1
|
Somji M, Solomon T. Use of a fractional 1570-nm diode laser scanner for nonablative face and neck rejuvenation. J COSMET LASER THER 2024; 26:143-149. [PMID: 39745250 DOI: 10.1080/14764172.2024.2441702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The use of non-ablative fractionated lasers for skin rejuvenation has been proven to be effective in improving skin texture, and has become popular due to minimal wounding, significantly shorter recovery times and decreased adverse effects. OBJECTIVE To retrospectively analyze improvement in skin texture in healthy women aged over 18 years with Fitzpatrick skin type II-IV. METHODS Participants received 3 facial and/or neck treatments with the 1570-nm fractional scanning diode laser at one-month intervals. Three months after the last treatment session two blinded evaluators assessed skin improvement using before and after photos. Pain and patient satisfaction were recorded. RESULTS Sixteen women with a mean age of 45.4 ± 4.1 years (range 35-50 years) and skin type II-IV were included in the analysis. All 16 participants received facial treatments and seven (43.8%) also received neck treatments. Three months follow-up evaluation showed that the majority of participants had at least a visible change in the treated areas. Mean pain score was low and decreased with each treatment session. CONCLUSION Skin treatment using fractional scanning 1570-nm diode laser improves skin laxity in women with skin types II-IV. Larger studies are warranted to further clarify the efficacy and safety of this modality.
Collapse
|
2
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Zhang X, Zhou Q, Qi Y, Chen X, Deng J, Zhang Y, Li R, Fan J. The effect of tomato and lycopene on clinical characteristics and molecular markers of UV-induced skin deterioration: A systematic review and meta-analysis of intervention trials. Crit Rev Food Sci Nutr 2024; 64:6198-6217. [PMID: 36606553 DOI: 10.1080/10408398.2022.2164557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lycopene as a natural antioxidant that have been studied for ultraviolet radiation (UVR) photo protection and is one of the most effective carotenoids to scavenge reactive oxygen species (ROS). This review aims to summarize the protective effect of tomato and lycopene on skin photo damage and skin photoaging in healthy subjects by reviewing the existing population intervention experiments. A total of five electronic databases including PubMed, Scopus, EBSCO, Web of Science and Cochrane Library were searched from inceptions to January 2021 without any restriction. Out of 19336 publications identified, 21 fulfilled the inclusion criteria and were meta-analysis. Overall, interventions supplementing tomato and lycopene were associated with significant reductions in Δa*, MMP-1, ICAM-1 and skin pigmentation; while tomato and lycopene supplementation were associated with significant increase in MED, skin thickness and skin density. Based on the results of this systematic review and meta-analysis, supplementation with tomato and lycopene could reduce skin erythema formation and improve the appearance and pigmentation of the skin, thereby preventing light-induced skin photodamage and skin photoaging. Lycopene-rich products could be used as endogenous sun protection and may be a potential nutraceutical for sun protection.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Somji M, Solomon T. Use of a fractional 1570-nm diode laser scanner for non-ablative face and neck rejuvenation. J Cosmet Dermatol 2024; 23 Suppl 1:19-26. [PMID: 38587300 DOI: 10.1111/jocd.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The use of non-ablative fractionated lasers for skin rejuvenation has been proven to be effective in improving skin texture, and has become popular due to minimal wounding, significantly shorter recovery times and decreased adverse effects. OBJECTIVE To retrospectively analyze improvement in skin texture in healthy women aged over 18 years with Fitzpatrick skin types II-IV. METHODS Participants received three facial and/or neck treatments with the 1570-nm fractional scanning diode laser at 1-month intervals. Three months after the last treatment session two blinded evaluators assessed skin improvement using before and after photos. Pain and patient satisfaction were recorded. RESULTS Sixteen women with a mean age of 45.4 ± 4.1 years (range 35-50 years) and skin type II-IV were included in the analysis. All 16 participants received facial treatments and seven (43.8%) also received neck treatments. Three months follow-up evaluation showed that the majority of participants had a visible change in the treated areas. Mean pain score was low and decreased with each treatment session. CONCLUSION Skin treatment using fractional scanning 1570-nm diode laser improves skin laxity in women with skin types II-IV. Larger studies are warranted to further clarify the efficacy and safety of this modality.
Collapse
|
5
|
Jang HY, Kim GB, Kim JM, Kang SY, Youn HJ, Park J, Ro SY, Chung EY, Park KH, Kim JS. Fisetin Inhibits UVA-Induced Expression of MMP-1 and MMP-3 through the NOX/ROS/MAPK Pathway in Human Dermal Fibroblasts and Human Epidermal Keratinocytes. Int J Mol Sci 2023; 24:17358. [PMID: 38139186 PMCID: PMC10743569 DOI: 10.3390/ijms242417358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Fisetin is a flavonoid found in plants and has been reported to be effective in various human diseases. However, the effective mechanisms of ultraviolet-A (UVA)-mediated skin damage are not yet clear. In this study, we investigated the protective mechanisms of fisetin regarding UVA-induced human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) damages. Fisetin showed a cytoprotective effect against UVA irradiation and suppressed matrix metalloproteinases (MMPs), MMP-1, and MMP-3 expression. In addition, fisetin was rescued, which decreased mRNA levels of pro-inflammatory cytokines, reactive oxygen species production, and the downregulation of MAPK/AP-1 related protein and NADPH oxidase (NOX) mRNA levels. Furthermore, UVA-induced MMP-1 and MMP-3 were effectively inhibited by siRNAs to NOX 1 to 5 in HDFs and HEKs. These results indicate that fisetin suppresses UVA-induced damage through the NOX/ROS/MAPK pathway in HDFs and HEKs.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
- Infectious Diseases Therapeutic Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Gi-Beum Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Jeong-Mi Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Hyun-Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Jinny Park
- Department of Medical Oncology and Hematology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea;
| | - Su Yeon Ro
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea
- BioMedical Science Graduate Program (BMSGP), Department of Emergency Medicine, Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| |
Collapse
|
6
|
Kim YH, Lim CY, Jung JI, Kim TY, Kim EJ. Protective effects of red orange ( Citrus sinensis [L.] Osbeck [Rutaceae]) extract against UVA-B radiation-induced photoaging in Skh:HR-2 mice. Nutr Res Pract 2023; 17:641-659. [PMID: 37529272 PMCID: PMC10375325 DOI: 10.4162/nrp.2023.17.4.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES The skin is the outermost organ of the human body and plays a protective role against external environmental damages, such as sunlight and pollution, which affect anti-oxidant defenses and skin inflammation, resulting in erythema or skin reddening, immunosuppression, and epidermal DNA damage. MATERIALS/METHODS The present study aimed to investigate the potential protective effects of red orange complex H extract (ROC) against ultraviolet (UV)-induced skin photoaging in Skh:HR-2 mice. ROC was orally administered at doses of 20, 40, and 80 mg/kg/day for 13 weeks, along with UV irradiation of the mice for 10 weeks. RESULTS ROC improved UV-induced skin barrier parameters, including erythema, melanin production, transepidermal water loss, elasticity, and wrinkle formation. Notably, ROC inhibited the mRNA expression of pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor α) and melanogenesis. In addition, ROC recovered the UV-induced decrease in the hyaluronic acid and collagen levels by enhancing genes expression. Furthermore, ROC significantly downregulated the protein and mRNA expression of matrix metalloproteinases responsible for collagen degradation. These protective effects of ROC against photoaging are associated with the suppression of UV-induced phosphorylation of c-Jun NH2-terminal kinase and activator protein 1 activation. CONCLUSIONS Altogether, our findings suggest that the oral administration of ROC exerts potential protective activities against photoaging in UV-irradiated hairless mice.
