1
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|
2
|
The Pathophysiological Mechanisms and the Quest for Biomarkers in Psoriasis, a Stress-Related Skin Disease. DISEASE MARKERS 2018; 2018:5823684. [PMID: 29619128 PMCID: PMC5829341 DOI: 10.1155/2018/5823684] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022]
Abstract
Psoriasis is a physically, emotionally, and socially invalidating multifactorial disorder, with a significant impact on the patients' quality of life. Stress is one of the leading triggers for psoriasis and has been associated with disease onset and subsequent flare-ups, while the flare-ups by themselves often lead to psychological discomfort. The treatment of psoriasis is individualized, depending on the patients' measurable severity of illness, as well as the impact the skin condition has on patients' quality of life, as assessed by standardized questionnaires. The clinical scales used nowadays for measuring the severity of psoriasis are characterized by low reproducibility and high variability between examiners. Hence, there is a real need to identify objectively measurable biomarkers to standardize the assessment of the severity of psoriasis. We aim to review the pathophysiological mechanisms involved in psoriasis, focusing on the most critical advances in psoriasis biomarker discovery, pointing out those biomarkers which have also been studied in other stress-related conditions, thus emphasizing the relationship between psoriasis and stress.
Collapse
|
3
|
Sutcliffe J, Chin K, Thrasivoulou C, Serena T, O'Neil S, Hu R, White A, Madden L, Richards T, Phillips A, Becker D. Abnormal connexin expression in human chronic wounds. Br J Dermatol 2015; 173:1205-15. [DOI: 10.1111/bjd.14064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/21/2022]
Affiliation(s)
- J.E.S. Sutcliffe
- Department of Cell and Developmental Biology; University College London; Gower Street London WC1E 6BT U.K
| | - K.Y. Chin
- Department of Cell and Developmental Biology; University College London; Gower Street London WC1E 6BT U.K
| | - C. Thrasivoulou
- Department of Cell and Developmental Biology; University College London; Gower Street London WC1E 6BT U.K
| | - T.E. Serena
- Newbridge Medical Research Corp.; Warren PA 16365 U.S.A
| | - S. O'Neil
- CoDa Therapeutics; 10 College Hill Auckland 1011 New Zealand
| | - R. Hu
- Lee Kong Chian School of Medicine; Nanyang Technological University; 11 Mandalay Road Singapore 308232 Singapore
| | - A.M. White
- CoDa Therapeutics; 10 College Hill Auckland 1011 New Zealand
| | - L. Madden
- Lee Kong Chian School of Medicine; Nanyang Technological University; 11 Mandalay Road Singapore 308232 Singapore
| | - T. Richards
- Department of Cell and Developmental Biology; University College London; Gower Street London WC1E 6BT U.K
| | - A.R.J. Phillips
- CoDa Therapeutics; 10 College Hill Auckland 1011 New Zealand
| | - D.L. Becker
- Lee Kong Chian School of Medicine; Nanyang Technological University; 11 Mandalay Road Singapore 308232 Singapore
- Institute of Medical Biology; A*STAR; 138648 Singapore
| |
Collapse
|
4
|
Abstract
Connexin mutations underlie numerous human genetic diseases. Several connexin genes have been linked to skin diseases, and mechanistic studies have indicated that a gain of abnormal channel function may be responsible for pathology. The topical accessibility of the epidermal connexins, the existence of several mouse models of human skin disease, and the ongoing identification of pharmacological inhibitors targeting connexins provide an opportunity to test new therapeutic approaches.
Collapse
Affiliation(s)
- Noah A Levit
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
5
|
Aasen T. Connexins: junctional and non-junctional modulators of proliferation. Cell Tissue Res 2014; 360:685-99. [PMID: 25547217 DOI: 10.1007/s00441-014-2078-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
Mounting evidence indicates that dysregulation of gap junctions and their structural subunits-connexins-often occurs in, and sometimes causes, a variety of proliferative disorders, including cancer. Connexin-mediated regulation of cell proliferation is complex and may involve modulation of gap junction intercellular communication (GJIC), hemichannel signalling, or gap junction-independent paths. However, the exact mechanisms linking connexins to proliferation remain poorly defined and a number of contradictory studies report both pro- and anti-proliferative effects, effects that often depend on the cell or tissue type or the microenvironment. The present review covers junctional and non-junctional regulation of proliferation by connexins, with a particular emphasis on their association with cancer.
