1
|
Chupradit S, Wamalwa DC, Maleche-Obimbo E, Kekitiinwa AR, Mwanga-Amumpaire J, Bukusi EA, Nyandiko WM, Mbuthia JK, Swanson A, Cressey TR, Punyawudho B, Musiime V. Abacavir Drug Exposures in African Children Under 14 kg Using Pediatric Solid Fixed Dose Combinations According to World Health Organization Weight Bands. J Pediatric Infect Dis Soc 2023; 12:574-580. [PMID: 37798141 PMCID: PMC10756690 DOI: 10.1093/jpids/piad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The pharmacokinetics of abacavir (ABC) in African children living with HIV (CLHIV) weighing <14 kg and receiving pediatric fixed dose combinations (FDC) according to WHO weight bands dosing are limited. An ABC population pharmacokinetic model was developed to evaluate ABC exposure across different World Health Organization (WHO) weight bands. METHODS Children enrolled in the LIVING study in Kenya and Uganda receiving ABC/lamivudine (3TC) dispersible tablets (60/30 mg) according to WHO weight bands. A population approach was used to determine the pharmacokinetic parameters. Monte Carlo simulations were conducted using an in silico population with demographic characteristics associated with African CLHIV. ABC exposures (AUC0-24) of 6.4-50.4 mg h/L were used as targets. RESULTS Plasma samples were obtained from 387 children. A 1-compartment model with allometric scaling of clearance (CL/F) and volume of distribution (V/F) according to body weight best characterized the pharmacokinetic data of ABC. The maturation of ABC CL/F was characterized using a sigmoidal Emax model dependent on postnatal age (50% of adult CL/F reached by 0.48 years of age). Exposures to ABC were within the target range for children weighing 6.0-24.9 kg, but children weighing 3-5.9 kg were predicted to be overexposed. CONCLUSIONS Lowering the ABC dosage to 30 mg twice daily or 60 mg once daily for children weighing 3-5.9 kg increased the proportion of children within the target and provided comparable exposures. Further clinical study is required to investigate clinical implications and safety of the proposed alternative ABC doses.
Collapse
Affiliation(s)
- Suthunya Chupradit
- PhD’s Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Dalton C Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | | | | | | | - Elizabeth A Bukusi
- Centre for Microbiology Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Winstone M Nyandiko
- Department of Child Health and Paediatrics—Moi University, AMPATH and Moi Teaching and Referral Hospital, Eldoret, Kenya
| | | | - Alistair Swanson
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- Drugs for Neglected Diseases Initiative, Nairobi, Kenya
- Drugs for Neglected Diseases Initiative, New York, USA
| | - DNDi Clinical Team
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- Drugs for Neglected Diseases Initiative, Nairobi, Kenya
- Drugs for Neglected Diseases Initiative, New York, USA
| | - Tim R Cressey
- AMS/IRD Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Baralee Punyawudho
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| |
Collapse
|
2
|
Smith NM, Chan A, Wilkinson LA, Chua HC, Nguyen TD, de Souza H, Shah AP, D'Argenio DZ, Mergenhagen KA. Open-source maximum a posteriori-bayesian dosing AdDS to current therapeutic drug monitoring: Adapting to the era of individualized therapy. Pharmacotherapy 2021; 41:953-963. [PMID: 34618919 DOI: 10.1002/phar.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
Recent updates in the therapeutic drug monitoring (TDM) guidelines for vancomycin have rekindled interest in maximum a posteriori-Bayesian (MAP-Bayesian) estimation of patient-specific pharmacokinetic parameters. To create a versatile infrastructure for MAP-Bayesian dosing of vancomycin or other drugs, a freely available, R-based software package, Advanced Dosing Solutions (AdDS), was created to facilitate clinical implementation of these improved TDM methods. The objective of this study was to utilize AdDS for pre- and post-processing of data in order to streamline the therapeutic management of vancomycin in healthy and obese veterans. Patients from a local Veteran Affairs hospital were utilized to compare the process of full re-estimation versus Bayesian updating of priors on healthy adult and obese patient populations for use with AdDS. Twenty-four healthy veterans were utilized to train (14/24) and test (10/24) the base pharmacokinetic model of vancomycin while comparing the effects of updated and fully re-estimated priors. This process was repeated with a total of 18 obese veterans for both training (11/18) and testing (7/18). Comparison of MAP objective function between the original and re-estimated models for healthy adults indicated that 78.6% of the subjects in the training and 70.0% of the subjects in the testing datasets had similar or improved predictions by the re-estimated model. For obese veterans, 81.8% of subjects in the training dataset and 85.7% of subjects in the testing dataset had similar or improved predictions. Re-estimation of model parameters provided more significant improvements in objective function compared with Bayesian updating, which may be a useful strategy in cases where sufficient samples and subjects are available. The generation of bespoke regimens based on patient-specific clearance and minimal sampling may improve patient care by addressing fundamental pharmacokinetic differences in healthy and obese veteran populations.