Collapse
Affiliation(s)
- Yoon Hee Kim
- Technology Development Center, BTC Corporation, Ansan 15588, Korea
| | - Cho Young Lim
- Technology Development Center, BTC Corporation, Ansan 15588, Korea
| | - Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - Tae Young Kim
- Technology Development Center, BTC Corporation, Ansan 15588, Korea
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
7
|
Jung J, Choi YJ, Yoo J, Choi SY, Kim E. Antiphotoaging Effect of AGEs Blocker™ in UVB-Irradiated Cells and Skh:HR-1 Hairless Mice. Curr Issues Mol Biol 2023; 45:4181-4199. [PMID: 37232735 DOI: 10.3390/cimb45050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chronic exposure to ultraviolet (UV) radiation is a major cause of photoaging. It involves extrinsic aging, wrinkle formation, and skin dehydration, and leads to excessive production of active oxygen that adversely affects the skin. Here, we investigated the antiphotoaging effect of AGEs BlockerTM (AB), which comprises Korean mint aerial part and fig and goji berry fruits. Compared to its individual components, AB was more potent at increasing the expression of collagen and hyaluronic acid and decreasing MMP-1 expression in UVB-irradiated Hs68 fibroblasts and HaCaT keratinocytes. In Skh:HR-1 hairless mice exposed to 60 mJ/cm2 UVB for 12 weeks, oral administration of 20 or 200 mg/kg/day AB restored skin moisture by improving UVB-induced erythema, skin moisture, and transepidermal water loss, and alleviated photoaging by improving UVB-induced elasticity and wrinkles. Moreover, AB upregulated the mRNA levels of hyaluronic acid synthase and collagen-related Col1a1, Col3a1, and Col4a1 genes, increasing hyaluronic acid and collagen expression, respectively. AB inhibited UVB-induced MAPK and AP-1 (c-fos) activation, resulting in significantly downregulated expression of MMP-1 and -9, which are responsible for collagen degradation. AB also stimulated the expression and activity of antioxidative enzymes and reduced lipid peroxidation. Thus, AB is a potential preventive and therapeutic agent for photoaging.
Collapse
Affiliation(s)
- JaeIn Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea
| | - JinHee Yoo
- Functional Ingredient Development Team, COSMAX NS, INC., Seongnam-si 13486, Republic of Korea
| | - Su-Young Choi
- Functional Ingredient Development Team, COSMAX NBT, INC., Seongnam-si 13486, Republic of Korea
| | - EunJi Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
Elsheikh MA, Gaafar PM, Khattab MA, A. Helwah MK, Noureldin MH, Abbas H. Dual-effects of caffeinated hyalurosomes as a nano-cosmeceutical gel counteracting UV-induced skin ageing. Int J Pharm X 2023; 5:100170. [PMID: 36844895 PMCID: PMC9950955 DOI: 10.1016/j.ijpx.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Caffeine (CAF) is a challenging natural bioactive compound with proven antiaging efficacy. However, being hydrophilic hampers its permeation through the skin. Our aim is to develop a novel CAF-loaded nano-cosmeceutical tool counteracting skin photoaging via improving CAF skin permeation using a bioactive nanocarrier. Caffeinated hyalurosomes are novel biocompatible antiaging nanoplatforms designed by immobilization of phospholipid vesicles with a hyaluronan polymer. Physicochemical properties of the selected hyalurosomes formulation showed nano-sized vesicles (210.10 ± 1.87 nm), with high zeta potential (-31.30 ± 1.19 mv), and high encapsulation efficiency (84.60 ± 1.05%). In vitro release results showed outstanding sustained release profile from caffeinated hyalurosomes compared to the CAF-loaded in conventional gel over 24 h. The in-vivo study revealed a photoprotective effect of caffeinated hyalurosomes, reflected from the intact and wrinkling-free skin. Results of biochemical analyses of oxidative stress, pro-inflammatory mediators, and anti-wrinkling markers further confirmed the efficacy of the prepared hyalurosomes compared to the CAF conventional gel. Finally, histopathological examination demonstrated normal histological structures of epidermal layers with minimal inflammatory cell infiltrates in the caffeinated hyalurosomes group compared to the positive control group. Conclusively, caffeinated hyalurosomes successfully achieved enhanced CAF loading and penetration into the skin besides the hydration effect of hyaluronan. Consequently, the developed delivery system presents a promising skin protection nano-platforms via the double effects of both hyaluronan and CAF, hence it guards against skin photodamage.
Collapse
Affiliation(s)
- Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M.E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, P.O. Box 1029, Egypt
| | - Mohamed A. Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | | | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, P.O. Box 1029, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt,Corresponding author at: Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, El-Bahira, Egypt Post Office, P.O. Box 22511, Damanhour, Egypt.
| |
Collapse
|
9
|
Zewail M, Gaafar PME, Youssef NAHA, Ali ME, Ragab MF, Kamal MF, Noureldin MH, Abbas H. Novel Siprulina platensis Bilosomes for Combating UVB Induced Skin Damage. Pharmaceuticals (Basel) 2022; 16:36. [PMID: 36678533 PMCID: PMC9865528 DOI: 10.3390/ph16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The recent interest in bioactive compounds from natural sources has led to the evolution of the skin care industry. Efforts to develop biologically active ingredients from natural sources have resulted in the emergence of enhanced skin care products. Spirulina (SPR), a nutritionally enriched cyanobacteria-type microalga, is rich in nutrients and phytochemicals. SPR possesses antioxidant, immunomodulatory, and anti-inflammatory activities. Spirulina-loaded bilosomes (SPR-BS), a novel antiaging drug delivery system, were designed for the first time by incorporation in a lecithin−bile salt-integrated system for bypassing skin delivery obstacles. The optimized BS had good entrapment efficiency, small particle size, optimal zeta potential, and sustained drug release pattern. Blank and SPR-loaded BS formulations were safe, with a primary irritancy index of <2 based on the Draize test. In vivo tests were conducted, and photoprotective antiaging effects were evaluated visually and biochemically by analyzing antioxidant, anti-inflammatory, and anti-wrinkling markers following ultraviolet (UV) B irradiation. Results of biochemical marker analysis and histopathological examination confirmed the superior antiaging effect of SPR-BS compared with SPR. Thus, SPR-loaded BS is a promising nanoplatform for SPR delivery, can be used for treating UV-induced skin damage, and offers maximum therapeutic outcomes.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Nancy Abdel Hamid Abou Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Alexandria P.O. Box 21500, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mai F. Ragab
- Pharmacology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo P.O. Box 11835, Egypt
| | - Miranda F. Kamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| |
Collapse
|
10
|
The CSIESA: A Novel Score for the Assessment of Intrinsic and Extrinsic Skin Aging Based on Reflectance Confocal Microscopy Imaging. Diagnostics (Basel) 2022; 12:diagnostics12123161. [PMID: 36553168 PMCID: PMC9777711 DOI: 10.3390/diagnostics12123161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Skin aging is an intricate physiological process governed by intrinsic and extrinsic factors. Increasing life expectancy has turned skin aging into a growing concern for the general population. Clinical examination of the skin does not fully describe the skin aging process. This study aims to evaluate the healthy skin of five different age groups in order to develop an easy-to-use confocal score for quantifying signs of skin aging and test the correlation between this new score and the already described clinical score, SCINEXA (score of intrinsic and extrinsic skin aging). Thirty-five subjects split into five age groups: <35; 36−45; 46−55; 56−65, and >65 years old were enrolled. Clinical signs were quantified using the SCINEXA score, and known confocal variables of skin aging were evaluated. Three different semi-quantitative scores were calculated: epidermal disarrangement score (EDS), epidermal hyperplasia score (EHS), and dermal score (DS). The EDS showed a stable trend up to the age of 65 and a dramatic increase in older subjects. EHS was characterized by an ascending trend from younger subjects to middle-aged ones. The DS was progressive with age, with a different proportion of distinct collagen types. The confocal CSIESA (confocal score for the assessment of intrinsic and extrinsic skin aging) score correlated well with the SCINEXA score. Reflectance confocal microscopy is a powerful, non-invasive technique for microscopically quantifying aging signs.