Collapse
Affiliation(s)
- Trond Aasen
- Molecular Pathology Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain,
| |
Collapse
|
6
|
Holzer LA, Cör A, Holzer G. Expression of gap junction proteins connexins 26, 30, and 43 in Dupuytren's disease. Acta Orthop 2014; 85:97-101. [PMID: 24359029 PMCID: PMC3940999 DOI: 10.3109/17453674.2013.871138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/02/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Dupuytren's disease (DD) is a benign fibroproliferative process of the palmar aponeurosis showing similarities to wound healing. Communication of cells involved in wound healing is mediated by the composition of gap junction (GJ) proteins. We investigated the expression of 3 GJ proteins, connexins 26, 30, and 43 (Cx26, Cx30, and Cx43) in DD. PATIENTS AND METHODS Fragments of Dupuytren's tissue from 31 patients (mean age 56 (30-76) years, 24 male) were analyzed immunohistochemically and compared to control tissue for expression of the GJ proteins Cx26, Cx30, and Cx43 and also alfa-smooth muscle actin (α-SMA). RESULTS 14 of 31 samples could be attributed to the involutional phase (α-SMA positive) whereas 17 samples had to be considered cords in the residual phase (α-SMA negative). Expression of Cx26 and Cx43 was seen in 12 of the 14 samples from the involutional phase, and Cx30 was seen in 7 of these. Only 4 of the 17 samples from the residual phase showed any Cx, and there was none in the controls. INTERPRETATION The high expression of GJ proteins Cx26, Cx30, and Cx43 in α-SMA positive myofibroblast-rich nodules, which are characteristic of the active involutional phase of DD, suggests that connexins could be a novel treatment target for the treatment of DD.
Collapse
Affiliation(s)
- Lukas A Holzer
- Department of Orthopaedic Surgery , Medical University of Graz, Graz , Austria
| | | | | |
Collapse
|
7
|
de Zwart-Storm EA, Martin PE, van Steensel MAM. Gap junction diseases of the skin: novel insights from new mutations. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Churko JM, Laird DW. Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 2013; 28:190-8. [PMID: 23636264 DOI: 10.1152/physiol.00058.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present review, we provide an overview of connexin expression during skin development and remodeling in wound healing, and reflect on how loss- or gain-of-function connexin mutations may change cellular phenotypes and lead to diseases of the skin. We also consider the therapeutic value of targeting connexins in wound healing.
Collapse
Affiliation(s)
- Jared M Churko
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
9
|
Davis NG, Phillips A, Becker DL. Connexin dynamics in the privileged wound healing of the buccal mucosa. Wound Repair Regen 2013; 21:571-8. [PMID: 23627777 DOI: 10.1111/wrr.12054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022]
Abstract
Wound closure is fundamental to maintaining tissue homeostasis; a plethora of processes and signals must be coordinated, and gap junctions play a critical role. Some tissues exhibit privileged healing, such as buccal mucosa, repairing more rapidly, but gap junction connexin dynamics during wound healing in such tissues have not been investigated. To determine connexin changes during this rapid healing process, incisional wounds were made in the cheeks of mice and microscopically observed. We discovered that buccal mucosa wound edge keratinocytes do not form a thin tongue of migratory cells like epidermis; instead, a wedge of cells rapidly moves into the wound. The dorsal surfaces of opposing sides of the wounds then touch and join in a "V," which subsequently fills up with cells to form a "delta" that remodels into a flat sheet. Immunostaining showed that connexin26, connexin30, and connexin43 are expressed at significantly higher levels in the buccal mucosa than the epidermis and that, unlike the skin, all three are rapidly down-regulated at the wound edge within 6 hours of wounding. This rapid down-regulation of all three connexins may in part underlie the rapid healing of the buccal mucosa.
Collapse
Affiliation(s)
- Nicola G Davis
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | | | |
Collapse
|
10
|
Polysaccharides of St. John's Wort Herb Stimulate NHDF Proliferation and NEHK Differentiation via Influence on Extracellular Structures and Signal Pathways. Adv Pharmacol Sci 2012; 2012:304317. [PMID: 22848211 PMCID: PMC3405560 DOI: 10.1155/2012/304317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 02/05/2023] Open
Abstract
St. John's Wort herb extracts often contain undesirable or volitional polysaccharides. As polysaccharides exhibit structure-dependent biological functions in the present study water-soluble polysaccharides were extracted from herb material, fractionated by anion exchange chromatography into four main polysaccharide fractions (denominated as Hp1, Hp2, Hp3 and Hp4) and characterized by HPAEC-PAD, CE, IR and GC-MS. Biological activity on human skin keratinocytes and fibroblasts was assessed by investigation of their effect on proliferation, metabolism, cytotoxicity, apoptosis and differentiation. The underlying mechanisms were investigated in gene expression studies. Polysaccharide fraction Hp1 was mainly composed of β-D-glucose. Hp2, Hp3 and Hp4 contained pectic structures and arabinogalactan proteins varying in composition and quantity. Polysaccharides of Hp1 induced the keratinocyte differentiation by inhibiting the gene expression of the epidermal growth factor and insulin receptor. While the collagen secretion of fibroblasts was stimulated by each polysaccharide fraction only Hp1 stimulated the synthesis. The fibroblast proliferation was reduced by Hp1 and increased by Hp4. This effect was related to the influence on genes that referred to oxidative stress, metabolism, transcription processes and extracellular proteins. In conclusion polysaccharides have been shown as biologically active ingredients of aqueous St. John's Wort extracts with a relation between their structural characteristics and function.
