1
|
Knuutila JS, Riihilä P, Nissinen L, Heiskanen L, Kallionpää RE, Pellinen T, Kähäri VM. Cancer-associated fibroblast activation predicts progression, metastasis, and prognosis of cutaneous squamous cell carcinoma. Int J Cancer 2024; 155:1112-1127. [PMID: 38648387 DOI: 10.1002/ijc.34957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer and the metastatic disease is associated with poor prognosis. Cancer-associated fibroblasts (CAFs) promote progression of cancer, but their role in cSCC is largely unknown. We examined the potential of CAF markers in the assessment of metastasis risk and prognosis of primary cSCC. We utilized multiplexed fluorescence immunohistochemistry for profiling CAF landscape in metastatic and non-metastatic primary human cSCCs, in metastases, and in premalignant epidermal lesions. Quantitative high-resolution image analysis was performed with two separate panels of antibodies for CAF markers and results were correlated with clinical and histopathological parameters including disease-specific mortality. Increased stromal expression of fibroblast activation protein (FAP), α-smooth muscle actin, and secreted protein acidic and rich in cysteine (SPARC) were associated with progression to invasive cSCC. Elevation of FAP and platelet-derived growth factor receptor-β (PDGFRβ) expression was associated with metastasis risk of primary cSCCs. High expression of PDGFRβ and periostin correlated with poor prognosis. Multimarker combination defined CAF subset, PDGFRα-/PDGFRβ+/FAP+, was associated with invasion and metastasis, and independently predicted poor disease-specific survival. These results identify high PDGFRβ expression alone and multimarker combination PDGFRα-/PDGFRβ+/FAP+ by CAFs as potential biomarkers for risk of metastasis and poor prognosis.
Collapse
Affiliation(s)
- Jaakko S Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Lauri Heiskanen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Carrasco G, Stavrou I, Treanor-Taylor M, Beetham H, Lee M, Masalmeh R, Carreras-Soldevila A, Hardman D, Bernabeu MO, von Kriegsheim A, Inman GJ, Byron A, Brunton VG. Involvement of Kindlin-1 in cutaneous squamous cell carcinoma. Oncogenesis 2024; 13:24. [PMID: 38982038 PMCID: PMC11233684 DOI: 10.1038/s41389-024-00526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (cSCC). Here we show in non-KS-associated patients that elevation of FERMT1 expression is increased in actinic keratoses compared to normal skin, with a further increase in cSCC supporting a pro-tumorigenic role in this population. In contrast, we show that loss of Kindlin-1 leads to increased SCC tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. The metalloproteinase Mmp13 was upregulated in Kindlin-1-depleted tumors, and increased expression of MMP13 was responsible for driving increased invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.
Collapse
Affiliation(s)
- Giovana Carrasco
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| | - Ifigeneia Stavrou
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | | | - Henry Beetham
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Roza Masalmeh
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Artur Carreras-Soldevila
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - David Hardman
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
- The Bayes Centre, University of Edinburgh, Edinburgh, EH8 9BT, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Gareth J Inman
- CRUK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Adam Byron
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
3
|
Tartaglia G, Fuentes I, Patel N, Varughese A, Israel LE, Park PH, Alexander MH, Poojan S, Cao Q, Solomon B, Padron ZM, Dyer JA, Mellerio JE, McGrath JA, Palisson F, Salas-Alanis J, Han L, South AP. Antiviral drugs prolong survival in murine recessive dystrophic epidermolysis bullosa. EMBO Mol Med 2024; 16:870-884. [PMID: 38462666 PMCID: PMC11018630 DOI: 10.1038/s44321-024-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFβ pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ignacia Fuentes
- DEBRA Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Abigail Varughese
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lauren E Israel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pyung Hun Park
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael H Alexander
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Poojan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qingqing Cao
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brenda Solomon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zachary M Padron
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan A Dyer