Collapse
|
11
|
Sugawara T. Sphingolipids as Functional Food Components: Benefits in Skin Improvement and Disease Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9597-9609. [PMID: 35905137 DOI: 10.1021/acs.jafc.2c01731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sphingolipids are ubiquitous components in eukaryotic organisms and have attracted attention as physiologically functional lipids. Sphingolipids with diverse structures are present in foodstuffs as these structures depend on the biological species they are derived from, such as mammals, plants, and fungi. The physiological functions of dietary sphingolipids, especially those that improve skin barrier function, have recently been noted. In addition, the roles of dietary sphingolipids in the prevention of diseases, including cancer and metabolic syndrome, have been studied. However, the mechanisms underlying the health-improving effects of dietary sphingolipids, especially their metabolic fates, have not been elucidated. Here, we review dietary sphingolipids, including their chemical structures and contents in foodstuff; digestion, intestinal absorption, and metabolism; and nutraceutical functions, based on the available evidence and hypotheses. Further research is warranted to clearly define how dietary sphingolipids can influence human health.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Lv J, Yang S, Lv M, Lv J, Sui Y, Guo S. Protective roles of mesenchymal stem cells on skin photoaging: A narrative review. Tissue Cell 2022; 76:101746. [PMID: 35182986 DOI: 10.1016/j.tice.2022.101746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Skin is a natural barrier of human body and a visual indicator of aging process. Exposure to ultraviolet (UV) radiation in the sunlight may injure the skin tissues and cause local damage. Besides, it is reported that repetitive or long-term exposure to UV radiation may reduce the collagen production, change the normal skin structure and cause premature skin aging. This is termed "photoaging". The classical symptoms of photoaging include increased roughness, wrinkle formation, mottled pigmentation or even precancerous changes. Mesenchymal stem cells (MSCs) are a kind of cells with the ability of self-renewal and multidirectional differentiation into many types of cells, like adipocytes, osteoblasts and chondrocytes. Researchers have explored diverse pharmacological actions of MSCs because of their migratory activity, paracrine actions and immunoregulation effects. In recent years, the huge potential of MSCs in preventing skin from photoaging has gained wide attention. MSCs exert their beneficial effects on skin photoaging via antioxidant effect, anti-apoptotic/anti-inflammatory effect, reduction of matrix metalloproteinases (MMPs) and activation of dermal fibroblasts proliferation. MSCs and MSC related products have demonstrated huge potential in the treatment of skin photoaging. This narrative review concisely sums up the recent research developments on the roles of MSCs in protection against photoaging and highlights the enormous potential of MSCs in skin photoaging treatment.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Yanan Sui
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Wang M, Li H, Zhang X, Yang L, Liu Y, Liu S, Sun Y, Zhao C. An analysis of skin thickness in the Dezhou donkey population and identification of candidate genes by RNA-seq. Anim Genet 2022; 53:368-379. [PMID: 35307856 DOI: 10.1111/age.13196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to analyze the main factors that have a significant impact on skin thickness, and to further identify the genes and signaling pathways regulating skin growth by RNA-seq in Dezhou donkeys. Skin samples from different body regions of 15 slaughtered donkeys were obtained to study variations in skin thickness over the bodies. Skin thickness data for another 514 donkeys was obtained by minimally invasive skin sampling from the back, and measurements of the donkeys' body size traits and pedigree data were also collected. These data were used to analyze changes in skin thickness and estimate genetic parameters. In addition, transcriptomic analysis was conducted on the skin tissues of individuals from two groups with significant differences in skin thickness. Our results showed that skin thickness over the bodies ranged from 1.08 to 4.36 mm. The skin from the back was the thickest and had the highest correlation with that of other regions of the body. The skin thickness decreased from the back to the side of the ventral abdomen, and the skin thickness on the limbs increased from the proximal end to the distal end. The results also showed that the skin from the same body regions of jacks was thicker than that of jennies in the same age group. The skin thickness of jennies increased from birth to the age of 2 and then clearly decreased after 2 years of age. The estimated heritability of skin thickness was 0.15, and the genetic correlations between skin thickness and body size traits were negligible. Transcriptome analysis showed that the thick-skin group had 65 up-regulated genes and 38 down-regulated genes compared with the thin-skin group. The differentially expressed genes were highly enriched in epidermal development and cell adhesion molecule signaling pathways. We identified the candidate genes responsible for variations in skin thickness in the Dezhou donkey, including KRT10, KRT1, CLDN9, MHCII and MMP28. These results contribute to a better understanding of the growth and development of donkey skin, reveal the molecular mechanism responsible for donkey skin thickness and suggest directions for genetic selection in the Dezhou donkey population.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Equine Center, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing, China.,Laboratory of Animal Genetics Resource and Molecular Breeding, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, Beijing, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co. Ltd, Liaocheng, China
| | - Xinhao Zhang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co. Ltd, Liaocheng, China
| | - Li Yang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co. Ltd, Liaocheng, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Equine Center, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing, China.,Laboratory of Animal Genetics Resource and Molecular Breeding, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, Beijing, China
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Chunjiang Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Equine Center, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing, China.,Laboratory of Animal Genetics Resource and Molecular Breeding, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, Beijing, China
| |
Collapse
|
14
|
Abbas H, El Sayed NS, Ali ME, Elsheikh MA. Integrated lecithin–bile salt nanovesicles as a promising approach for effective skin delivery of luteolin to improve UV-induced skin damage in Wistar Albino rats. Colloids Surf B Biointerfaces 2022; 211:112299. [DOI: 10.1016/j.colsurfb.2021.112299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
|
15
|
Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021; 13:nu13092917. [PMID: 34578794 PMCID: PMC8472736 DOI: 10.3390/nu13092917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Context: Astaxanthin (ASX), a xanthophyll carotenoid derived from microalgae Haematococcus pluvialis, mitigating skin photoaging and age-related skin diseases by its antioxidant and anti-inflammatory effects in animal studies. Objective: The aim was to systematically evaluate if ASX applications have anti-ageing effects in humans. Methods: A comprehensive search of PubMed, Scopus and Web of Science found a total of eleven studies. Nine randomised, controlled human studies assessed oral ASX effects and two open-label, prospective studies evaluated topical, oral-topical ASX effects on skin ageing. GetData Graph Digitizer was used to extract mean values and standard deviations of baseline and endpoint, and Cochrane Collaboration’s tool assessed RoB for all included studies. Review Manager 5.4 was used to conduct meta-analysis of RCTs; the results were reported as effect size ± 95% confidence interval. Results: Oral ASX supplementation significantly restored moisture content (SMD = 0.53; 95% CI = 0.05, 1.01; I2 = 52%; p = 0.03) and improved elasticity (SMD = 0.77; 95% CI = 0.19, 1.35; I2 = 75%; p = 0.009) but did not significantly decrease wrinkle depth (SMD = −0.26; 95% CI = −0.58, 0.06; I2 = 0%; p = 0.11) compared to placebo. Open-label, prospective studies suggested slightly protective effects of topical and oral-topical ASX applications on skin ageing. Conclusions: Ingestion and/or topical usages of ASX may be effective in reducing skin ageing and have promising cosmetical potential, as it improves moisture content and elasticity and reduces wrinkles.
Collapse
|
16
|
Catanzaro E, Bishayee A, Fimognari C. On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Mar Drugs 2020; 18:E544. [PMID: 33143013 PMCID: PMC7692561 DOI: 10.3390/md18110544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.
