevent or reverse these processes.
Collapse
Affiliation(s)
- Laura Cornelissen
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| | - Carolina Donado
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| | - Joseph Kim
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| | - Laura Chiel
- Program in Rheumatology, Division of Immunology, Department of Medicine, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School Boston, Boston, USA
| | - David Zurakowski
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| | - Deirdre E Logan
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA ,Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Petra Meier
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| | - Navil F Sethna
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| | - Markus Blankenburg
- Department of Pediatric Neurology, Psychosomatic Medicine and Pain Therapy, Center for Child and Adolescent Medicine Olgahospital, Klinikum, Stuttgart, Germany
| | - Boris Zernikow
- German Paediatric Pain Centre, Children’s and Adolescents’ Hospital, Datteln; Chair of Children’s Pain Therapy and Paediatric Palliative Care, Witten/Herdecke University, Datteln, Germany
| | - Robert P Sundel
- Program in Rheumatology, Division of Immunology, Department of Medicine, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School Boston, Boston, USA
| | - Charles B Berde
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital; Department of Anesthesia, Harvard Medical School, 333 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
28
|
AASVANG EK, WERNER MU, KEHLET H. Assessment of deep tissue hyperalgesia in the groin - a method comparison of electrical vs. pressure stimulation. Acta Anaesthesiol Scand 2014; 58:986-96. [PMID: 25041382 DOI: 10.1111/aas.12361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment and preventive strategies. Thus, there is a need for development of methods with direct stimulation of suspected hyperalgesic tissues to identify the peripheral origin of nociceptive input. METHODS We compared the reliability of an ultrasound-guided needle stimulation protocol of electrical detection and pain thresholds to pressure algometry, by performing identical test-retest sequences 10 days apart, in deep tissues in the groin region. Electrical stimulation was performed by five up-and-down staircase series of single impulses of 0.04 ms duration, starting from 0 mA in increments of 0.2 mA until a threshold was reached and descending until sensation was lost. Method reliability was assessed by Bland-Altman plots, descriptive statistics, coefficients of variance and intraclass correlation coefficients. RESULTS The electrical stimulation method was comparable to pressure algometry regarding 10 days test-retest repeatability, but with superior same-day reliability for electrical stimulation (P < 0.05). Between-subject variance rather than within-subject variance was the main source for test variation. There were no systematic differences in electrical thresholds across tissues and locations (P > 0.05). CONCLUSION The presented tissue-specific direct deep tissue electrical stimulation technique has equal or superior reliability compared with the indirect tissue-unspecific stimulation by pressure algometry. This method may facilitate advances in mechanism based preventive and treatment strategies in acute and chronic post-surgical pain states.
Collapse
Affiliation(s)
- E. K. AASVANG
- Section of Surgical Pathophysiology; Rigshospitalet; Copenhagen University; Copenhagen Denmark
| | - M. U. WERNER
- Section of Surgical Pathophysiology; Rigshospitalet; Copenhagen University; Copenhagen Denmark
- Multidisciplinary Pain Centre; Rigshospitalet; Copenhagen University; Copenhagen Denmark
| | - H. KEHLET
- Section of Surgical Pathophysiology; Rigshospitalet; Copenhagen University; Copenhagen Denmark
| |
Collapse
|
29
|
Lötsch J, Oertel BG, Ultsch A. Human models of pain for the prediction of clinical analgesia. Pain 2014; 155:2014-21. [PMID: 25020003 DOI: 10.1016/j.pain.2014.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022]
Abstract
Human experimental pain models are widely used to study drug effects under controlled conditions. However, efforts to improve both animal and human experimental model selection, on the basis of increased understanding of the underlying pathophysiological pain mechanisms, have been disappointing, with poor translation of results to clinical analgesia. We have developed an alternative approach to the selection of suitable pain models that can correctly predict drug efficacy in particular clinical settings. This is based on the analysis of successful or unsuccessful empirical prediction of clinical analgesia using experimental pain models. We analyzed statistically the distribution of published mutual agreements or disagreements between drug efficacy in experimental and clinical pain settings. Significance limits were derived by random permutations of agreements. We found that a limited subset of pain models predicts a large number of clinically relevant pain settings, including efficacy against neuropathic pain for which novel analgesics are particularly needed. Thus, based on empirical evidence of agreement between drugs for their efficacy in experimental and clinical pain settings, it is possible to identify pain models that reliably predict clinical analgesic drug efficacy in cost-effective experimental settings.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany; Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany.