Collapse
|
11
|
Peiris TH, Oviedo NJ. Gap junction proteins: master regulators of the planarian stem cell response to tissue maintenance and injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:109-17. [PMID: 22450236 DOI: 10.1016/j.bbamem.2012.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/24/2012] [Accepted: 03/09/2012] [Indexed: 11/26/2022]
Abstract
Gap junction (GJ) proteins are crucial mediators of cell-cell communication during embryogenesis, tissue regeneration and disease. GJ proteins form plasma membrane channels that facilitate passage of small molecules across cells and modulate signaling pathways and cellular behavior in different tissues. These properties have been conserved throughout evolution, and in most invertebrates GJ proteins are known as innexins. Despite their critical relevance for physiology and disease, the mechanisms by which GJ proteins modulate cell behavior are poorly understood. This review summarizes findings from recent work that uses planarian flatworms as a paradigm to analyze GJ proteins in the complexity of the whole organism. The planarian model allows access to a large pool of adult somatic stem cells (known as neoblasts) that support physiological cell turnover and tissue regeneration. Innexin proteins are present in planarians and play a fundamental role in controlling neoblast behavior. We discuss the possibility that GJ proteins participate as cellular sensors that inform neoblasts about local and systemic physiological demands. We believe that functional analyses of GJ proteins will bring a complementary perspective to studies that focus on the temporal expression of genes. Finally, integrating functional studies along with molecular genetics and epigenetic approaches would expand our understanding of cellular regulation in vivo and greatly enhance the possibilities for rationally modulating stem cell behavior in their natural environment. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
| | | |
Collapse
|
12
|
Vinken M, Decrock E, De Vuyst E, Ponsaerts R, D'hondt C, Bultynck G, Ceelen L, Vanhaecke T, Leybaert L, Rogiers V. Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta Rev Cancer 2010; 1815:13-25. [PMID: 20801193 DOI: 10.1016/j.bbcan.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
James AL, Chadha NK, Papsin BC, Stockley TL. Pediatric cholesteatoma and variants in the gene encoding connexin 26. Laryngoscope 2010; 120:183-7. [PMID: 19877196 DOI: 10.1002/lary.20649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS Connexin 26 is a gap junction protein encoded by the GJB2 gene. It is expressed in cholesteatoma, and mutations cause proliferative skin disorders and sensorineural hearing loss (SNHL). Deletions of GJB6, which encodes connexin 30, cause SNHL in a digenic manner with a heterozygous GJB2 mutation. We hypothesize that GJB2 and GJB6 mutations might influence the development of cholesteatoma. STUDY DESIGN Prospective observational study to identify GJB mutations in pediatric cholesteatoma. METHODS Peripheral blood samples from 98 children with cholesteatoma were screened for mutations in the GJB2 gene by direct sequencing of the coding region (exon 2 and the intron/exon boundary). Deletions of the GJB6 gene were tested using multiple ligation probe amplification methods. GJB status was compared with other populations and patient age and extent of cholesteatoma at presentation. RESULTS Fourteen children had at least one GJB2 variant (14%). Of these, three had two variants. Two of the variants were neutral polymorphisms. One child with the GJB2 genotype 35delG/35delG also had SNHL. No correlation was found between GJB2 status and patient age or cholesteatoma severity at presentation. No GJB6 deletions were found. CONCLUSIONS GJB2 gene variants are present in a minority of children with cholesteatoma, but may be more common than in normal populations. It is conceivable that alterations of connexin 26 expression could contribute to the multifactorial disease process in cholesteatoma by modifying the cell-to-cell communication that is important in proliferation and migration of keratinocytes.
Collapse
Affiliation(s)
- Adrian L James
- Department of Otolaryngology, The Hospital for Sick Children, Ontario, Canada.
| | | | | | | |
Collapse
|
14
|
Abstract
Psoriasis is a common, chronic skin disorder, the pathogenesis of which is incompletely understood. Results from various clinical and experimental studies indicate that psoriasis is a complex, multifactorial disease with a genetic predisposition. Factors such as climate, physical trauma, drug, stress and infections (Streptococcus, human immunodeficiency virus) are known to trigger psoriasis. The success of treatment of psoriasis with T-cell depletion and antitumour necrosis factor (TNF)-alpha treatment is explained by the involvement of T cells and TNF- alpha in the pathogenesis of psoriasis. The biochemical basis for the pathogenesis of psoriasis can be attributed to both overexpression and underexpression of certain proteins in psoriatic lesions. The anomalies in protein expression can be classified as abnormal keratinocyte differentiation, keratinocyte hyperproliferation and inflammation. Oxidative stress (OS) and increased free-radical generation have been linked to skin inflammation in psoriasis. The review presents evidence for various markers of psoriasis that can be targeted for effective treatment, including biomarkers of inflammation, keratinocyte hyperproliferation and abnormal differentiation, and stress.
Collapse
Affiliation(s)
- R Rashmi
- Department of Dermatology, JSS Medical College, Mysore, Karnataka, India
| | | | | |
Collapse
|