Collapse
Affiliation(s)
- Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
17
|
Syromiatnikova V, Idrisova K, Masgutova G, Gomzikova M, Kabwe E, Bek J, Andreeva D, Masgutov R, Mullakhmetova A, James V, Rizvanov A. Analyzing the Effectiveness of Adipose Tissue Stem Cell and Microvesicle Therapy in Premature Skin Aging Caused by Chronic Exposure to Ultraviolet Radiation. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00793-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Li X, Matsumoto T, Takuwa M, Saeed Ebrahim Shaiku Ali M, Hirabashi T, Kondo H, Fujino H. Protective Effects of Astaxanthin Supplementation against Ultraviolet-Induced Photoaging in Hairless Mice. Biomedicines 2020; 8:biomedicines8020018. [PMID: 31973028 PMCID: PMC7168265 DOI: 10.3390/biomedicines8020018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) light induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Astaxanthin (AST), a ketocarotenoid isolated from Haematococcus pluvialis, has been extensively studied owing to its possible effects on skin health as well as UV protection. In addition, AST attenuates the increased generation of reactive oxygen species (ROS) and capillary regression of the skeletal muscle. In this study, we investigated whether AST could protect against UV-induced photoaging and reduce capillary regression in the skin of HR-1 hairless mice. UV light induces wrinkle formation, epidermal thickening, and capillary regression in the dermis of HR-1 hairless mice. The administration of AST reduced the UV-induced wrinkle formation and skin thickening, and increased collagen fibers in the skin. AST supplementation also inhibited the generation of ROS, decreased wrinkle formation, reduced epidermal thickening, and increased the density of capillaries in the skin. We also found an inverse correlation between wrinkle formation and the density of capillaries. An association between photoaging and capillary regression in the skin was also observed. These results suggest that AST can protect against photoaging caused by UV irradiation and the inhibitory effects of AST on photoaging may be associated with the reduction of capillary regression in the skin.
Collapse
|
19
|
Aziz E, Batool R, Akhtar W, Rehman S, Shahzad T, Malik A, Shariati MA, Laishevtcev A, Plygun S, Heydari M, Rauf A, Ahmed Arif S. Xanthophyll: Health benefits and therapeutic insights. Life Sci 2019; 240:117104. [PMID: 31783054 DOI: 10.1016/j.lfs.2019.117104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 01/29/2023]
Abstract
Xanthophylls constitute a major part of carotenoids in nature. They are an oxidized version of carotenoid. Xanthophyll has widely drawn scientists' attentions in terms of its functionality, bioavailability and diversity. An assortment of xanthophyll varieties includes lutein, zeaxanthin, β-cryptoxanthin, capsanthin, astaxanthin, and fucoxanthin. Chemically, lutein and zeaxanthin are dipolar carotenoids with hydroxyl groups at both ends of their molecules that bestow hydrophilic properties to them. Hydrophilic affinity in lutein and zeaxanthin makes better bioavailability in reaction with singlet oxygen in water phase, whereas non-polar carotenoids have shown to have less efficiency in scavenging free radicals. Xanthophylls have been studied for their effects in a wide variety of diseases including neurologic, ophthalmologic, oral, allergic and immune diseases. This review highlights pharmaco-pharmaceutical applications of xanthophylls as well asits drug interactions with beta-carotene. Different types of xanthophylls have been shown to have neuroprotective effects. Fucoxanthin demonstrated potent antiplasmodial activity. Lutein and zeaxanthin prevent the progression of age related macular degeneration. They have also demonstrated promising effects on uveitis, retinitis pigmentosa, scleritis, cataracts, glaucoma, retinal ischemia and choroideremia. Astaxanthin showed to have skin protecting effects against ultraviolet light injury. Astaxanthin have anti-allergic activity against the contact dermatitis especially to treat the patients having adverse reactions induced by steroids. Astaxanthin has been reported to exert beneficial effects in preventing oral lichen planus and early stage cancers. β-cryptoxanthin has been considered a good candidate for prevention of bone loss via osteoblastic bone formation and inhibiting osteoclastic bone resorption. There is also some concern that higher dose of xanthophylls may be linked to increased risk of skin cancer and gastric adenocarcinoma. However this increased risk was not statistically significant when adjusted for confounding factors. Further researches including clinical studies are needed to better evaluate the efficacy and safety of xanthophylls in prevention and treatment of different diseases.
Collapse
Affiliation(s)
- Ejaz Aziz
- Department of Botany, GDC Khanpur, Haripur, Pakistan.
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, PMAS-UAAR, Rawalpindi, Pakistan.
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shazia Rehman
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Tasmeena Shahzad
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Ayesha Malik
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia
| | - Alexey Laishevtcev
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia; Federal Research Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow 109428, Russia
| | - Sergey Plygun
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia; European Society of Clinical Microbiology and Infectious Diseases, Basel 4051, Switzerland; All Russian Research Institute of Phytopathology, Moscow Region 143050, Russia
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan.
| | - Shaheer Ahmed Arif
- Bioproducts Sciences and Engineering Laboratory, Washington State University Tricities, 2710, Crimson way, Richland, WA 99354, USA
| |
Collapse
|
20
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
21
|
Iriyama S, Yamanishi H, Kunizawa N, Hirao T, Amano S. 1-(2-Hydroxyethyl)-2-imidazolidinone, a heparanase and matrix metalloproteinase inhibitor, improves epidermal basement membrane structure and epidermal barrier function. Exp Dermatol 2019; 28:247-253. [DOI: 10.1111/exd.13876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
|
22
|
Limbert G, Masen MA, Pond D, Graham HK, Sherratt MJ, Jobanputra R, McBride A. Biotribology of the ageing skin—Why we should care. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biotri.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Liu S, You L, Zhao Y, Chang X. Hawthorn Polyphenol Extract Inhibits UVB-Induced Skin Photoaging by Regulating MMP Expression and Type I Procollagen Production in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8537-8546. [PMID: 30032605 DOI: 10.1021/acs.jafc.8b02785] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ultraviolet (UV) B radiation can cause skin aging by increasing matrix metalloproteinase (MMP) production and collagen degradation, leading to the formation of wrinkles. This study investigated whether hawthorn polyphenol extract (HPE) protects against UVB-induced skin photoaging using HaCaT human keratinocytes, normal human dermal fibroblasts (HDFs), and mice. Analysis of the phenol composition of HPE by high-performance liquid chromatography-mass spectrometry showed that chlorogenic acid (13.5%), procyanidin B2 (19.2%), and epicatechin (18.8%) collectively accounted for 51.4% of total phenol content and represent the active ingredients of hawthorn fruit. A cell viability assay revealed that HPE treatment promoted cell proliferation in HaCaT cells and HDFs. On the other hand, MMP-1 and type I procollagen production was decreased and increased, respectively, in UVB-exposed cells treated with HPE as compared with those without treatment, as determined by enzyme-linked immunosorbent assay. Hematoxylin and eosin and Weigert staining of dermal tissue specimens from mice demonstrated that HPE also reversed UVB-induced epidermal thickening and dermal damage. The increase in production of reactive oxygen species and decrease in antioxidant enzyme activity as well as the increase in nuclear factor-κB activation and mitogen-activated protein kinase phosphorylation induced by UVB irradiation were reversed by HPE (100 or 300 mg/kg body weight), which also suppressed MMP expression and stimulated the production of type I procollagen in the dorsal skin of UVB-irradiated mice. These results suggest that HPE is a natural product that can prevent UVB radiation-induced skin photoaging.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Lu You
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Yanxue Zhao
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Xuedong Chang
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
- Hebei Yanshan Special Industrial Technology Research Institute , Qinhuangdao , Hebei 066004 , China
- Hebei (Chengde) Hawthorn Industrial Technology Research Institute , Chengde , Hebei 067000 , China
| |
Collapse
|
24
|
Pond D, McBride A, Davids L, Reddy B, Limbert G. Microstructurally-based constitutive modelling of the skin – Linking intrinsic ageing to microstructural parameters. J Theor Biol 2018; 444:108-123. [DOI: 10.1016/j.jtbi.2018.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
25
|
Dermal anti-oxidant, anti-inflammatory and anti-aging effects of Compritol ATO-based Resveratrol colloidal carriers prepared using mixed surfactants. Int J Pharm 2018; 541:37-47. [PMID: 29458209 DOI: 10.1016/j.ijpharm.2018.01.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/14/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
In this study, Compritol ATO-based Resveratrol colloidal carriers (CCCs) were prepared and subjected to characterization and evaluation. In most formulae, the use of a binary-mixture of surfactants improved the physicochemical properties. CCC6 (containing P407/P188 as bi-surfactants) attained the highest drug loading, release efficiency during 24 h and occlusive effect for 48 h; in addition, it showed a uniform particle size distribution within the desired range. In-vivo studies were done based on the analysis of anti-oxidant markers [catalase (CAT), reduced glutathione (GSH) and superoxide dismutase (SOD)], anti-inflammatory markers [interleukin 6 (IL-6), interleukin 8 (IL-8) and rat Nuclear factor-kappa B (NF-κB)] and anti-wrinkling markers [matrix metalloproteinase (MMP-1) and Granulocyte-macrophage colony-stimulating factor (GM-CSF)], after UVB-irradiation. Results were significantly different when comparing the positive control and the negative control groups (p < 0.05). Rats pre-treated with CCC6 showed a great amelioration, and the level of the biochemical markers was significantly different compared to those of the positive control group and those pre-treated with the drug suspension (p < 0.05). Also, the high skin protective effect of CCC6 was proved by visual and histopathological examination of the rats' skin. Therefore, the current study proves the beneficial effects of the designed dermal Resveratrol-loaded colloidal system.
