1
|
Sommer J, Wozniak J, Schmitt J, Koch J, Stingl JC, Just KS. Assessment of Substrate Status of Drugs Metabolized by Polymorphic Cytochrome P450 (CYP) 2 Enzymes: An Analysis of a Large-Scale Dataset. Biomedicines 2024; 12:161. [PMID: 38255266 PMCID: PMC10813138 DOI: 10.3390/biomedicines12010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The analysis of substrates of polymorphic cytochrome P450 (CYP) enzymes is important information to enable drug-drug interactions (DDIs) analysis and the relevance of pharmacogenetics in this context in large datasets. Our aim was to compare different approaches to assess the substrate properties of drugs for certain polymorphic CYP2 enzymes. METHODS A standardized manual method and an automatic method were developed and compared to assess the substrate properties for the metabolism of drugs by CYP2D6, 2C9, and 2C19. The automatic method used a matching approach to three freely available resources. We applied the manual and automatic methods to a large real-world dataset deriving from a prospective multicenter study collecting adverse drug reactions in emergency departments in Germany (ADRED). RESULTS In total, 23,878 medication entries relating to 895 different drugs were analyzed in the real-world dataset. The manual method was able to assess 12.2% (n = 109) of drugs, and the automatic method between 12.1% (n = 109) and 88.9% (n = 796), depending on the resource used. The CYP substrate classifications demonstrated moderate to almost perfect agreements for CYP2D6 and CYP2C19 (Cohen's Kappa (κ) 0.48-0.90) and fair to moderate agreements for CYP2C9 (κ 0.20-0.48). CONCLUSION A closer look at different classifications between methods revealed that both methods are prone to error in different ways. While the automated method excels in time efficiency, completeness, and actuality, the manual method might be better able to identify CYP2 substrates with clinical relevance.
Collapse
Affiliation(s)
- Jakob Sommer
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Justyna Wozniak
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Judith Schmitt
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Jana Koch
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany; (J.S.); (J.W.); (J.K.); (J.C.S.)
| |
Collapse
|
2
|
Shen J, Wang B, Wang S, Chen F, Meng D, Jiang H, Zhou Y, Geng P, Zhou Q, Liu B. Effects of Voriconazole on the Pharmacokinetics of Vonoprazan in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2199-2206. [PMID: 32581516 PMCID: PMC7280087 DOI: 10.2147/dddt.s255427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Purpose The purpose of this study was to examine the effects of voriconazole on the pharmacokinetics of vonoprazan. Methods Fifteen Sprague-Dawley rats were randomly divided into three groups: five rats in each group, including control group, single-dose group (a single dose of 30 mg/kg of voriconazole), and multiple-dose group (multiple doses of 30 mg/(kg•day) per dose of voriconazole). Each group of rats was given an oral dose of 10 mg/kg vonoprazan 30 min after the administration of voriconazole or vehicle. After the oral administration of vonoprazan, 50 µL of blood was collected into 1.5-mL heparinized tubes via the caudal vein. The concentration of vonoprazan in plasma was quantified by ultra-performance liquid chromatography/tandem mass spectrometry. Both in vitro effects of voriconazole on vonoprazan and the mechanism of the observed inhibition were studied in rat liver microsomes. Results When orally administered, voriconazole increased the area under the plasma concentration-time curve (AUC), prolonged the elimination half-life (t1/2), and decreased the clearance (CL) of vonoprazan; there was no significant difference between the single-dose and multiple-dose groups. Voriconazole inhibited the metabolism of vonoprazan at an IC50 of 2.93 μM and showed mixed inhibition. The results of the in vivo experiments were consistent with those of the in vitro experiments. Conclusion Our findings provide the evidence of drug-drug interactions between voriconazole and vonoprazan that could occur with pre-administration of voriconazole. Thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of vonoprazan in clinical settings.