Collapse
Affiliation(s)
- Nicholas M Smith
- School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
- New York State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Arthur Chan
- Veterans Affair Hospital of Western New York, New York, New York, USA
| | - Laura A Wilkinson
- Veterans Affair Hospital of Western New York, New York, New York, USA
| | - Hubert C Chua
- CHI Baylor St. Luke's Medical Center, Houston, Texas, USA
| | - Thomas D Nguyen
- School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
- New York State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Harriet de Souza
- School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
- New York State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Anant P Shah
- School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
- New York State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - David Z D'Argenio
- Biomedical Simulations Resource, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
3
|
Archary M, Mcllleron H, Bobat R, LaRussa P, Sibaya T, Wiesner L, Hennig S. Population pharmacokinetics of abacavir and lamivudine in severely malnourished human immunodeficiency virus-infected children in relation to treatment outcomes. Br J Clin Pharmacol 2019; 85:2066-2075. [PMID: 31141195 PMCID: PMC6710509 DOI: 10.1111/bcp.13998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/02/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
AIMS Describe the pharmacokinetics (PK) of the antiretroviral drugs abacavir and lamivudine in malnourished paediatric patients and relate to viral load outcomes after 12 and 48 weeks of treatment. METHODS Severely malnourished human immunodeficiency virus-infected children were randomized to early (within 14 days) or delayed (after nutritional recovery) initiation of antiretroviral treatment (ART) using World Health Organization weight-band dosages. Abacavir and lamivudine concentrations were measured as a secondary objective on day 1 and day 14 and patients were followed-up to week 48. Population PK of abacavir and lamivudine were described using NONMEM. RESULTS In total, 623 abacavir and 627 lamivudine concentrations were collected from 75 paediatric patients aged 0.1-10.8 (median 1.4) years. Abacavir PK was described by a 2-compartment model, patients randomized to early ART showed increased bioavailability of 31%. Apparent clearance (CL/F, L/h/7 kg) of abacavir increased from day 1 to day 14 from 3.33 (95% confidence interval 2.71-4.12) to 5.86 (95% confidence interval 4.78-7.3). A 1-compartment model described lamivudine PK, variability on CL/F was explained by maturation with age, with age at half-matured CL/F being 4 months. For both drugs allometrically scaled total body weight was related to CL/F and apparent volume of distribution. PK exposure did not correlate with virological outcomes or death at 12 or 48 weeks. CONCLUSION Increases in Abacavir's CL/F between day 1 to day 14, bioavailability and PK variability with early start of ART was found in this cohort of severely malnourished children; however, these changes did not influence virological outcomes. The study supports the use of weight-band dosage tables.