Collapse
|
26
|
Park B, Hwang E, Seo SA, Cho JG, Yang JE, Yi TH. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1. Arch Biochem Biophys 2018; 637:31-39. [DOI: 10.1016/j.abb.2017.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
27
|
Han S, Lim TG, Kim JE, Yang H, Oh DK, Yoon Park JH, Kim HJ, Rhee YK, Lee KW. The Ginsenoside Derivative 20(S)-Protopanaxadiol Inhibits Solar Ultraviolet Light-Induced Matrix Metalloproteinase-1 Expression. J Cell Biochem 2017; 118:3756-3764. [PMID: 28379603 DOI: 10.1002/jcb.26023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023]
Abstract
Ginsenosides are major pharmacologically active compounds present in ginseng (Panax ginseng). Among the ginsenosides, 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (GPPD) and ginsenoside Rb1 (Rb1) have previously been reported to exhibit anti-wrinkle effects. In this study, 20(S)-protopanaxadiol (20(S)-PPD), an aglycone derivative of the Rb1 metabolite was investigated for its anti-wrinkle benefit and compared to GPPD and Rb1. The anti-wrinkle effect of 20(S)-PPD during solar UV light was investigated using a human skin equivalent model and human keratinocytes. 20(S)-PPD attenuated solar UV-induced matrix metalloproteinase (MMP)-1 expression to a greater extent than GPPD and Rb1. 20(S)-PPD treatment modulated MMP-1 mRNA expression and the transcriptional activity of activator protein (AP)-1, a major transcription factor of MMP-1. Two upstream signaling pathways for AP-1, the MEK1/2-ERK1/2-p90RSK and MEK3/6-p38 pathways, were also suppressed. Taken together, these findings highlight the potential of 20(S)-PPD for further development as a preventative agent for sunlight-induced skin wrinkle. J. Cell. Biochem. 118: 3756-3764, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seungmin Han
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Gyu Lim
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, 13539, Republic of Korea
| | - Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Goyang 10326, Republic of Korea
| | - Hee Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Young Kyoung Rhee
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, 13539, Republic of Korea
| | - Ki Won Lee
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
28
|
Kamel R, Abbas H, Fayez A. Diosmin/essential oil combination for dermal photo-protection using a lipoid colloidal carrier. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 170:49-57. [PMID: 28390258 DOI: 10.1016/j.jphotobiol.2017.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Solar irradiation induces skin inflammatory processes causing deleterious effects like premature ageing. In this study, the designed lipoid colloidal carrier (LCC) was loaded with Diosmin in combination with different essential oils, to be used as a topical photo-protective preparation. To investigate the ability of the essential oils to potentiate Diosmin effects, the Diosmin/essential oil-loaded LCCs (LCC2, LCC3 and LCC4) were compared to the Diosmin-loaded LCC (LCC1). The incorporated essential oils were those of Rosmarinus officinalis, Zingiber officinale or Vitis vinifera in LCC2, LCC3 and LCC4, respectively. All the LCCs had particle size (PS) values ranging from 121.1 to 144.3nm with uniform distribution and, zeta potential (Z) values around 30mV. Also, they all had high drug encapsulation efficiencies. LCC1 had the lowest anti-oxidant and in-vitro sun-blocking effect (p<0.05). In-vivo photo-protective studies showed that all the formulated LCCs had a skin protective effect when compared to the positive control (p<0.05); however LCC1 had the lowest anti-erythemal and anti-wrinkling effect. Histological studies proved the efficacy of the designed LCCs as skin anti-photoageing, with LCC1 showing the lowest anti-inflammatory and anti-wrinkling effect, while LCC2 had the highest anti-wrinkling effect. These results indicated that the suggested Diosmin/essential oil combinations improved the anti-oxidant, sun-blocking and anti-photoageing effects of Diosmin. After one year of storage, the LCCs showed satisfactory physical stability. This study presents the designed LCCs as safe and effective nano-structured dermal care products containing 'all-natural' components.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Center, Cairo, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Damanhour University, Egypt
| | - Ahmed Fayez
- Pharmacology Department, October University for Modern Science and Arts University, Egypt
| |
Collapse
|
29
|
Komatsu T, Sasaki S, Manabe Y, Hirata T, Sugawara T. Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One 2017; 12:e0171178. [PMID: 28170435 PMCID: PMC5295690 DOI: 10.1371/journal.pone.0171178] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis.