Collapse
Affiliation(s)
- Jiquan Shen
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China.,School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Feifei Chen
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Deru Meng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Hui Jiang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Bin Liu
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| |
Collapse
|
3
|
Wolfert C, Merbach M, Stammler G, Emrich O, Meid AD, Burhenne J, Blank A, Mikus G. [Management of chronic pain using extended release tilidine : Quality of life and implication of comedication on tilidine metabolism]. Schmerz 2019; 31:516-523. [PMID: 28597312 DOI: 10.1007/s00482-017-0228-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES The synthetic opioid tilidine is often used in chronic pain treatment. However, the activation via metabolism in patients with concomitant medication and reduced liver or kidney function is not thoroughly investigated. We therefore studied pain treatment efficacy, health-related quality of live and the metabolism of tilidine in patients with chronic pain. METHODS AND MATERIALS In all, 48 patients, who were on a stable dose of oral prolonged release tilidine for at least 7 days, were included in this observational multicenter study. Liver and kidney function were assessed in routine blood samples, concentrations of tilidine, nortilidine and bisnortilidine were determined using a validated LC/MS/MS method. Comedication was registered and patients experience with regard to quality of life, pain, gastrointestinal symptoms and adverse events was assessed in standardised questionnaires. RESULTS On average a daily dose of 180 mg tilidine was taken. Dose normalized plasma concentrations of the active metabolite nortilidine ranged between 1.6 ng/ml and 76.5 ng/ml (mean 29.2 ± 25.1 ng/ml). Ratios between tilidine and nortilidine were on average 0.28 (median = 0.13, standard deviation = 0.67). Patients were on 1 to 14 different concomitant medications. About 66% of the patients had sufficient pain treatment. Almost no opioid-induced constipation was observed. Only few patients had decreased kidney or liver function which did not result in elevated nortilidine concentrations. CONCLUSION Pain treatment using tilidine resulted in variable nortilidine concentrations which are obviously not strongly influenced by comedication or reduced liver or kidney function. Only a few side effects were observed with almost no opioid-induced constipation.
Collapse
Affiliation(s)
- C Wolfert
- Abteilung für Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| | - M Merbach
- St. Marien- und St. Annastiftskrankenhaus, Ludwigshafen, Deutschland
| | - G Stammler
- St. Marien- und St. Annastiftskrankenhaus, Ludwigshafen, Deutschland
| | - O Emrich
- Praxis für Allgemeinmedizin - spezielle Schmerztherapie, Schmerzzentrum Ludwigshafen, Ludwigshafen, Deutschland
| | - A D Meid
- Abteilung für Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| | - J Burhenne
- Abteilung für Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| | - A Blank
- Abteilung für Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| | - G Mikus
- Abteilung für Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland.
| |
Collapse
|
4
|
Zhang LY, Liu S, Zhao XJ, Wang N, Jiang X, Xin HS, Zhang YG. Lactobacillus rhamnosus GG modulates gastrointestinal absorption, excretion patterns, and toxicity in Holstein calves fed a single dose of aflatoxin B 1. J Dairy Sci 2018; 102:1330-1340. [PMID: 30594375 DOI: 10.3168/jds.2018-15444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to evaluate the effects of Lactobacillus rhamnosus GG (LGG; ATCC 53013) on growth performance and hepatotoxicity in calves fed a single dose of aflatoxin B1 (AFB1) and to investigate the absorption, distribution, and elimination of AFB1 and the hydroxylated metabolite aflatoxin M1 (AFM1) in rumen fluid, blood, and excretions. Twenty-four male Holstein calves were blocked for body weight and age and were randomly assigned to 1 of 3 treatment groups: (1) untreated control, (2) treated with 4.80 mg of AFB1 (AFB1 only), or (3) treated with 1 × 1010 cfu of LGG suspension and 4.80 mg of AFB1 (AFB1 plus LGG). The calves received LGG suspension in 50 mL of phosphate-buffered saline daily via oral administration for 14 d before and on the day they received a single oral dose of AFB1. Body weight was recorded at the beginning of the study (before LGG administration), at the day of AFB1 administration, and at the end of the trial. Rumen fluid, blood, urine, and feces samples were collected continuously for 96 h after AFB1 administration. Average daily gain (ADG) and plasma biochemical parameters were analyzed, and concentrations of AFB1 and AFM1 in the samples were determined for monitoring excretion pattern and toxicokinetics. The results showed that ADG was lower