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Francis Palisson
- DEBRA Chile, Santiago, Chile
- Servicio de Dermatologia, Facultad de Medicina Clínica Alemana-Universidad de Desarrollo, Santiago, Chile
| | | | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Siljamäki E, Riihilä P, Suwal U, Nissinen L, Rappu P, Kallajoki M, Kähäri VM, Heino J. Inhibition of TGF-β signaling, invasion, and growth of cutaneous squamous cell carcinoma by PLX8394. Oncogene 2023; 42:3633-3647. [PMID: 37864034 PMCID: PMC10691969 DOI: 10.1038/s41388-023-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The prognosis of patients with metastatic cSCC is poor emphasizing the need for new therapies. We have previously reported that the activation of Ras/MEK/ERK1/2 and transforming growth factor β (TGF-β)/Smad2 signaling in transformed keratinocytes and cSCC cells leads to increased accumulation of laminin-332 and accelerated invasion. Here, we show that the next-generation B-Raf inhibitor PLX8394 blocks TGF-β signaling in ras-transformed metastatic epidermal keratinocytes (RT3 cells) harboring wild-type B-Raf and hyperactive Ras. PLX8394 decreased phosphorylation of TGF-β receptor II and Smad2, as well as p38 activity, MMP-1 and MMP-13 synthesis, and laminin-332 accumulation. PLX8394 significantly inhibited the growth of human cSCC tumors and in vivo collagen degradation in xenograft model. In conclusion, our data indicate that PLX8394 inhibits several serine-threonine kinases in malignantly transformed human keratinocytes and cSCC cells and inhibits cSCC invasion and tumor growth in vitro and in vivo. We identify PLX8394 as a potential therapeutic compound for advanced human cSCC.
Collapse
Affiliation(s)
- Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland.
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
5
|
Bonamonte D, Filoni A, De Marco A, Lospalluti L, Nacchiero E, Ronghi V, Colagrande A, Giudice G, Cazzato G. Squamous Cell Carcinoma in Patients with Inherited Epidermolysis Bullosa: Review of Current Literature. Cells 2022; 11:cells11081365. [PMID: 35456044 PMCID: PMC9027730 DOI: 10.3390/cells11081365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Epidermolysis bullosa (EB) is a group of rare congenital diseases caused by mutations in structural proteins of the dermal/epidermal junction that are characterized by extreme epithelial fragility, which determines the formation of bullae and erosions either spontaneously or after local mechanical traumas. In EB patients, skin fragility leads to many possible complications and comorbidities. One of the most feared complications is the development of cutaneous squamous cell carcinomas (SCCs) that particularly in the dystrophic recessive EB subtype can be extremely aggressive and often metastatic. SCCs in EB patients generally arise more often in the extremities, where chronic blisters and scars are generally located. SCCs represent a big therapeutic challenge in the EB population. No standard of care exists for the treatment of SCC in these patients, and therapy is based on small case studies. Moreover, the pathogenesis of cSCC in EB patients is still unclear. Many theories have been indeed postulated in order to explain why cSCC behaves so much more aggressively in EB patients compared to the general population. cSCC in EB seems to be the result of many complex interactions among cancer cells, skin microenvironment, susceptibility to DNA mutations and host immune response. In this review, we analyze the different pathogenetic mechanisms of cSCC in EB patients, as well as new therapies for this condition.
Collapse
Affiliation(s)
- Domenico Bonamonte
- Section of Dermatology and Venereology, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.B.); (A.F.); (A.D.M.); (L.L.)
| | - Angela Filoni
- Section of Dermatology and Venereology, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.B.); (A.F.); (A.D.M.); (L.L.)
- Unit of Dermatology and Venerology, Perrino Hospital, 72100 Brindisi, Italy
| | - Aurora De Marco
- Section of Dermatology and Venereology, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.B.); (A.F.); (A.D.M.); (L.L.)
| | - Lucia Lospalluti
- Section of Dermatology and Venereology, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.B.); (A.F.); (A.D.M.); (L.L.)
| | - Eleonora Nacchiero
- Section of Plastic Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.N.); (V.R.); (G.G.)
| | - Valentina Ronghi
- Section of Plastic Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.N.); (V.R.); (G.G.)
| | - Anna Colagrande
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Giudice
- Section of Plastic Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.N.); (V.R.); (G.G.)