Collapse
Affiliation(s)
| | - Suguru Sasaki
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
30
|
Tanaka M, Yamamoto Y, Misawa E, Nabeshima K, Saito M, Yamauchi K, Abe F, Furukawa F. Effects of Aloe Sterol Supplementation on Skin Elasticity, Hydration, and Collagen Score: A 12-Week Double-Blind, Randomized, Controlled Trial. Skin Pharmacol Physiol 2017; 29:309-317. [DOI: 10.1159/000454718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
|
31
|
|
32
|
Mezzana P, Valeriani M, Valeriani R. Combined fractional resurfacing (10600 nm/1540 nm): Tridimensional imaging evaluation of a new device for skin rejuvenation. J COSMET LASER THER 2016; 18:397-402. [DOI: 10.1080/14764172.2016.1202417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Kazanci A, Kurus M, Atasever A. Analyses of changes on skin by aging. Skin Res Technol 2016; 23:48-60. [DOI: 10.1111/srt.12300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- A. Kazanci
- Department of Histology & Embriyology; Inonu University Faculty of Medicine; Malatya Turkey
| | - M. Kurus
- Department of Histology & Embriyology; Izmir Katip Celebi University Faculty of Medicine; Izmir Turkey
| | - A. Atasever
- Department of Anatomy; Medipol University Faculty of Medicine; Istanbul Turkey
| |
Collapse
|
34
|
The Effects of an Oral Supplement (Viscoderm Pearls) on Premature Skin Aging Induced by Excessive Solar Ultraviolet Radiation. Holist Nurs Pract 2016; 30:236-40. [PMID: 27309412 DOI: 10.1097/hnp.0000000000000156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Madduma Hewage SRK, Piao MJ, Kang KA, Ryu YS, Han X, Oh MC, Jung U, Kim IG, Hyun JW. Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes. Biomol Ther (Seoul) 2016; 24:312-9. [PMID: 26797112 PMCID: PMC4859795 DOI: 10.4062/biomolther.2015.139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin (C28H34O15) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Xia Han
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Chang Oh
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
36
|
Mercurio D, Jdid R, Morizot F, Masson P, Maia Campos P. Morphological, structural and biophysical properties of French and Brazilian photoaged skin. Br J Dermatol 2016; 174:553-61. [DOI: 10.1111/bjd.14280] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/30/2022]
Affiliation(s)
- D.G. Mercurio
- NEATEC; Faculty of Pharmaceutical Science of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - R. Jdid
- Chanel Research and Technology Centre; Pantin France
| | - F. Morizot
- Chanel Research and Technology Centre; Pantin France
| | | | - P.M.B.G. Maia Campos
- NEATEC; Faculty of Pharmaceutical Science of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
37
|
Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 2016; 41:69-77. [PMID: 28123324 PMCID: PMC5223080 DOI: 10.1016/j.jgr.2016.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. METHODS Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. RESULTS In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. CONCLUSION These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.
Collapse
Affiliation(s)
- Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Sang-Yong Park
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Chang Shik Yin
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hee-Taek Kim
- College of Oriental Medicine, Semyung University, Jecheon, Chungbuk, Korea
| | - Yong Min Kim
- College of Oriental Medicine, Semyung University, Jecheon, Chungbuk, Korea
| | - Tae Hoo Yi
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
38
|
Hwang E, Park SY, Jo H, Lee DG, Kim HT, Kim YM, Yin CS, Yi TH. Efficacy and Safety of Enzyme-Modified Panax ginseng for Anti-Wrinkle Therapy in Healthy Skin: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Study. Rejuvenation Res 2015; 18:449-57. [DOI: 10.1089/rej.2015.1660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Yongin, Republic of Korea
| | - Sang-Yong Park
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Yongin, Republic of Korea
| | - Hae Jo
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Don-Gil Lee
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Yongin, Republic of Korea
| | - Hee-Taek Kim
- College of Oriental Medicine, Semyung University, Jecheon, Korea
| | - Yong Min Kim
- College of Oriental Medicine, Semyung University, Jecheon, Korea
| | - Chang Shik Yin
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Hoo Yi
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Yongin, Republic of Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| |
Collapse
|
39
|
Cell-based assay system for high-throughput screening of anti-photo-aging agents in fibroblast transfectants. Cytotechnology 2015; 68:1633-40. [PMID: 26281901 DOI: 10.1007/s10616-015-9907-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
The matricellular protein CCN1 is significantly elevated in acutely ultraviolet-irradiated human skin and negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation. In this study, we established a stable cell line, termed CCN1-GFs, by transfection of the pAcGFP1-1-CCN1 promoter plasmid and examined its usefulness as a cell-based assay system for screening anti-aging ingredients. The promoter of the reporter plasmid pAcGFP1-1-CCN1 promoter was transfected into NIH3T3 cells using the Lipofectamine reagent. G418-resistant cells were selected and further cloned. To confirm whether AcGFP1-1-CCN1 promoter plasmid recombined in the NIH3T3 cells, the level of AcGFP1-1-CCN1 was measured by PCR analysis. To determine if NIH3T3 cells expressed the gene encoding green fluorescence protein in a CCN1 promoter-dependent manner, the reporter enzyme activities were assayed using a fluorimeter and flow cytometer. To determine if CCN1 inhibitor, which was selected through this system, exerted a direct effect on the downstream signal, mRNA expression of collagen1 and MMP1A was checked by using real-time PCR. UVB irradiation of CCN1-GFs resulted in increased CCN1 promoter activity. Treatment with retinoic acid, a CCN1 inhibitor, inhibited UV-induced CCN1 promoter activity. Subsequent use of this assay system to screen anti-aging ingredients revealed that CCN1-GFs treated with sclareol showed decreased levels of UVB-induced CCN1 expression. Sclareol attenuated UVB-induced photo-aging by an increase in collagen synthesis and decrease in MMP-1 activity.
Collapse
|
40
|
Yao C, Lee DH, Oh JH, Kim MK, Kim KH, Park CH, Chung JH. Poly(I:C) induces expressions of MMP-1, -2, and -3 through various signaling pathways including IRF3 in human skin fibroblasts. J Dermatol Sci 2015; 80:54-60. [PMID: 26255711 DOI: 10.1016/j.jdermsci.2015.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Ultraviolet (UV) irradiation can result in premature skin aging (photoaging) which is characterized by decreased expression of collagen and increased expression of matrix metalloproteinases (MMPs). Double-stranded RNAs (dsRNAs) can be generated at various conditions including virally infected cells or UV-damaged skin cells. Recent studies have shown that a synthetic dsRNA, polyinosinic-polycytidylic acid (poly(I:C)), can reduce procollagen expression in human skin fibroblasts. However, little is known about the effect of poly(I:C) on the expression of MMPs in skin fibroblasts and its underlying mechanisms. OBJECTIVE We examined the effect of poly(I:C) on MMP-1, -2, and -3 expressions in human skin fibroblasts. Then, we further explored the underlying signaling pathways involved in the processes. METHODS Human skin fibroblasts were treated with poly(I:C) for the indicated times in the presence or the absence of various chemical inhibitors or small interfering RNAs (siRNAs) at the indicated concentrations. Protein and mRNA levels of various target molecules were examined by Western blotting and quantitative real-time PCR, respectively. RESULTS Poly(I:C) induced MMP-1, -2, and -3 expressions, which were dependent on TLR3. Poly(I:C) also induced activations of the mitogen-activated protein kinases (MAPKs), the nuclear factor-kappaB (NF-κB) and the interferon regulatory factor 3 (IRF3) pathways. By using specific inhibitors, we found that poly(I:C)-induced expressions of MMP-1, -2, and -3 were differentially regulated by these signaling pathways. In particular, we found that the inhibition of IRF3 signaling pathways attenuated poly(I:C)-induced expressions of all the three MMPs. CONCLUSION Our data show that the expressions of MMP-1, -2, and -3 are induced by poly(I:C) through various signaling pathways in human skin fibroblasts and suggest that TLR3 and/or IRF3 may be good targets for regulating the expressions of MMP-1, -2, and -3 induced by dsRNAs.
Collapse
Affiliation(s)
- Cheng Yao
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Adachi H, Murakami Y, Tanaka H, Nakata S. Increase of stratifin triggered by ultraviolet irradiation is possibly related to premature aging of human skin. Exp Dermatol 2015; 23 Suppl 1:32-6. [PMID: 25234834 DOI: 10.1111/exd.12390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 02/05/2023]
Abstract
Although ultraviolet (UV) rays cause premature aging of human skin, which is called photoaging, its detailed mechanisms are not known. Stratifin (SFN), a member of the 14-3-3 protein family, is secreted by keratinocytes on human skin, and has an effect on gene expression in other cells. In this study, the association of SFN with the mechanism of photoaging was investigated. The effect of UVB irradiation on SFN expression in epidermal keratinocytes was examined by in vitro and in vivo studies. In addition, the effects of SFN on epidermal keratinocytes and dermal fibroblasts were examined. SFN mRNA expression and protein levels increased significantly in UVB-irradiated keratinocytes. SFN significantly decreased filaggrin and serine palmitoyltransferase mRNA expression in epidermal keratinocytes and hyaluronan synthase 2 mRNA expression in dermal fibroblasts. In addition, it was reconfirmed that SFN induces the downregulation of collagen content through changes of COL-1, MMP-1 and MMP-2 mRNA expressions. Furthermore, the expression level of SFN mRNA was significantly higher in sun-exposed compared with that in sun-shielded skin. These results suggest that SFN affects the water-holding capacity, barrier function and dermal matrix components in photoaging skin. An increase of SFN triggered by UVB irradiation may be one of the causes of alterations observed in photoaging skin.