in AFB1-treated animals; LGG administration partially mitigated the decrease in ADG (0.85 ± 0.08 vs. 0.76 ± 0.18 kg of gain/d). The AFB1 treatment increased plasma aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase levels. Administration of LGG alleviated the AFB1-induced increase in plasma enzymes activity. The excretion patterns of AFB1 and AFM1 were surprisingly regular; toxins were rapidly detected in all samples after a single oral dose of AFB1, and the peak of toxins concentrations was sequentially reached in rumen fluid, plasma, urine, and feces (except AFM1 in rumen fluid), followed by an exponential decrease. The excretion curves showed that AFB1 and AFM1 concentrations were the highest in feces and urine, respectively. Administration of LGG decreased the concentrations of free AFB1 and AFM1 in rumen fluid and reduced the release of toxins into plasma and urine. Toxicokinetic parameters (except for the time of maximum concentration and the terminal half-life) were reduced by LGG administration. In conclusion, the absorption, distribution, and excretion of AFB1 and AFM1 were rapid in calves fed a single dose of AFB1. Urine was the main route for the excretion of AFM1, and the clearance pattern from the peak of concentration was well fitted by exponential decreasing function. Administration of LGG reduced the absorption of AFB1 in the gastrointestinal tract by increasing the excretion via the feces, thus alleviating the hepatotoxic effect of AFB1.
Collapse
Affiliation(s)
- L Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - S Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - X J Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - N Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - X Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - H S Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Y G Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Feng XQ, Zhu LL, Zhou Q. Opioid analgesics-related pharmacokinetic drug interactions: from the perspectives of evidence based on randomized controlled trials and clinical risk management. J Pain Res 2017; 10:1225-1239. [PMID: 28579821 PMCID: PMC5449157 DOI: 10.2147/jpr.s138698] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multimorbidity results in complex polypharmacy which may bear a risk of drug interactions. A better understanding of opioid analgesics combination therapy used for pain management could help warrant medication safety, efficacy, and economic relevance. Until now there has been no review summarizing the opioid analgesics-related pharmacokinetic drug interactions from the perspective of evidence based on randomized controlled trials (RCTs). METHOD A literature search was performed using PubMed, MEDLINE, and the Cochrane Library, using a PRISMA flowchart. RESULTS Fifty-two RCTs were included for data interpretation. Forty-two RCTs (80.8%) were conducted in healthy volunteers, whereas 10 RCTs (19.2%) enrolled true patients. None of the opioid-drug/herb pairs was listed as contraindications of opioids involved in this review. Circumstances in which opioid is comedicated as a precipitant drug include morphine-P2Y12 inhibitors, morphine-gabapentin, and methadone-zidovudine. Circumstances in which opioid is comedicated as an object drug include rifampin-opioids (morphine, tramadol, oxycodone, methadone), quinidine-opioids (morphine, fentanyl, oxycodone, codeine, dihydrocodeine, methadone), antimycotics-opioids (buprenorphine, fentanyl, morphine, oxycodone, methadone, tilidine, tramadol), protease inhibitors-opioids (ritonavir, ritonavir/lopinavir-oxycodone, ritonavir-fentanyl, ritonavir-tilidine), grapefruit juice-opioids (oxycodone, fentanyl, methadone), antidepressants-opioids (paroxetine-tramadol, paroxetine-hydrocodone, paroxetine-oxycodone, escitalopram-tramadol), metoclopramide-morphine, amantadine-morphine, sumatriptan-butorphanol nasal sprays, ticlopidine-tramadol, St John's wort-oxycodone, macrolides/ketolides-oxycodone, and levomepromazine-codeine. RCTs investigating the same combination, almost unanimously, drew consistent conclusions, except two RCTs on amantadine-intravenous morphine combination where a different amantadine dose was used and two RCTs on morphine-ticagrelor combination where healthy volunteers and true patients were enrolled, respectively. RCTs investigating in true patients may reflect a realistic clinical scenario and overcome the limitation of RCTs performed in healthy volunteers under standardized conditions. Further research opportunities are also presented in this review. CONCLUSION Effective and safe combination therapy of opioids can be achieved by promoting the awareness of potential changes in therapeutic efficacy and toxicities, prescribing alternatives or changing administration strategy, tailoring dose, reviewing the appropriateness of orders, and paying attention to medication monitoring.