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: ; Tel.: +39-3405203641
| |
Collapse
|
6
|
Rahmati Nezhad P, Riihilä P, Knuutila JS, Viiklepp K, Peltonen S, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement Factor D Is a Novel Biomarker and Putative Therapeutic Target in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14020305. [PMID: 35053469 PMCID: PMC8773783 DOI: 10.3390/cancers14020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The incidence of the most common metastatic skin malignancy, cutaneous squamous cell carcinoma (cSCC), is growing worldwide, and the prognosis of the metastatic disease is poor. Presently, there are no biomarkers or therapeutic targets for high-risk cSCCs. Recent studies have demonstrated the essential role of autocrine complement synthesis in the progression of cSCC. Here, we have evaluated the role of complement Factor D (FD), the rate-limiting enzyme of the alternative complement pathway, in cSCC development. The results identify FD as a novel biomarker and putative therapeutic target for cSCC and propose the small-molecule FD inhibitor Danicopan as a highly specific drug candidate in the therapy of advanced cSCC. It is expected that the discovery of complement-associated molecular markers for cSCC progression would improve diagnosis, classification, prognostication, and targeted therapy of cSCC and its precursors in the future. Abstract Cutaneous squamous cell carcinoma (cSCC) is the most prevalent metastatic skin cancer. Previous studies have demonstrated the autocrine role of complement components in cSCC progression. We have investigated factor D (FD), the key enzyme of the alternative complement pathway, in the development of cSCC. RT-qPCR analysis of cSCC cell lines and normal human epidermal keratinocytes (NHEKs) demonstrated significant up-regulation of FD mRNA in cSCC cells compared to NHEKs. Western blot analysis also showed more abundant FD production by cSCC cell lines. Significantly higher FD mRNA levels were noted in cSCC tumors than in normal skin. Strong tumor cell-associated FD immunolabeling was detected in the invasive margin of human cSCC xenografts. More intense tumor cell-specific immunostaining for FD was seen in the tumor edge in primary and metastatic cSCCs, in metastases, and in recessive dystrophic epidermolysis bullosa-associated cSCCs, compared with cSCC in situ, actinic keratosis and normal skin. FD production by cSCC cells was dependent on p38 mitogen-activated protein kinase activity, and it was induced by interferon-γ and interleukin-1β. Blocking FD activity by Danicopan inhibited activation of extracellular signal-regulated kinase 1/2 and attenuated proliferation of cSCC cells. These results identify FD as a novel putative biomarker and therapeutic target for cSCC progression.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko S. Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| | - Seppo Meri
- Department of Bacteriology and Immunology, The Translational Immunology Research Program, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Correspondence: ; Tel.: +358-2-3131600
| |
Collapse
|
7
|
C1r Upregulates Production of Matrix Metalloproteinase-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2021; 142:1478-1488.e9. [PMID: 34756877 DOI: 10.1016/j.jid.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. Previous studies have demonstrated the role of complement system in cSCC progression. In this study we have investigated the mechanistic role of serine protease C1r, a component of the classical pathway of complement system, in cSCC. Knockout of C1r in cSCC cells using CRISPR/Cas9 resulted in significant decrease in their proliferation, migration, and invasion through collagen type I compared to wild type cSCC cells. Knockout of C1r suppressed growth and vascularization of cSCC xenograft tumors, and promoted apoptosis of tumor cells in vivo. mRNA-seq analysis after C1r knockdown revealed significantly regulated GO terms Cell-matrix adhesion, Extracellular matrix component, Basement membrane, Metalloendopeptidase activity and KEGG pathway Extracellular matrix-receptor interaction. Among the significantly regulated genes were invasion-associated matrix metalloproteinases MMP1, MMP13, MMP10, and MMP12. Knockout of C1r resulted in decreased production of MMP-1, MMP-13, MMP-10, and MMP-12 by cSCC cells in culture. Knockout of C1r inhibited expression of MMP-13 by tumor cells, suppressed invasion, and reduced the amount of degraded collagen in vivo in xenografts. These results provide evidence for the role of C1r in promoting the invasion of cSCC cells by increasing MMP production.