Collapse
Affiliation(s)
- Hiroaki Adachi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | | | | | | |
Collapse
|
42
|
Kawano A, Kadomatsu R, Ono M, Kojima S, Tsukimoto M, Sakamoto H. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors. PLoS One 2015; 10:e0127919. [PMID: 26030257 PMCID: PMC4452185 DOI: 10.1371/journal.pone.0127919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/20/2015] [Indexed: 01/29/2023] Open
Abstract
Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors.
Collapse
Affiliation(s)
- Ayumi Kawano
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
| | - Remi Kadomatsu
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
| | - Miyu Ono
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda-shi Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda-shi Chiba, Japan
| | - Hikaru Sakamoto
- Radioisotope Research Laboratory, School of Pharmacy, Kitasato University, Shirokane, Minato-ku Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
Bai B, Liu Y, You Y, Li Y, Ma L. Intraperitoneally administered biliverdin protects against UVB-induced skin photo-damage in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:35-41. [PMID: 25689514 DOI: 10.1016/j.jphotobiol.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 12/25/2022]
Abstract
Oxidative stress is shown to be responsible for ultraviolet B (UVB) irradiation-induced skin cancer and premature aging. Biliverdin (BVD), a product of heme oxygenase-1, has strong anti-oxidant and anti-inflammatory properties. In the present study, we investigated the effects of BVD on UVB-induced skin photo-damage in hairless mice. Mice were divided into three groups: control group, UVB group (only UVB irradiation) and BVD+UVB group (mice were intraperitoneally injected with BVD before each UVB irradiation). Intraperitoneal BVD injection resulted in a significant photoprotective effect by reducing morphological and histopathological changes to the skin. BVD also exhibited a significant antioxidant effect by increasing the superoxide dismutase (SOD) level and decreasing the thiobarbituric acid reactive substances (TBARS) level compared with the control group. In addition, BVD activated biliverdin reductase (BVR) expression and inhibited the UVB-induced increase of p38 mitogen-activated protein kinase phosphorylation (p-p38MAPK), MMP (matrix metalloproteinase)-1 and MMP-3 expression (p<0.05). It also significantly decreased the interleukin (IL)-6 level compared with the UVB group (p<0.05). In conclusion, these data suggest that the intraperitoneally administered BVD can prevent UVB irradiation-induced skin photo-damage in hairless mice and that this is likely mediated by its antioxidant and anti-inflammatory mechanisms and cell signal regulatory action.
Collapse
Affiliation(s)
- Bingxue Bai
- The Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150081, China
| | - Yingdi Liu
- The Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150081, China
| | - Yan You
- The Department of Dermatology, The Third Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150040, China
| | - Yuzhen Li
- The Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150081, China
| | - Liangjuan Ma
- The Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150081, China.
| |
Collapse
|
44
|
Xu X, Wang HY, Zhang Y, Liu Y, Li YQ, Tao K, Wu CT, Jin JD, Liu XY. Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: a potential role of Wnt and β-catenin signaling. Cell Biosci 2014; 4:24. [PMID: 24917925 PMCID: PMC4050444 DOI: 10.1186/2045-3701-4-24] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is well established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize UV-induced photoaging of skin. However, the exact molecular basis underlying the anti-photoaging effects exerted by ADSCs is not well understood, and whether ADSCs cooperate with fractional carbon dioxide (CO2) laser to facilitate photoaging skin healing process has not been explored. Here, we investigated the impacts of ADSCs on photoaging in a photoaging animal model, its associated mechanisms, and its functional cooperation with fractional CO2 laser in treatment of photoaging skin. RESULTS We showed that ADSCs improved dermal thickness and activated the proliferation of dermal fibroblast. We further demonstrated that the combined treatment of ADSCs and fractional CO2 laser, the latter which is often used to resurface skin and treat wrinkles, had more beneficial effects on the photoaging skin compared with each individual treatment. In our prepared HDF photoaging model, flow cytometry showed that, after adipose derived stem cells conditioned medium (ADSC-CM) co-cultured HDF photoaging model, the cell proliferation rate is higher than UVB irradiation induced HDF modeling (p < 0.05). Additionally, the expressions of β-catenin and Wnt3a, which were up-regulated after the transplantation of ADSCs alone or in combination with fractional CO2 laser treatment. And the expression of wnt3a and β-catenin has the positive correlation with photoaging related protein TGF-β2 and COLI. We also verified these protein expressions in tissue level. In addition, after injected SFRP2 into ADSC-CM co-cultured HDF photoaging model, wnt3a inhibitor, compared with un-intervened group, wnt3a, β-catenin protein level significantly decreased. CONCLUSION Both ADSCs and fractional CO2 laser improved photoaging skin at least partially via targeting dermal fibroblast activity which was increased in photoaging skin. The combinatorial use of ADSCs and fractional CO2 laser synergistically improved the healing process of photoaging skin. Thus, we provide a strong rationale for a combined use of ADSCs and fractional CO2 laser in treatment of photoaging skin in clinic in the future. Moreover, we provided evidence that the Wnt/β-catenin signaling pathway may contribute to the activation of dermal fibroblast by the transplantation of ADSCs in both vitro and vivo experiment.
Collapse
Affiliation(s)
- Xiao Xu
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, P.R. China
| | - Hong-Yi Wang
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, P.R. China
| | - Yu Zhang
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, P.R. China
| | - Yang Liu
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, P.R.China
| | - Yan-Qi Li
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, P.R.China
| | - Kai Tao
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, P.R. China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, P.R.China
| | - Ji-de Jin
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, P.R.China
| | - Xiao-Yan Liu
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, P.R. China
| |
Collapse
|
45
|
Qin Z, Okubo T, Voorhees JJ, Fisher GJ, Quan T. Elevated cysteine-rich protein 61 (CCN1) promotes skin aging via upregulation of IL-1β in chronically sun-exposed human skin. AGE (DORDRECHT, NETHERLANDS) 2014; 36:353-364. [PMID: 23881607 PMCID: PMC3889915 DOI: 10.1007/s11357-013-9565-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/04/2013] [Indexed: 05/27/2023]
Abstract
Chronic exposure of human skin to solar ultraviolet (UV) irradiation causes premature skin aging, which is characterized by reduced type I collagen production and increased fragmentation of the dermal collagenous extracellular matrix. This imbalance of collagen homeostasis is mediated, in part, by elevated expression of the matricellular protein cysteine-rich protein 61 (CCN1), in dermal fibroblasts, the primary collagen producing cell type in human skin. Here, we report that the actions of CCN1 are mediated by induction of interleukin 1β (IL-1β). CCN1 and IL-1β are strikingly induced by acute UV irradiation, and constitutively elevated in sun-exposed prematurely aged human skin. Elevated CCN1 rapidly induces IL-1β, inhibits type I collagen production, and upregulates matrix metalloproteinase-1, which degrades collagen fibrils. Blockade of IL-1β actions by IL-1 receptor antagonist largely prevents the deleterious effects of CCN1 on collagen homeostasis. Furthermore, knockdown of CCN1 significantly reduces induction of IL-1β by UV irradiation, and thereby partially prevents collagen loss. These data demonstrate that elevated CCN1promotes inflammaging and collagen loss via induction of IL-1β and thereby contributes to the pathophysiology of premature aging in chronically sun-exposed human skin.