| | - Bruno G Oertel
- Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Alfred Ultsch
- Data Bionics Research Group, University of Marburg, Marburg, Germany
| |
Collapse
|
30
|
Psychiatric agents and implications for perioperative analgesia. Best Pract Res Clin Anaesthesiol 2014; 28:167-81. [PMID: 24993437 DOI: 10.1016/j.bpa.2014.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/22/2022]
Abstract
The use of antidepressants, anxiolytics, mood stabilizers, anticonvulsants, and major tranquilizers introduces neurochemical, behavioral, cognitive, and emotional factors that increase the complexity of medical and surgical tasks. Increasingly, various classes of psychotropic medications are being prescribed in the perioperative setting for their analgesic properties in patients with or without a psychiatric diagnosis. In many cases, the precise mechanisms of action and dose-response relationships by which these agents mediate analgesia are largely unclear. An appreciation of the side effects and adverse-effect profiles of such medications and familiarity with the clinically relevant drug interactions that may occur in the perioperative setting are imperative to ensure the best possible outcome in dealing with patients on these medications. This review focuses on various classes of psychotropic agents, which are addressed individually, with particular focus on their analgesic properties. The latest published research is summarized, deficiencies in our current collective knowledge are discussed, and evidence-based recommendations are made for clinical practice.
Collapse
|
31
|
Sumracki NM, Buisman-Pijlman FTA, Hutchinson MR, Gentgall M, Rolan P. Reduced Response to the Thermal Grill Illusion in Chronic Pain Patients. PAIN MEDICINE 2014; 15:647-60. [DOI: 10.1111/pme.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Hursh SR, Roma PG. Behavioral economics and empirical public policy. J Exp Anal Behav 2013; 99:98-124. [PMID: 23344991 DOI: 10.1002/jeab.7] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/07/2012] [Indexed: 11/08/2022]
Abstract
The application of economics principles to the analysis of behavior has yielded novel insights on value and choice across contexts ranging from laboratory animal research to clinical populations to national trends of global impact. Recent innovations in demand curve methods provide a credible means of quantitatively comparing qualitatively different reinforcers as well as quantifying the choice relations between concurrently available reinforcers. The potential of the behavioral economic approach to inform public policy is illustrated with examples from basic research, pre-clinical behavioral pharmacology, and clinical drug abuse research as well as emerging applications to public transportation and social behavior. Behavioral Economics can serve as a broadly applicable conceptual, methodological, and analytical framework for the development and evaluation of empirical public policy.
Collapse
Affiliation(s)
- Steven R Hursh
- Institutes for Behavior Resources, 2104 Maryland Avenue, Baltimore, MD 21218, USA.
| | | |
Collapse
|
33
|
Cavallone LF, Frey K, Montana MC, Joyal J, Regina KJ, Petersen KL, Gereau RW. Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers. J Pain Res 2013; 6:771-84. [PMID: 24232380 PMCID: PMC3827105 DOI: 10.2147/jpr.s53437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction Heat/capsaicin skin sensitization is a well-characterized human experimental model to induce hyperalgesia and allodynia. Using this model, gabapentin, among other drugs, was shown to significantly reduce cutaneous hyperalgesia compared to placebo. Since the larger thermal probes used in the original studies to produce heat sensitization are now commercially unavailable, we decided to assess whether previous findings could be replicated with a currently available smaller probe (heated area 9 cm2 versus 12.5–15.7 cm2). Study design and methods After Institutional Review Board approval, 15 adult healthy volunteers participated in two study sessions, scheduled 1 week apart (Part A). In both sessions, subjects were exposed to the heat/capsaicin cutaneous sensitization model. Areas of hypersensitivity to brush stroke and von Frey (VF) filament stimulation were measured at baseline and after rekindling of skin sensitization. Another group of 15 volunteers was exposed to an identical schedule and set of sensitization procedures, but, in each session, received either gabapentin or placebo (Part B). Results Unlike previous reports, a similar reduction of areas of hyperalgesia was observed in all groups/sessions. Fading of areas of hyperalgesia over time was observed in Part A. In Part B, there was no difference in area reduction after gabapentin compared to placebo. Conclusion When using smaller thermal probes than originally proposed, modifications of other parameters of sensitization and/or rekindling process may be needed to allow the heat/capsaicin sensitization protocol to be used as initially intended. Standardization and validation of experimental pain models is critical to the advancement of translational pain research.