Collapse
|
8
|
Rahmati Nezhad P, Riihilä P, Piipponen M, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement factor I upregulates expression of matrix metalloproteinase-13 and -2 and promotes invasion of cutaneous squamous carcinoma cells. Exp Dermatol 2021; 30:1631-1641. [PMID: 33813765 DOI: 10.1111/exd.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing globally. Here, we have studied the functional role of complement factor I (CFI) in the progression of cSCC. CFI was knocked down in cSCC cells, and RNA-seq analysis was performed. Significant downregulation of genes in IPA biofunction categories Proliferation of cells and Growth of malignant tumor, in Gene Ontology (GO) terms Metallopeptidase activity and Extracellular matrix component, as well as Reactome Degradation of extracellular matrix was detected after CFI knockdown. Further analysis of the latter three networks, revealed downregulation of several genes coding for invasion-associated matrix metalloproteinases (MMPs) after CFI knockdown. The downregulation of MMP-13 and MMP-2 was confirmed at mRNA, protein and tissue levels by qRT-qPCR, Western blot and immunohistochemistry, respectively. Knockdown of CFI decreased the invasion of cSCC cells through type I collagen. Overexpression of CFI in cSCC cells resulted in enhanced production of MMP-13 and MMP-2 and increased invasion through type I collagen and Matrigel, and in increased ERK1/2 activation and cell proliferation. Altogether, these findings identify a novel mechanism of action of CFI in upregulation of MMP-13 and MMP-2 expression and cSCC invasion. These results identify CFI as a prospective molecular marker for invasion and metastasis of cSCC.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
9
|
Riihilä P, Nissinen L, Kähäri V. Matrix metalloproteinases in keratinocyte carcinomas. Exp Dermatol 2021; 30:50-61. [PMID: 32869366 PMCID: PMC7821196 DOI: 10.1111/exd.14183] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
The incidence of cutaneous keratinocyte-derived cancers is increasing globally. Basal cell carcinoma (BCC) is the most common malignancy worldwide, and cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. BCC can be classified into subtypes based on the histology, and these subtypes are classified further into low- and high-risk tumors. There is an increasing need to identify new therapeutic strategies for the treatment of unresectable and metastatic cSCC, and for aggressive BCC variants such as infiltrating, basosquamous or morpheaform BCCs. The most important risk factor for BCC and cSCC is solar UV radiation, which causes genetic and epigenetic alterations in keratinocytes. Similar gene mutations are noted already in sun-exposed normal skin emphasizing the role of the alterations in the tumor microenvironment in the progression of cSCC. Early events in cSCC progression are alterations in the composition of basement membrane and dermal extracellular matrix induced by influx of microbes, inflammatory cells and activated stromal fibroblasts. Activated fibroblasts promote inflammation and produce growth factors and proteolytic enzymes, including matrix metalloproteinases (MMPs). Transforming growth factor-β produced by tumor cells and fibroblasts induces the expression of MMPs by cSCC cells and promotes their invasion. Fibroblast-derived keratinocyte growth factor suppresses the malignant phenotype of cSCC cells by inhibiting the expression of several MMPs. These findings emphasize the importance of interplay of tumor and stromal cells in the progression of cSCC and BCC and suggest tumor microenvironment as a therapeutic target in cSCC and aggressive subtypes of BCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalTurkuFinland
- FICAN West Cancer Centre Research LaboratoryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Liisa Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalTurkuFinland
- FICAN West Cancer Centre Research LaboratoryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Veli‐Matti Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalTurkuFinland
- FICAN West Cancer Centre Research LaboratoryUniversity of Turku and Turku University HospitalTurkuFinland
| |
Collapse
|
10
|