Collapse
Affiliation(s)
- Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, 1301, E. Catherine, Medical Science I, Room 6447, Ann Arbor, MI 48109-5609 USA
| | - Toru Okubo
- Department of Dermatology, University of Michigan Medical School, 1301, E. Catherine, Medical Science I, Room 6447, Ann Arbor, MI 48109-5609 USA
| | - John J. Voorhees
- Department of Dermatology, University of Michigan Medical School, 1301, E. Catherine, Medical Science I, Room 6447, Ann Arbor, MI 48109-5609 USA
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan Medical School, 1301, E. Catherine, Medical Science I, Room 6447, Ann Arbor, MI 48109-5609 USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, 1301, E. Catherine, Medical Science I, Room 6447, Ann Arbor, MI 48109-5609 USA
| |
Collapse
|
46
|
Miyamoto K, Kudoh H. Quantification and visualization of cellular NAD(P)H in young and aged female facial skin with in vivo two-photon tomography. Br J Dermatol 2014; 169 Suppl 2:25-31. [PMID: 23786617 DOI: 10.1111/bjd.12370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND In vivo two-photon tomography is a novel noninvasive three-dimensional optical skin imaging technology with subcellular resolution which enables the sensitive detection of endogenous fluorophores. One of these fluorophores, NAD(P)H (a coenzyme which plays an important role in the release of free energy during glycolysis, and influences filaggrin and lipid synthesis), can be selectively detected in keratinocytes (granular cells) with two-photon tomography. OBJECTIVES To quantify NAD(P)H levels in subsurface human facial skin in vivo as a measure to determine if there are changes with age. METHODS A total of 80 healthy Asian females were enrolled in this study, aged 21-68 years. Measurements were performed on facial skin using in vivo two-photon tomography (DermaInspect/MPTflex™, JenLab GmbH, Jena, Germany). The laser beam scans a skin field of interest in pulses, focused at a depth to reach the granular layer. The near-infrared laser pulses excite the endogenous fluorophores NAD(P)H. Image processing was performed to obtain high-resolution autofluorescence images (optical biopsies) and to quantify the fluorescent grey scale to determine NAD(P)H levels. Additional skin surface measures taken were hydration (corneometer), elasticity (cutometer) and wrinkles (image capture and analysis). RESULTS Statistically significant changes in all measured parameters as a function of age were observed. Most importantly, the mean fluorescent grey scale values for NAD(P)H in the youngest group studied (women in their 20s) was 38.8 (SD ± 12.39), while that of the oldest group studied (women in their 60s) was 32.7 (SD ± 12.47). These NAD(P)H levels are statistically significantly different (P = 0.0078). CONCLUSIONS The level of NAD(P)H in the epidermis is significantly greater in younger vs. older skin in vivo. This likely reflects decreased production and/or increased degradation of NAD(P)H in older skin, possibly as a result of chronological ageing and environmental damage (e.g. photodamage). NAD(P)H levels in epidermal skin may be a useful biomarker of skin ageing in vivo. It is also likely that maintaining NAD(P)H production is a useful approach to maintaining good skin condition and caring for ageing skin.
Collapse
Affiliation(s)
- K Miyamoto
- R&D Prestige, P&G Innovation GK, 1-17 Koyo-cho Naka, Higashinada-ku, Kobe 658-0035, Japan.
| | | |
Collapse
|
47
|
Hwang E, Lee TH, Park SY, Yi TH, Kim SY. Enzyme-modified Panax ginseng inhibits UVB-induced skin aging through the regulation of procollagen type I and MMP-1 expression. Food Funct 2014; 5:265-74. [DOI: 10.1039/c3fo60418g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Longo C, Casari A, Beretti F, Cesinaro AM, Pellacani G. Skin aging: In vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy. J Am Acad Dermatol 2013; 68:e73-82. [DOI: 10.1016/j.jaad.2011.08.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/28/2022]
|
49
|
Yu BC, Lee DS, Bae SM, Jung WK, Chun JH, Urm SH, Lee DY, Heo SJ, Park SG, Seo SK, Yang JW, Choi JS, Park WS, Choi IW. The effect of cilostazol on the expression of matrix metalloproteinase-1 and type I procollagen in ultraviolet-irradiated human dermal fibroblasts. Life Sci 2013; 92:282-8. [PMID: 23333827 DOI: 10.1016/j.lfs.2012.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 12/17/2022]
Abstract
AIM Cilostazol is a selective inhibitor of type III phosphodiesterase that inhibits platelet aggregation. Cilostazol is a useful vasodilator, antithrombotic, and cardiotonic agent. Ultraviolet B (UVB) irradiation increases the production of matrix metalloproteinase-1 (MMP-1) during skin photoaging. The UVB-induced increase of MMP-1 results in connective tissue damage, and the skin becomes wrinkled and aged. Here, we investigated the capacity of cilostazol to inhibit MMP-1 expression in UVB-irradiated human dermal fibroblasts. MAIN METHODS Cultured human dermal fibroblasts were irradiated with UVB, followed by the addition of cilostazol to the culture medium. KEY FINDINGS Post-treatment with cilostazol attenuated UVB-induced production of MMP-1 and prevented the reduction of type I procollagen. Cilostazol inhibited UVB irradiation-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling molecules Jun-N-terminal kinase (JNK) and p38 kinase, as well as activator protein-1 (AP-1) in dermal fibroblasts. SIGNIFICANCE Overall, these results demonstrate that cilostazol regulates UVB-induced MMP-1 expression and type I procollagen synthesis by inhibiting MAPK signaling and AP-1 activity. Therefore, we suggest that cilostazol may be useful for the prevention and treatment of skin photodamage caused by UVB-irradiation.
Collapse
Affiliation(s)
- Byeng Chul Yu
- Department of Preventive Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rietveld M, Janson D, Siamari R, Vicanova J, Andersen MT, El Ghalbzouri A. Marine-derived nutrient improves epidermal and dermal structure and prolongs the life span of reconstructed human skin equivalents. J Cosmet Dermatol 2012; 11:213-22. [PMID: 22938006 DOI: 10.1111/j.1473-2165.2012.00631.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Imedeen™ is a cosmeceutical that provides nutrients to the skin. One of its active ingredients is the Marine Complex™ (MC). AIM The aim of this study was to evaluate whether MC affects skin morphogenesis differently in female and male human skin equivalents (HSEs). METHODS Human skin equivalents were established with cells obtained from female or male donors between 30 and 45 years of age and cultured for seven or 11 weeks in the presence or absence of MC. Using immunohistochemistry, we examined early differentiation by keratin 10 expression, (hyper)proliferation by keratin 17 and Ki67, and basement membrane composition by laminin 332 and collagen type VII. In addition, the expression of collagen type I and the secretion of pro-collagen I were measured. RESULTS Marine Complex strongly increased the number of Ki67-positive epidermal cells in female HSEs. In the dermis, MC significantly stimulated the amount of secreted pro-collagen I and increased the deposition of laminin 332 and collagen type VII. Furthermore, MC prolonged the viable phase of HSEs by slowing down its natural degradation. After 11 weeks of culturing, the MC-treated HSEs showed higher numbers of viable epidermal cell layers and a thicker dermal extracellular matrix compared with controls. In contrast, these effects were less pronounced in male HSEs. CONCLUSION The MC nutrient positively stimulated overall HSE tissue formation and prolonged the longevity of both female and male HSEs. The ability of MC to stimulate the deposition of basement membrane and dermal components can be used to combat 2 human skin aging in vivo.
Collapse
Affiliation(s)
- Marion Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|