Collapse
Affiliation(s)
- Laura F Cavallone
- Department of Anesthesiology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Arendt-Nielsen L, Curatolo M. Mechanistic, translational, quantitative pain assessment tools in profiling of pain patients and for development of new analgesic compounds. Scand J Pain 2013; 4:226-230. [DOI: 10.1016/j.sjpain.2013.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Abstract
Background
Mechanistic, translational, human experimental pain assessment technologies (pain bio markers) can be used for: (1) profiling the responsiveness of various pain mechanisms and pathways in healthy volunteers and pain patients, and (2) profiling the effect of new or existing analgesic drugs or pain management procedures. Translational models, which may link mechanisms in animals to humans, are important to understand pain mechanisms involved in pain patients and as tools for drug development. This is urgently needed as many drugs which are effective in animal models fail to be efficient in patients as neither the mechanisms involved in patients nor the drugs’ mechanistic actions are known.
Aim
The aim of the present topical review is to provide the basis for how to use mechanistic human experimental pain assessment tools (pain bio markers) in the development of new analgesics and to characterise and diagnose pain patients. The future aim will be to develop such approaches into individualised pain management regimes.
Method
Experimental pain bio markers can tease out mechanistically which pain pathways and mechanisms are modulated in a given patient, and how a given compound modulates them. In addition, pain bio markers may be used to assess pain from different structures (skin, muscle and viscera) and provoke semi-pathophysiological conditions (e.g. hyperalgesia, allodynia and after-sensation) in healthy volunteers using surrogate pain models.
Results
With this multi-modal, multi-tissue, multi-mechanism pain assessment regime approach, new opportunities have emerged for profiling pain patients and optimising drug development. In this context these technologies may help to validate targets (proof-of-concept), provide dose-response relationships, predicting which patient population/characteristics will respond to a given treatment (individualised pain management), and hence provide better understanding of the underlying cause for responders versus non-responders to a given treatment.
Conclusion
In recent years, pain bio markers have been substantially developed to have now a role to play in early drug development, providing valuable mechanistic understanding of the drug action and used to characterise/profile pain patients. In drug development phase I safety volunteer studies, pain bio marker scan provide indication of efficacy and later if feasible be included in clinical phase II, III, and IV studies to substantiate mode-of-action.
Implications
Refining and optimizing the drug development process ensures a higher success rate, i.e. not discarding drugs that may be efficient and not push non-efficient drugs too far in the costly development process. Mechanism-based pain bio markers can help to qualify the development programmes and at the same time help qualifying them by pain profiling (phenotyping) and recognising the right patients for specific trials. The success rate from preclinical data to clinical outcome may be further facilitated by using specific translational pain bio-markers. As human pain bio markers are getting more and more advanced it could be expected that FDA and EMA in the future will pay more attention to such mechanism-related measures in the approval phase as proof-of-action.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Center for Sensory-Motor lnteraction (SMI), Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg , Denmark
| | - Michele Curatolo
- Department of Anaesthesiology and Pain Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
35
|
Grosen K, Fischer I, Olesen A, Drewes A. Can quantitative sensory testing predict responses to analgesic treatment? Eur J Pain 2013; 17:1267-1280. [DOI: 10.1002/j.1532-2149.2013.00330.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- K. Grosen
- Department of Cardiothoracic and Vascular Surgery; Aarhus University Hospital; Denmark
| | | | - A.E. Olesen
- Mech-Sense; Department of Gastroenterology and Hepatology; Aalborg Hospital; Aarhus University Hospital; Denmark
| | | |
Collapse
|
36
|
Campbell CM, Jamison RN, Edwards RR. Psychological screening/phenotyping as predictors for spinal cord stimulation. Curr Pain Headache Rep 2013; 17:307. [PMID: 23247806 DOI: 10.1007/s11916-012-0307-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal cord stimulation (SCS) is becoming a widely used treatment for a number of pain conditions and is frequently considered as a pain management option when conservative or less invasive techniques have proven to be ineffective. Potential indications for SCS include complex regional pain syndrome (CRPS), postherpetic neuralgia, traumatic nerve injury, failed back surgery syndrome, refractory angina pectoris, peripheral vascular disease, neuropathic pain, and visceral pain (Guttman et al. Pain Pract. 9:308-11, 2009). While research on SCS is in its infancy, it is clear that substantial variation exists in the degree of benefit obtained from SCS, and the procedure does not come without risks; thus focused patient selection is becoming very important. Psychological characteristics play an important role in shaping individual differences in the pain experience and may influence responses to SCS, as well as a variety of other pain treatments (Doleys Neurosurg Focus 21:E1, 2006). In addition to psychological assessment, quantitative sensory testing (QST) procedures offer another valuable resource in forecasting who may benefit most from SCS and may also shed light on mechanisms underlying the individual characteristics promoting the effectiveness of such procedures (Eisenberg et al. Pain Pract. 6:161-165, 2006). Here, we present a brief overview of recent studies examining these factors in their relationship with SCS outcomes.