Long non-coding RNA LINC00511/miR-150/MMP13 axis promotes breast cancer proliferation, migration and invasion. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165957. [PMID: 33031905 DOI: 10.1016/j.bbadis.2020.165957] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common cancer affecting women and one of the leading causes of cancer-related deaths worldwide. In existing studies, some long non-coding RNAs (lncRNAs) are considered to have important regulatory roles in the development of cancers. However, the pathogenic significance of LINC00511 in breast cancer is unclear. In this study, LINC00511 was significantly up-regulated in breast cancer, and its expression level was correlated to poor prognosis of patients with breast cancer. To further study the role of LINC00511 in breast cancer, we knocked down the expression of LINC00511 using siRNAs. Cells transfected with siRNA-2 proliferated, and its metastasis was suppressed. RNA-seq analysis revealed 182 potential targets for LINC00511. The in-silico analysis revealed that differently expressed genes were closely related to signaling mediated by p38-alpha and p38-beta. Subcellular localization showed that LINC00511 was mainly located in the cytoplasm, and knocking down the LINC00511 gene could down-regulate the expression of MMP13. Using bioinformatics analysis combined with dual-luciferase report assay, we finally determined that miR-150 was the direct target of LINC00511. The dual-luciferase report assays also showed that MMP13 was the target of miR-150. LINC00511 knockdown significantly reduced MMP13 protein levels, and miR-150 gene knockdown significantly rescued the down-regulation of MMP13 caused by LINC00511 gene silencing. Moreover, silencing MMP13 and overexpression of miR-150 could reduce the proliferation of breast cancer cells. In conclusion, our data show that LINC00511 is a breast cancer promoter, and the LINC00511/miR-150/MMP13 axis may be a new therapeutic strategy for breast cancer patients.
Collapse
|
11
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Abbes A, Zayani Y, Zidi W, Hammami MB, Mebazaa A, El Euch D, Ben Ammar A, Sanhaji H, El May MV, Mokni M, Feki M, Allal-Elasmi M. Matrix metalloproteinase-7 could be a predictor for acute inflammation in psoriatic patients. Cytokine 2020; 134:155195. [PMID: 32663776 DOI: 10.1016/j.cyto.2020.155195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE The pathogenesis of psoriasis is characterized by a disruption of extracellular matrix (ECM) in which matrix metalloproteinases (MMPs) participate actively. We aimed to determine MMP-7 level and its association with the inflammatory response in order to determine its usefulness as a biomarker for psoriasis prediction. We also aimed to determine its distribution in uninvolved and involved psoriatic skin to evaluate the probable role of MMP-7 in psoriasis pathogenesis. MATERIALS AND METHODS We recruited 108 psoriatic patients and 133 healthy controls. MMP-7, tissue inhibitors of metalloproteinases (TIMPs) and interleukin-6 (IL-6) levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA) assay. MMP-7 expression was detected by Immunohistochemistry (IHC) study. RESULTS ECM turnover and inflammatory biomarker levels were significantly higher in psoriatic patients. MMP-7 revealed to be independently associated to psoriasis even after adjustment for different models. The area under the curve (AUC) of MMP-7 and inflammation Z-score were similar. MMP-7 was positively correlated with IL-6 and inflammation Z-score. Psoriasis severity (PASI) was correlated significantly with IL-6 (p = 0.007). The MMP-7 expression was detected in the epidermis of involved and uninvolved psoriatic skin. In involved skin, MMP-7 was expressed by basal and mostly suprabasal keratinocytes. In uninvolved skin, expression of MMP-7 was restricted to basal keratinocytes. CONCLUSION MMP-7 is independently associated to psoriasis disease and to inflammatory response which make it a potential biomarker for this dermatosis.
Collapse
Affiliation(s)
- Arbia Abbes
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia; University of Tunis El Manar, Faculty of Sciences of Tunis, Tunisia
| | - Yosra Zayani
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Wiem Zidi
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Mohamed Bassem Hammami
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Amel Mebazaa
- Department of Dermatology, Rabta Hospital, Tunis, Tunisia
| | | | - Awatef Ben Ammar
- Research Unit 17ES/13 Laboratory of Histology and Embryology, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Sanhaji
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Michele Veronique El May
- Research Unit 17ES/13 Laboratory of Histology and Embryology, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mourad Mokni
- Department of Dermatology, Rabta Hospital, Tunis, Tunisia
| | - Moncef Feki
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Monia Allal-Elasmi
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia.