Collapse
Affiliation(s)
- Xiu-Qin Feng
- Nursing Administration Office, Division of Nursing
| | | | - Quan Zhou
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Eichbaum C, Mathes K, Burhenne J, Markert C, Blank A, Mikus G. Pre-systemic elimination of tilidine: localization and consequences for the formation of the active metabolite nortilidine. Basic Clin Pharmacol Toxicol 2014; 116:129-33. [PMID: 25223231 DOI: 10.1111/bcpt.12328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/10/2014] [Indexed: 10/24/2022]
Abstract
The therapeutic activity of tilidine, an opioid analgesic, is mainly related to its active metabolite nortilidine. Nortilidine formation mainly occurs during the high intestinal first-pass metabolism of tilidine by N-demethylation. Elimination of the active nortilidine to the inactive bisnortilidine is also mediated by N-demethylation and is supposed to take place in the liver, probably at a smaller rate. The aim of this study was the investigation of the pre-systemic elimination of tilidine using grapefruit juice (GFJ) as an intestinal CYP3A4 inhibitor and efavirenz (EFV) as a CYP3A4 activator. A randomized, open, placebo-controlled, cross-over study was conducted in 12 healthy volunteers using 100 mg tilidine solution p.o., regular strength GFJ 250 mL (3 times at 12-hr intervals) and EFV 400 mg (12 hr before tilidine administration). Tilidine, nortilidine and bisnortilidine in plasma and urine were quantified by a validated LC/MS/MS analysis. GFJ did not change any pharmacokinetic parameter of tilidine and its metabolites, which suggests that intestinal CYP3A4 does not contribute to the first-pass metabolism of tilidine. No effect of EFV on the pharmacokinetics of the active nortilidine was observed except a significant reduction of the terminal elimination half-life by 15%. Overall elimination (renal and metabolic clearances) was unaffected by every treatment. CYP3A4 does not seem to play a major role in tilidine first-pass and overall metabolism. Other unknown metabolites and their enzymes responsible for their formation have to be investigated as they account for the majority of renally excreted metabolites.