Collapse
Affiliation(s)
- Claudia M Campbell
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
37
|
Krarup AL, Gunnarsson J, Brun J, Poulakis A, Edebo A, Ringström G, Drewes AM, Simrén M. Exploration of the effects of gender and mild esophagitis on esophageal pain thresholds in the normal and sensitized state of asymptomatic young volunteers. Neurogastroenterol Motil 2013; 25:766-e580. [PMID: 23822673 DOI: 10.1111/nmo.12172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinical data suggest gender differences in gastrointestinal pain, but very little experimental data exist. Esophageal painful thresholds to mechanical, thermal, electric, and chemical stimuli can be measured with the esophageal multimodal pain model. The aim was to measure the effect of gender and mild esophagitis on esophageal pain perception. METHODS Thirty-five healthy asymptomatic volunteers [19 men, median age 29 (22-56 years)] underwent upper GI endoscopy, 24 h pH/impedance measurement, and multimodal esophageal pain stimulation before and after sensitization with acid. Stimulus intensities at painful thresholds were recorded. KEY RESULTS Men had higher pain thresholds (PT) to mechanical stimulation (mean volume: men 20.9 ± 10 mL vs women 15.2 ± 6.8 mL, P = 0.02) and more men tolerated the maximum acid challenge (58% vs 20%, P = 0.03). There were no differences between genders for PT to (1) thermal stimulation [mean stimulation time (men, women): heat; 20 ± 5 s vs 21 ± 6 s or cold; 33.3 ± 20.1 s vs 20.7 ± 21.4 s, P > 0.2], (2) electrical current (mean current: men 17.6 ± 9.2 mA vs women 12.9 ± 3.7 mA, P = 0.11), or (3) acid volume [median volume: men 200 (20;200) mL vs women 133 (40;200) mL, P = 0.2]. Fifteen asymptomatic subjects had mild esophagitis (10 men, all Los Angeles A). There were no differences in esophageal PT between subjects with normal endoscopy or mild esophagitis (all P > 0.3). CONCLUSIONS & INFERENCES The effects of gender and mild esophagitis on esophageal multimodal pain perception have been measured in asymptomatic volunteers. The study suggests that gender, not mild esophagitis, tends to influence mechanical and chemical esophageal pain.
Collapse
Affiliation(s)
- A L Krarup
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oertel BG, Lötsch J. Clinical pharmacology of analgesics assessed with human experimental pain models: bridging basic and clinical research. Br J Pharmacol 2013; 168:534-53. [PMID: 23082949 DOI: 10.1111/bph.12023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 12/19/2022] Open
Abstract
The medical impact of pain is such that much effort is being applied to develop novel analgesic drugs directed towards new targets and to investigate the analgesic efficacy of known drugs. Ongoing research requires cost-saving tools to translate basic science knowledge into clinically effective analgesic compounds. In this review we have re-examined the prediction of clinical analgesia by human experimental pain models as a basis for model selection in phase I studies. The overall prediction of analgesic efficacy or failure of a drug correlated well between experimental and clinical settings. However, correct model selection requires more detailed information about which model predicts a particular clinical pain condition. We hypothesized that if an analgesic drug was effective in an experimental pain model and also a specific clinical pain condition, then that model might be predictive for that particular condition and should be selected for development as an analgesic for that condition. The validity of the prediction increases with an increase in the numbers of analgesic drug classes for which this agreement was shown. From available evidence, only five clinical pain conditions were correctly predicted by seven different pain models for at least three different drugs. Most of these models combine a sensitization method. The analysis also identified several models with low impact with respect to their clinical translation. Thus, the presently identified agreements and non-agreements between analgesic effects on experimental and on clinical pain may serve as a solid basis to identify complex sets of human pain models that bridge basic science with clinical pain research.