| |
Collapse
|
13
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
14
|
Riihilä P, Viiklepp K, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Peltonen J, Peltonen S, Kähäri V. Tumour-cell-derived complement components C1r and C1s promote growth of cutaneous squamous cell carcinoma. Br J Dermatol 2020; 182:658-670. [PMID: 31049937 PMCID: PMC7065064 DOI: 10.1111/bjd.18095] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is increasing worldwide. OBJECTIVES To study the role of the complement classical pathway components C1q, C1r and C1s in the progression of cSCC. METHODS The mRNA levels of C1Q subunits and C1R and C1S in cSCC cell lines, normal human epidermal keratinocytes, cSCC tumours in vivo and normal skin were analysed with quantitative real-time polymerase chain reaction. The production of C1r and C1s was determined with Western blotting. The expression of C1r and C1s in tissue samples in vivo was analysed with immunohistochemistry and further investigated in human cSCC xenografts by knocking down C1r and C1s. RESULTS Significantly elevated C1R and C1S mRNA levels and production of C1r and C1s were detected in cSCC cells, compared with normal human epidermal keratinocytes. The mRNA levels of C1R and C1S were markedly elevated in cSCC tumours in vivo compared with normal skin. Abundant expression of C1r and C1s by tumour cells was detected in invasive sporadic cSCCs and recessive dystrophic epidermolysis bullosa-associated cSCCs, whereas the expression of C1r and C1s was lower in cSCC in situ, actinic keratosis and normal skin. Knockdown of C1r and C1s expression in cSCC cells inhibited activation of extracellular signal-related kinase 1/2 and Akt, promoted apoptosis of cSCC cells and significantly suppressed growth and vascularization of human cSCC xenograft tumours in vivo. CONCLUSIONS These results provide evidence for the role of tumour-cell-derived C1r and C1s in the progression of cSCC and identify them as biomarkers and putative therapeutic targets in cSCC. What's already known about this topic? The incidences of actinic keratosis, cutaneous squamous cell carcinoma (cSCC) in situ and invasive cSCC are increasing globally. Few specific biomarkers for progression of cSCC have been identified, and no biological markers are in clinical use to predict the aggressiveness of actinic keratosis, cSCC in situ and invasive cSCC. What does this study add? Our results provide novel evidence for the role of complement classical pathway components C1r and C1s in the progression of cSCC. What is the translational message? Our results identify complement classical pathway components C1r and C1s as biomarkers and putative therapeutic targets in cSCC.
Collapse
Affiliation(s)
- P. Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - K. Viiklepp
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - L. Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - M. Farshchian
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - M. Kallajoki
- Department of PathologyTurku University HospitalTurkuFinland
| | - A. Kivisaari
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - S. Meri
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - J. Peltonen
- Department of Anatomy and Cell BiologyUniversity of TurkuTurkuFinland
| | - S. Peltonen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - V.‐M. Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| |
Collapse
|
15
|