Collapse
Affiliation(s)
- Moherndran Archary
- Department of Paediatrics and Children Health, King Edward VIII HospitalUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of Paediatrics and Children HealthUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Helen Mcllleron
- Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Raziya Bobat
- Department of Paediatrics and Children HealthUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Philip LaRussa
- Department of Paediatrics, College of Physicians & SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Thobekile Sibaya
- Department of Paediatrics and Children HealthUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Stefanie Hennig
- School of PharmacyThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
4
|
Euteneuer JC, Kamatkar S, Fukuda T, Vinks AA, Akinbi HT. Suggestions for Model-Informed Precision Dosing to Optimize Neonatal Drug Therapy. J Clin Pharmacol 2018; 59:168-176. [PMID: 30204236 DOI: 10.1002/jcph.1315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022]
Abstract
Evidence for dosing, efficacy, and safety of most medications used to treat neonates is sparse. Thus, dosing is usually derived by extrapolation from adult and pediatric pharmacologic data with scaling by body weight or body surface area. This may lead to drug dosing that is unsafe or ineffective. However, new strategies are being developed and studied to dose medications in critically ill neonates. Mass spectroscopy technology capable of quickly analyzing drug levels is readily available. Software that integrates population pharmacokinetics and pharmacodynamics with data from sparse samples from neonates allows for timely adjustments of dosing to achieve the desired effect while minimizing adverse outcomes. Some genetic polymorphisms that affect drug response in neonates have also been reported. This review highlights aspects of drug response and how it is impacted by prematurity, assesses pharmacogenomic studies in neonates, and offers suggestions for innovative pharmacokinetic/pharmacodynamic model-based approaches that combine population- or physiology-based pharmacology data, Bayesian analysis, and electronic decision support tools for precision dosing in neonates while illustrating examples where this approach can be used to optimize medical therapy in neonates. Barriers to implementing precision dosing in neonates and how to overcome them are also discussed.
Collapse
Affiliation(s)
- Joshua C Euteneuer
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.,Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Suyog Kamatkar
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Henry T Akinbi
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Yu H, Steeghs N, Kloth JSL, de Wit D, van Hasselt JGC, van Erp NP, Beijnen JH, Schellens JHM, Mathijssen RHJ, Huitema ADR. Integrated semi-physiological pharmacokinetic model for both sunitinib and its active metabolite SU12662. Br J Clin Pharmacol 2016; 79:809-19. [PMID: 25393890 DOI: 10.1111/bcp.12550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 12/31/2022] Open
Abstract
AIMS Previously published pharmacokinetic (PK) models for sunitinib and its active metabolite SU12662 were based on a limited dataset or lacked important elements such as correlations between sunitinib and its metabolite. The current study aimed to develop an improved PK model that circumvented these limitations and to prove the utility of the PK model in treatment optimization in clinical practice. METHODS One thousand two hundred and five plasma samples from 70 cancer patients were collected from three PK studies with sunitinib and SU12662. A semi-physiological PK model for sunitinib and SU12662 was developed incorporating pre-systemic metabolism using non-linear mixed effects modelling (nonmem). Allometric scaling based on body weight was applied. The final model was used for simulation of the PK of different treatment regimens. RESULTS Sunitinib and SU12662 PK were best described by a one and two compartment model, respectively. Introduction of pre-systemic formation of SU12662 strongly improved model fit, compared with solely systemic metabolism. The clearance of sunitinib and SU12662 was estimated at 35.7 (relative standard error (RSE) 5.7%) l h(-1) and 17.1 (RSE 7.4%) l h(-1), respectively for 70 kg patients. Correlation coefficients were estimated between inter-individual variability of both clearances, both volumes of distribution and between clearance and volume of distribution of SU12662 as 0.53, 0.48 and 0.45, respectively. Simulation of the PK model predicted correctly the ratio of patients who did not reach proposed PK targets for efficacy. CONCLUSIONS A semi-physiological PK model for sunitinib and SU12662 in cancer patients was presented including pre-systemic metabolism. The model was superior to previous PK models in many aspects.
Collapse
Affiliation(s)
- Huixin Yu
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gonzalez D, Paul IM, Benjamin DK, Cohen-Wolkowiez M. Advances in pediatric pharmacology, therapeutics, and toxicology. Adv Pediatr 2014; 61:7-31. [PMID: 25037123 PMCID: PMC4120955 DOI: 10.1016/j.yapd.2014.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the United States, passage of the FDASIA legislation made BPCA and PREA permanent, no longer requiring reauthorization every 5 years. This landmark legislation also stressed the importance of performing clinical trials in neonates when appropriate. In Europe the Pediatric Regulation, which went into effect in early 2007, also provides a framework for expanding pediatric clinical research. Although much work remains, as a result of greater regulatory guidance more pediatric data are reaching product labels.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA; Duke Clinical Research Institute, Duke University Medical Center, 2400 Pratt Street, Durham, NC 27705, USA
| | - Ian M Paul
- Department of Pediatrics, College of Medicine, Penn State University, 500 University Drive, HS83, Hershey, PA 17033, USA; Department of Public Health Sciences, College of Medicine, Penn State University, 500 University Drive, HS83, Hershey, PA 17033, USA
| | - Daniel K Benjamin
- Duke Clinical Research Institute, Duke University Medical Center, 2400 Pratt Street, Durham, NC 27705, USA; Department of Pediatrics, College of Medicine, Duke University, T901/Children's Health Center, Durham, NC 27705, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Duke University Medical Center, 2400 Pratt Street, Durham, NC 27705, USA; Department of Pediatrics, College of Medicine, Duke University, T901/Children's Health Center, Durham, NC 27705, USA.