Collapse
Affiliation(s)
- Bruno Georg Oertel
- Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | | |
Collapse
|
39
|
Vuilleumier PH, Besson M, Desmeules J, Arendt-Nielsen L, Curatolo M. Evaluation of anti-hyperalgesic and analgesic effects of two benzodiazepines in human experimental pain: a randomized placebo-controlled study. PLoS One 2013; 8:e43896. [PMID: 23554851 PMCID: PMC3598812 DOI: 10.1371/journal.pone.0043896] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Background and Aims Compounds that act on GABA-receptors produce anti-hyperalgesia in animal models, but little is known on their effects in humans. The aim of this study was to explore the potential usefulness of GABA-agonism for the control of pain in humans. Two agonists at the benzodiazepine-binding site of GABAA-receptors (clobazam and clonazepam) were studied using multiple experimental pain tests. Positive results would support further investigation of GABA agonism for the control of clinical pain. Methods In a randomized double-blind crossover design, 16 healthy male volunteers received clobazam 20 mg, clonazepam 1 mg and tolterodine 1 mg (active placebo). The area of static hyperalgesia after intradermal capsaicin injection was the primary endpoint. Secondary endpoints were: area of dynamic hyperalgesia, response to von Frey hair stimulation, pressure pain thresholds, conditioned pain modulation, cutaneous and intramuscular electrical pain thresholds (1, 5 and 20 repeated stimulation), and pain during cuff algometry. Results For the primary endpoint, an increase in the area of static hyperalgesia was observed after administration of placebo (p<0.001), but not after clobazam and clonazepam. Results suggestive for an anti-hyperalgesic effect of the benzodiazepines were obtained with all three intramuscular pain models and with cuff algometry. No effect could be detected with the other pain models employed. Conclusions Collectively, the results are suggestive for a possible anti-hyperalgesic effect of drugs acting at the GABAA-receptors in humans, particularly in models of secondary hyperalgesia and deep pain. The findings are not conclusive, but support further clinical research on pain modulation by GABAergic drugs. Because of the partial results, future research should focus on compounds acting selectively on subunits of the GABA complex, which may allow the achievement of higher receptor occupancy than unselective drugs. Our data also provide information on the most suitable experimental models for future investigation of GABAergic compounds. Trial Registration ClinicalTrials.gov NCT01011036
Collapse
Affiliation(s)
- Pascal H. Vuilleumier
- University Department of Anesthesiology and Pain Therapy, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Marie Besson
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, University Hospital, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, University Hospital, Geneva, Switzerland
| | - Lars Arendt-Nielsen
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michele Curatolo
- University Department of Anesthesiology and Pain Therapy, Bern University Hospital, Inselspital, Bern, Switzerland
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
40
|
Krarup AL, Ny L, Gunnarsson J, Hvid-Jensen F, Zetterstrand S, Simrén M, Funch-Jensen P, Hansen MB, Drewes AM. Randomized clinical trial: inhibition of the TRPV1 system in patients with nonerosive gastroesophageal reflux disease and a partial response to PPI treatment is not associated with analgesia to esophageal experimental pain. Scand J Gastroenterol 2013; 48:274-84. [PMID: 23320520 DOI: 10.3109/00365521.2012.758769] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Many patients with nonerosive reflux disease (NERD) have insufficient relief on proton pump inhibitors (PPIs). Some patients have a hypersensitive esophagus and may respond to transient receptor potential vanilloid 1 (TRPV1) antagonists. Aim. To investigate the effect of the TRPV1 antagonist AZD1386 on experimental esophageal pain in NERD patients. MATERIAL AND METHODS Enrolled patients had NERD and a partial PPI response (moderate-to-severe heartburn or regurgitation ≥3 days/week before enrolment despite ≥6 weeks' PPI therapy). Fourteen patients (21-69 years, 9 women) were block-randomized into this placebo-controlled, double-blinded, crossover study examining efficacy of a single dose (95 mg) of AZD1386. On treatment days, each participant's esophagus was stimulated with heat, distension, and electrical current at teaching hospitals in Denmark and Sweden. Heat and pressure pain served as somatic control stimuli. Per protocol results were analyzed. RESULTS Of 14 randomized patients, 12 were treated with AZD1386. In the esophagus AZD1386 did not significantly change the moderate pain threshold for heat [-3%, 95% confidence interval (CI), -22;20%], distension (-11%, 95% CI, -28;10%), or electrical current (6%, 95% CI, -10;25%). Mean cutaneous heat tolerance increased by 4.9°C (95% CI, 3.7;6.2°C). AZD1386 increased the maximum body temperature by a mean of 0.59°C (95% CI, 0.40-0.79°C), normalizing within 4 h. CONCLUSIONS AZD1386 had no analgesic effect on experimental esophageal pain in patients with NERD and a partial PPI response, whereas it increased cutaneous heat tolerance. TRPV1 does not play a major role in heat-, mechanically and electrically evoked esophageal pain in these patients. ClinicalTrials.gov identifier: D9127C00002.