Liao Y, Ivanova L, Zhu H, Plumer T, Hamby C, Mehta B, Gevertz A, Christiano AM, McGrath JA, Cairo MS. Cord Blood-Derived Stem Cells Suppress Fibrosis and May Prevent Malignant Progression in Recessive Dystrophic Epidermolysis Bullosa. Stem Cells 2018; 36:1839-1850. [PMID: 30247783 DOI: 10.1002/stem.2907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the Col7a1 gene. Patients with RDEB suffer from recurrent erosions in skin and mucous membranes and have a high risk for developing cutaneous squamous cell carcinoma (cSCCs). TGFβ signaling has been associated with fibrosis and malignancy in RDEB. In this study, the activation of TGFβ signaling was demonstrated in col7a1-/- mice as early as a week after birth starting in the interdigital folds of the paws, accompanied by increased deposition of collagen fibrils and elevated dermal expression of matrix metalloproteinase (MMP)-9 and MMP-13. Furthermore, human cord blood-derived unrestricted somatic stem cells (USSCs) that we previously demonstrated to significantly improve wound healing and prolong the survival of col7a1-/- mice showed the ability to suppress TGFβ signaling and MMP-9 and MMP-13 expression meanwhile upregulating anti-fibrotic TGFβ3 and decorin. In parallel, we cocultured USSCs in a transwell with RDEB patient-derived fibroblasts, keratinocytes, and cSCC, respectively. The patient-derived cells were constitutively active for STAT, but not TGFβ signaling. Moreover, the levels of MMP-9 and MMP-13 were significantly elevated in the patient derived-keratinocytes and cSCCs. Although USSC coculture did not inhibit STAT signaling, it significantly suppressed the secretion of MMP-9 and MMP-13, and interferon (IFN)-γ from RDEB patient-derived cells. Since epithelial expression of these MMPs is a biomarker of malignant transformation and correlates with the degree of tumor invasion, these results suggest a potential role for USSCs in mitigating epithelial malignancy, in addition to their anti-inflammatory and anti-fibrotic functions. Stem Cells 2018;36:1839-12.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Trevor Plumer
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Carl Hamby
- Department of Immunology & Microbiology, New York Medical College, Valhalla, New York
| | - Brinda Mehta
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Annie Gevertz
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London, United Kingdom
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Immunology & Microbiology, New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York.,Department of Pathology, New York Medical College, Valhalla, New York.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
16
|
Histologic Status of Squamous Cell Carcinoma In Situ After Diagnostic Biopsy in Immunocompetent and Immunosuppressed Patients. Dermatol Surg 2017; 44:341-349. [PMID: 29053535 DOI: 10.1097/dss.0000000000001300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The histologic status of squamous cell carcinoma in situ (SCC-IS) after diagnostic biopsy has not been well described or compared between immunocompetent and immunosuppressed patients. Expression of immunohistochemical (IHC) markers of aggressive SCC has not been compared between SCC-IS that clears or becomes invasive after biopsy. OBJECTIVE To determine the histologic status of SCC-IS after diagnostic biopsy in these populations. METHODS Retrospective analysis of 129 patients with SCC-IS treated with excision and 55 patients treated with Mohs surgery. Histologic features of SCC in excised tissue after biopsy were recorded. Known SCC markers were evaluated using IHC. RESULTS Invasive SCC was found in 3% to 16% of residual SCC-IS depending on surgical treatment modality. The history of skin cancer increased the odds of having invasive SCC in SCC-IS excisions (odds ratio 7.1, p < .05). Forty-seven percent of SCC-IS in immunosuppressed patients cleared after diagnostic biopsy compared with 70% in immunocompetent patients (p < .05). Inflammatory infiltrate and molecular markers of aggressive SCCs (Ki-67, matrix metalloproteinase [MMP]-9, MMP-7, transforming growth factor-beta (TGFβ)-RI, TGFβ-RII, and Sox-2) were not predictive of residual or invasive SCC at the time of treatment. CONCLUSION Up to 16% of SCC-IS showed invasive SCC at the time of surgical treatment. Immunosuppressed patients are more likely to have residual disease after biopsy. IHC markers of invasive SCC may not predict invasion.