Collapse
Affiliation(s)
- Christine Eichbaum
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Grün B, Merkel U, Riedel KD, Weiss J, Mikus G. Contribution of CYP2C19 and CYP3A4 to the formation of the active nortilidine from the prodrug tilidine. Br J Clin Pharmacol 2013; 74:854-63. [PMID: 22381043 DOI: 10.1111/j.1365-2125.2012.04261.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT The analgesic activity of tilidine is mediated by its active metabolite, nortilidine, which easily penetrates the blood-brain barrier and binds to the µ-opioid receptor as a potent agonist. Tilidine undergoes an extensive first-pass metabolism, which has been suggested to be mediated by CYP3A4 and CYP2C19; furthermore, strong inhibition of CYP3A4 and CYP2C19 by voriconazole increased exposure of nortilidine, probably by inhibition of further metabolism. The novel CYP2C19 gene variant CYP2C19*17 causes ultrarapid drug metabolism, in contrast to the *2 and *3 variants, which result in impaired drug metabolism. WHAT THIS STUDY ADDS Using a panel study with CYP2C19 ultrarapid and poor metabolizers, a major contribution of polymorphic CYP2C19 on tilidine metabolic elimination can be excluded. The potent CYP3A4 inhibitor ritonavir alters the sequential metabolism of tilidine, substantially reducing the partial metabolic clearances of tilidine to nortilidine and nortilidine to bisnortilidine, which increases the nortilidine exposure twofold. The lowest clearance in overall tilidine elimination is the N-demethylation of nortilidine to bisnortilidine. Inhibition of this step leads to accumulation of the active nortilidine. AIMS To investigate in vivo the effect of the CYP2C19 genotype on the pharmacokinetics of tilidine and the contribution of CYP3A4 and CYP2C19 to the formation of nortilidine using potent CYP3A4 inhibition by ritonavir. METHODS Fourteen healthy volunteers (seven CYP2C19 poor and seven ultrarapid metabolizers) received ritonavir orally (300 mg twice daily) for 3 days or placebo, together with a single oral dose of tilidine and naloxone (100 mg and 4 mg, respectively). Blood samples and urine were collected for 72 h. Noncompartmental analysis was performed to determine pharmacokinetic parameters of tilidine, nortilidine, bisnortilidine and ritonavir. RESULTS Tilidine exposure increased sevenfold and terminal elimination half-life fivefold during ritonavir treatment, but no significant differences were observed between the CYP2C19 genotypes. During ritonavir treatment, nortilidine area under the concentration-time curve was on average doubled, with no differences between CYP2C19 poor metabolizers [2242 h ng ml(-1) (95% confidence interval 1811-2674) vs. 996 h ng ml(-1) (95% confidence interval 872-1119)] and ultrarapid metabolizers [2074 h ng ml(-1) (95% confidence interval 1353-2795) vs. 1059 h ng ml(-1) (95% confidence interval 789-1330)]. The plasma concentration-time curve of the secondary metabolite, bisnortilidine, showed a threefold increase of time to reach maximal observed plasma concentration; however, area under the concentration-time curve was not altered by ritonavir. CONCLUSIONS The sequential metabolism of tilidine is inhibited by the potent CYP3A4 inhibitor, ritonavir, independent of the CYP2C19 genotype, with a twofold increase in the exposure of the active nortilidine.
Collapse
Affiliation(s)
- Barbara Grün
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
8
|
Effect of ketoconazole on the pharmacokinetic profile of buprenorphine following administration of a once-weekly buprenorphine transdermal system. Clin Drug Investig 2012; 32:583-92. [PMID: 22845044 DOI: 10.1007/bf03261913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Buprenorphine is extensively metabolized by cytochrome P450 (CYP) 3A4. This study evaluated the effect of ketoconazole, a CYP3A4 inhibitor, on the metabolism of buprenorphine following the administration of a buprenorphine transdermal system 10 μg/hour (BTDS 10). METHODS This single-centre study enrolled 20 healthy subjects who had demonstrated ketoconazole-mediated CYP3A4 inhibition via an erythromycin breath test. Subjects were randomized into a placebo-controlled, two-treatment, two-period crossover study. Subjects participated in a 7- to 14-day screening period, two baseline evaluations (day 0 [period 1] and day 16 [period 2]), two 12-day treatment periods (periods 1 and 2) separated by a 4-day washout period, and a study completion visit. Subjects received one BTDS 10 for 7 days per treatment period, administered concomitantly with either ketoconazole 200 mg twice daily or matching placebo. The main outcome measures were the ratios of geometric means for area under the plasma drug concentration versus time curve (AUC) from time zero to time of last measurable concentration (AUC(last)), AUC from time zero to infinity (AUC(∞)), and maximum plasma drug concentration (C(max)). RESULTS The ratio of geometric means (BTDS 10 with ketoconazole/BTDS 10 with placebo) was 99.4 (90% confidence interval [CI] 87.2, 113.3) for AUC(last) and 97.8 (90% CI 87.7, 109.1) for C(max). The ratio of geometric means for AUC(∞) was 86.7 (90% CI 70.7, 106.2). The plasma concentrations of the metabolites norbuprenorphine and norbuprenorphine-3β-glucuronide were slightly elevated following ketoconazole administration. BTDS 10 with ketoconazole was well tolerated and no apparent safety concerns were noted. CONCLUSION The lack of a clinically significant CYP3A4 interaction with ketoconazole following transdermal delivery of buprenorphine is consistent with the parenteral administration of a high clearance drug bypassing exposure to gut wall and hepatic CYP3A4 first-pass effects. Metabolism of buprenorphine during therapy with BTDS is also not expected to be affected by co-administration of other CYP3A4 inhibitors.