Collapse
Affiliation(s)
- Anne Lund Krarup
- Mech-Sense, Department of Gastroenterology and Hepatology, Aarhus University Hospital, Aalborg, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
O'Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 2013; 64:939-71. [PMID: 23023032 DOI: 10.1124/pr.112.006163] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes.
Collapse
Affiliation(s)
- Jessica O'Neill
- Neuroscience, Physiology and Pharmacology, University College London, London.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The endocannabinoid (eCB) system is involved in processes as diverse as control of appetite, perception of pain and the limitation of cancer cell growth and invasion. The enzymes responsible for eCB breakdown are attractive pharmacological targets, and fatty acid amide hydrolase inhibitors, which potentiate the levels of the eCB anandamide, are now undergoing pharmaceutical development. 'Drugable' selective inhibitors of monoacylglycerol lipase, a key enzyme regulating the levels of the other main eCB, 2-arachidonoylglycerol, were however not identified until very recently. Their availability has resulted in a large expansion of our knowledge concerning the pharmacological consequences of monoacylglycerol lipase inhibition and hence the role(s) played by the enzyme in the body. In this review, the pharmacology of monoacylglycerol lipase will be discussed, together with an analysis of the therapeutic potential of monoacylglycerol lipase inhibitors as analgesics and anticancer agents.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| |
Collapse
|
43
|
Tiippana E, Hamunen K, Kontinen V, Kalso E. The effect of paracetamol and tropisetron on pain: experimental studies and a review of published data. Basic Clin Pharmacol Toxicol 2012; 112:124-31. [PMID: 22905891 DOI: 10.1111/j.1742-7843.2012.00935.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 08/09/2012] [Indexed: 01/28/2023]
Abstract
Experimental studies suggest that paracetamol-induced analgesia is mediated via central serotonergic pathways and attenuated by 5-HT3-antagonists. However, clinical studies do not support this, and 5-HT3-antagonists are expected to reduce pain by blocking the descending pronociceptive pathway. The current project tested whether tropisetron attenuates analgesia by paracetamol. Two randomized, double-blind, crossover studies with 18 healthy male volunteers in each were performed. Pain stimuli were cold water immersion (cold pressor test), contact heat pain (study 1) and electrical stimulation (study 2). In both studies, tropisetron 5 mg i.v. or saline was administered, followed by paracetamol 2 g i.v. 30 min. later. Individual changes in heat and cold pain intensity, cold pain tolerance and unpleasantness were recorded. The same thresholds were also expressed as scores (% of the individual score at baseline). Additionally, previously published findings on the effects of paracetamol and its interaction with 5HT3-antagonists in human experimental pain models were reviewed. After calculation of the sensory and pain scores (%), tropisetron seemed to amplify the analgesic action of paracetamol. Paracetamol 2 g i.v. did not show any statistically significant analgesia in thermal tests (study 1), or differences in sensory, pain detection or moderate pain thresholds of the electrical stimulus (study 2). As paracetamol did not have a measurable analgesic effect in these tests, no conclusions can be drawn about the interaction between paracetamol and tropisetron. However, tropisetron may have an analgesic effect of its own. Clinicians should not avoid using these drugs together, unless larger clinical studies indicate otherwise.