| |
Collapse
|
7
|
Abstract
For the first time, a population approach was used to describe abacavir (ABC) pharmacokinetics in HIV-infected pregnant and nonpregnant women. A total of 266 samples from 150 women were obtained. No covariate effect (from age, body weight, pregnancy, or gestational age) on ABC pharmacokinetics was found. Thus, it seems unnecessary to adapt the ABC dosing regimen during pregnancy.
Collapse
|
8
|
Zhao W, Piana C, Danhof M, Burger D, Della Pasqua O, Jacqz-Aigrain E. Population pharmacokinetics of abacavir in infants, toddlers and children. Br J Clin Pharmacol 2014; 75:1525-35. [PMID: 23126277 DOI: 10.1111/bcp.12024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022] Open
Abstract
AIMS To characterize the pharmacokinetics of abacavir in infants, toddlers and children and to assess the influence of covariates on drug disposition across these populations. METHODS Abacavir concentration data from three clinical studies in human immunodeficiency virus-infected children (n = 69) were used for model building. The children received either a weight-normalized dose of 16 mg kg(-1) day(-1) or the World Health Organization recommended dose based on weight bands. A population pharmacokinetic analysis was performed using nonlinear mixed effects modelling VI. The influence of age, gender, bodyweight and formulation was evaluated. The final model was selected according to graphical and statistical criteria. RESULTS A two-compartmental model with first-order absorption and first-order elimination best described the pharmacokinetics of abacavir. Bodyweight was identified as significant covariate influencing the apparent oral clearance and volume of distribution. Predicted steady-state maximal plasma concentration and area under the concentration-time curve from 0 to 12 h of the standard twice daily regimen were 2.5 mg l(-1) and 6.1 mg h l(-1) for toddlers and infants, and 3.6 mg l(-1) and 8.7 mg h l(-1) for children, respectively. Model-based predictions showed that equivalent systemic exposure was achieved after once and twice daily dosing regimens. There were no pharmacokinetic differences between the two formulations (tablet and solution). The model demonstrated good predictive performance for dosing prediction in individual patients and, as such, can be used to support therapeutic drug monitoring in conjunction with sparse sampling. CONCLUSIONS The disposition of abacavir in children appears to be affected only by differences in size, irrespective of the patient's age. Maturation processes of abacavir metabolism in younger infants should be evaluated in further studies to demonstrate the potential impact of ontogeny.
Collapse
Affiliation(s)
- Wei Zhao
- Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Hurwitz SJ, Schinazi RF. Practical Considerations For Developing Nucleoside Reverse Transcriptase Inhibitors. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e175-226. [PMID: 23554824 DOI: 10.1016/j.ddtec.2012.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTI) remain a cornerstone of current antiretroviral regimens in combinations usually with a non-nucleoside reverse transcriptase inhibitor (NNRTI), a protease inhibitor (PI), or an integrase inhibitor (INI). The antiretroviral efficacy and relative safety of current NRTI results from a tight and relatively specific binding of their phosphorylated nucleoside triphosphates (NRTI-TP) with the HIV-1 reverse transcriptase which is essential for replication. The intracellular stability of NRTI-TP produces a sustained antiviral response, which makes convenient dosing feasible. Lessons learned regarding NRTI pharmacology screening, development, and use are discussed. NRTI and prodrugs currently under clinical development are outlined.
Collapse
Affiliation(s)
- Selwyn J Hurwitz
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA ; Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | | |
Collapse
|