Collapse
|
9
|
Kapil RP, Cipriano A, Michels GH, Perrino P, O'Keefe SA, Shet MS, Colucci SV, Noveck RJ, Harris SC. Effect of ketoconazole on the pharmacokinetic profile of buprenorphine following administration of a once-weekly buprenorphine transdermal system. Clin Drug Investig 2012. [PMID: 22845044 DOI: 10.2165/11633060-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE Buprenorphine is extensively metabolized by cytochrome P450 (CYP) 3A4. This study evaluated the effect of ketoconazole, a CYP3A4 inhibitor, on the metabolism of buprenorphine following the administration of a buprenorphine transdermal system 10 μg/hour (BTDS 10). METHODS This single-centre study enrolled 20 healthy subjects who had demonstrated ketoconazole-mediated CYP3A4 inhibition via an erythromycin breath test. Subjects were randomized into a placebo-controlled, two-treatment, two-period crossover study. Subjects participated in a 7- to 14-day screening period, two baseline evaluations (day 0 [period 1] and day 16 [period 2]), two 12-day treatment periods (periods 1 and 2) separated by a 4-day washout period, and a study completion visit. Subjects received one BTDS 10 for 7 days per treatment period, administered concomitantly with either ketoconazole 200 mg twice daily or matching placebo. The main outcome measures were the ratios of geometric means for area under the plasma drug concentration versus time curve (AUC) from time zero to time of last measurable concentration (AUC(last)), AUC from time zero to infinity (AUC(∞)), and maximum plasma drug concentration (C(max)). RESULTS The ratio of geometric means (BTDS 10 with ketoconazole/BTDS 10 with placebo) was 99.4 (90% confidence interval [CI] 87.2, 113.3) for AUC(last) and 97.8 (90% CI 87.7, 109.1) for C(max). The ratio of geometric means for AUC(∞) was 86.7 (90% CI 70.7, 106.2). The plasma concentrations of the metabolites norbuprenorphine and norbuprenorphine-3β-glucuronide were slightly elevated following ketoconazole administration. BTDS 10 with ketoconazole was well tolerated and no apparent safety concerns were noted. CONCLUSION The lack of a clinically significant CYP3A4 interaction with ketoconazole following transdermal delivery of buprenorphine is consistent with the parenteral administration of a high clearance drug bypassing exposure to gut wall and hepatic CYP3A4 first-pass effects. Metabolism of buprenorphine during therapy with BTDS is also not expected to be affected by co-administration of other CYP3A4 inhibitors.
Collapse
Affiliation(s)
- Ram P Kapil
- Purdue Pharma L.P., Stamford, CT 06901, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wustrow I, Riedel KD, Mikus G, Weiss J. In vitro identification of the cytochrome P450 isozymes involved in the N-demethylation of the active opioid metabolite nortilidine to bisnortilidine. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:633-9. [DOI: 10.1007/s00210-012-0737-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
|