Collapse
Affiliation(s)
- Elina Tiippana
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
44
|
Naidu MUR, Reddy KSK, Rani PU, Rao TRK. Development of a simple radiant heat induced experimental pain model for evaluation of analgesics in normal healthy human volunteers. Indian J Pharmacol 2012; 43:632-7. [PMID: 22144764 PMCID: PMC3229775 DOI: 10.4103/0253-7613.89816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/26/2011] [Accepted: 08/31/2011] [Indexed: 11/29/2022] Open
Abstract
Objective: Human experimental pain models help to understand the mechanism of the painful conditions and can also be adopted to test analgesic efficacy of drugs. In early phases, the clinical development of new analgesics is hindered due to the lack of reliable tests for the experimental pain models. In the present study, we have developed and validated a simple radiant heat pain model which can be used for future screening of various analgesic agents. Materials and Methods: We have standardized the thermal pain model by recording pain threshold and pain tolerance time in seconds at three different intensities and levels in 24 healthy subjects. Reproducibility of the test procedure was evaluated by recording the pain parameters by two observers on three consecutive days. Validity of model was further tested by evaluating the analgesic effect of tramadol. Results and Conclusions: Use of radiant heat pain model with high intensity and short level was found to produce low variability with coefficient of variation less than 5%. Interobserver and interperiod reproducibility was very good as shown by Bland - Altman plot; with most of the values within ± 2SD. Tramadol produced statistically significant increase in pain threshold time. The newly developed pain model produces a type of experimental pain which is responsive to analgesic effects of tramadol at clinically relevant doses.
Collapse
Affiliation(s)
- M U R Naidu
- ICMR Advance Centre for Clinical Pharmacodynamic, Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad - 500 082, India
| | | | | | | |
Collapse
|
45
|
Booker L, Kinsey SG, Abdullah RA, Blankman JL, Long JZ, Ezzili C, Boger DL, Cravatt BF, Lichtman AH. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br J Pharmacol 2012; 165:2485-96. [PMID: 21506952 DOI: 10.1111/j.1476-5381.2011.01445.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ(9) -tetrahydrocannabinol (THC). EXPERIMENTAL APPROACH Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses. KEY RESULTS FAAH (-/-) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role. CONCLUSIONS AND IMPLICATIONS AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Lamont Booker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dogrul A, Seyrek M, Yalcin B, Ulugol A. Involvement of descending serotonergic and noradrenergic pathways in CB1 receptor-mediated antinociception. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:97-105. [PMID: 22300745 DOI: 10.1016/j.pnpbp.2012.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/03/2012] [Accepted: 01/15/2012] [Indexed: 12/18/2022]
Abstract
Cannabinoids produce antinociceptive and antihyperalgesic effects mainly through activation of the inhibitory CB1 receptors. The demonstration that antinociceptive effects of systemic cannabinoids are significantly diminished following surgical dorsolateral funiculus lesion provides evidence that supraspinal sites and descending pain modulatory pathways play crucial roles in systemic cannabinoid analgesia. In this review, we will firstly provide a background, brief overview of descending modulatory pathways followed by descending pathways implicated in cannabinoid analgesia. We will then describe the recent evidence of the involvement of descending serotonergic and noradrenergic pathways in CB1 receptor-mediated antinociception. This review will provide evidences that systemically administered cannabinoids reinforce the descending serotonergic and noradrenergic pathways to produce acute antinociceptive effects via spinal 5-HT7, 5-HT2A and alpha-2 adrenoceptors activation.
Collapse
Affiliation(s)
- Ahmet Dogrul
- Department of Medical Pharmacology, Gulhane Military Academy of Medicine, Ankara, Turkey.
| | | | | | | |
Collapse
|
47
|
Olesen AE, Andresen T, Staahl C, Drewes AM. Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 2012; 64:722-79. [PMID: 22722894 DOI: 10.1124/pr.111.005447] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pain models in animals have shown low predictivity for analgesic efficacy in humans, and clinical studies are often very confounded, blurring the evaluation. Human experimental pain models may therefore help to evaluate mechanisms and effect of analgesics and bridge findings from basic studies to the clinic. The present review outlines the concept and limitations of human experimental pain models and addresses analgesic efficacy in healthy volunteers and patients. Experimental models to evoke pain and hyperalgesia are available for most tissues. In healthy volunteers, the effect of acetaminophen is difficult to detect unless neurophysiological methods are used, whereas the effect of nonsteroidal anti-inflammatory drugs could be detected in most models. Anticonvulsants and antidepressants are sensitive in several models, particularly in models inducing hyperalgesia. For opioids, tonic pain with high intensity is attenuated more than short-lasting pain and nonpainful sensations. Fewer studies were performed in patients. In general, the sensitivity to analgesics is better in patients than in healthy volunteers, but the lower number of studies may bias the results. Experimental models have variable reliability, and validity shall be interpreted with caution. Models including deep, tonic pain and hyperalgesia are better to predict the effects of analgesics. Assessment with neurophysiologic methods and imaging is valuable as a supplement to psychophysical methods and can increase sensitivity. The models need to be designed with careful consideration of pharmacological mechanisms and pharmacokinetics of analgesics. Knowledge obtained from this review can help design experimental pain studies for new compounds entering phase I and II clinical trials.
Collapse
Affiliation(s)
- Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark.
| | | | | | | |
Collapse
|
48
|
Graversen C, Olesen SS, Olesen AE, Steimle K, Farina D, Wilder-Smith OHG, Bouwense SAW, van Goor H, Drewes AM. The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices. Br J Clin Pharmacol 2012; 73:363-72. [PMID: 21950372 DOI: 10.1111/j.1365-2125.2011.04104.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To identify electroencephalographic (EEG) biomarkers for the analgesic effect of pregabalin in patients with chronic visceral pain. METHODS This was a double-blind, placebo-controlled study in 31 patients suffering from visceral pain due to chronic pancreatitis. Patients received increasing doses of pregabalin (75mg-300mg twice a day) or matching placebo during 3 weeks of treatment. Pain scores were documented in a diary based on a visual analogue scale. In addition, brief pain inventory-short form (BPI) and quality of life questionnaires were collected prior to and after the study period. Multi-channel resting EEG was recorded before treatment onset and at the end of the study. Changes in EEG spectral indices were extracted, and individual changes were classified by a support vector machine (SVM) to discriminate the pregabalin and placebo responses. Changes in individual spectral indices and pain scores were correlated. RESULTS Pregabalin increased normalized intensity in low spectral indices, most prominent in the theta band (3.5-7.5Hz), difference of -3.18, 95% CI -3.57, -2.80; P= 0.03. No changes in spectral indices were seen for placebo. The maximum difference between pregabalin and placebo treated patients was seen in the parietal region, with a classification accuracy of 85.7% (P= 0.009). Individual changes in EEG indices were correlated with changes in pain diary (P= 0.04) and BPI pain composite scores (P= 0.02). CONCLUSIONS Changes in spectral indices caused by slowing of brain oscillations were identified as a biomarker for the central analgesic effect of pregabalin. The developed methodology may provide perspectives to assess individual responses to treatment in personalized medicine.
Collapse
Affiliation(s)
- Carina Graversen
- Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Movement preparation and cortical processing of afferent inputs in cortical tremor: An event-related (de)synchronization (ERD/ERS) study. Clin Neurophysiol 2012; 123:1207-15. [DOI: 10.1016/j.clinph.2011.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/17/2011] [Accepted: 10/29/2011] [Indexed: 11/22/2022]
|
50
|
Napadow V, Edwards RR, Cahalan CM, Mensing G, Greenbaum S, Valovska A, Li A, Kim J, Maeda Y, Park K, Wasan AD. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. PAIN MEDICINE 2012; 13:777-89. [PMID: 22568773 DOI: 10.1111/j.1526-4637.2012.01385.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous vagus nerve stimulation (VNS) studies have demonstrated antinociceptive effects, and recent noninvasive approaches, termed transcutaneous-vagus nerve stimulation (t-VNS), have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. DESIGN Counterbalanced, crossover study. PATIENTS Patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. INTERVENTIONS/OUTCOMES: We evaluated evoked pain analgesia for respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) compared with nonvagal auricular stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least 1 week apart. Outcome measures included deep-tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. RESULTS RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N = 15 CPP patients, compared with NVAS, with moderate to large effect sizes (η(2) > 0.2). CONCLUSION Chronic pain disorders such as CPP are in great need of effective, nonpharmacological options for treatment. RAVANS produced promising antinociceptive effects for quantitative sensory testing (QST) outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain.
Collapse
Affiliation(s)
- Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|