Collapse
|
17
|
Pisamai S, Rungsipipat A, Kalpravidh C, Suriyaphol G. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors. Res Vet Sci 2017; 113:94-100. [DOI: 10.1016/j.rvsc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
18
|
Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Farshchian M, Kivisaari A, Kallajoki M, Raiko L, Peltonen J, Peltonen S, Kähäri VM. Expression of claudin-11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the activity of p38δ. Exp Dermatol 2017; 26:771-777. [PMID: 27992079 DOI: 10.1111/exd.13278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is rapidly increasing, and the prognosis of patients with metastatic disease is poor. There is an emerging need to identify molecular markers for predicting aggressive behaviour of cSCC. Here, we have examined the role of tight junction (TJ) components in the progression of cSCC. The expression pattern of mRNAs for TJ components was determined with RNA sequencing and oligonucleotide array-based expression analysis from cSCC cell lines (n=8) and normal human epidermal keratinocytes (NHEK, n=5). The expression of CLDN11 was specifically elevated in primary cSCC cell lines (n=5), but low or absent in metastatic cSCC cell lines (n=3) and NHEKs. Claudin-11 was detected in cell-cell contacts of primary cSCC cells in culture by indirect immunofluorescence analysis. Analysis of a large panel of tissue samples from sporadic UV-induced cSCC (n=65), cSCC in situ (n=56), actinic keratoses (n=31), seborrhoeic keratoses (n=7) and normal skin (n=16) by immunohistochemistry showed specific staining for claudin-11 in intercellular junctions of keratinizing tumor cells in well and moderately differentiated cSCCs, whereas no staining for claudin-11 was detected in poorly differentiated tumors. The expression of claudin-11 in cSCC cells was dependent on the activity of p38δ MAPK and knock-down of claudin-11 enhanced cSCC cell invasion. These findings provide evidence for the role of claudin-11 in regulation of cSCC invasion and suggest loss of claudin-11 expression in tumor cells as a biomarker for advanced stage of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Raiko
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Riihilä P, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Grénman R, Peltonen S, Peltonen J, Pihlajaniemi T, Heljasvaara R, Kähäri VM. Complement Component C3 and Complement Factor B Promote Growth of Cutaneous Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1186-1197. [PMID: 28322200 DOI: 10.1016/j.ajpath.2017.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common metastatic skin cancers with increasing incidence. We examined the roles of complement component C3 and complement factor B (CFB) in the growth of cSCC. Analysis of cSCC cell lines (n = 8) and normal human epidermal keratinocytes (n = 11) with real-time quantitative PCR and Western blotting revealed up-regulation of C3 and CFB expression in cSCC cells. Immunohistochemical staining revealed stronger tumor cell-specific labeling for C3 and CFB in invasive cSCCs (n = 71) and recessive dystrophic epidermolysis bullosa-associated cSCCs (n = 11) than in cSCC in situ (n = 69), actinic keratoses (n = 63), and normal skin (n = 5). Significant up-regulation of C3 and CFB mRNA expression was noted in chemically induced mouse cSCCs, compared to benign papillomas. Knockdown of C3 and CFB expression inhibited migration and proliferation of cSCC cells and resulted in potent inhibition of extracellular signal-regulated kinase 1/2 activation. Knockdown of C3 and CFB markedly inhibited growth of human cSCC xenograft tumors in vivo. These results provide evidence for the roles of C3 and CFB in the development of cSCC and identify them as biomarkers and potential therapeutic targets in this metastatic skin cancer.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Seppo Meri
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and the Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and the Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
20
|
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, Caruntu C. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. DISEASE MARKERS 2016; 2016:4517492. [PMID: 27642215 PMCID: PMC5011506 DOI: 10.1155/2016/4517492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Squamous cells carcinoma (SCC) is the second most frequent of the keratinocyte-derived malignancies after basal cell carcinoma and is associated with a significant psychosocial and economic burden for both the patient himself and society. Reported risk factors for the malignant transformation of keratinocytes and development of SCC include ultraviolet light exposure, followed by chronic scarring and inflammation, exposure to chemical compounds (arsenic, insecticides, and pesticides), and immune-suppression. Despite various available treatment methods and recent advances in noninvasive or minimal invasive diagnostic techniques, the risk recurrence and metastasis are far from being negligible, even in patients with negative histological margins and lymph nodes. Analyzing normal, dysplastic, and malignant keratinocyte proteome holds special promise for novel biomarker discovery in SCC that could be used in the future for early detection, risk assessment, tumor monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Ghita
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Suzana Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra Ion
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Constantin Caruntu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Cheng J, Yan S. Prognostic variables in high-risk cutaneous squamous cell carcinoma: a review. J Cutan Pathol 2016; 43:994-1004. [PMID: 27404896 DOI: 10.1111/cup.12766] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a growing public health problem in the United States. A subset of high-risk SCC exhibits a more aggressive clinical trajectory including increased local recurrence and lymph node metastasis. However, there are no universally accepted criteria to help define and manage these patients. This review provides an overview of the high-risk features of cutaneous SCC, prognostic stratification of various staging systems and treatment options. It further examines the prognostic factors influencing the staging of cutaneous head and neck SCC.
Collapse
Affiliation(s)
- Judy Cheng
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Shaofeng Yan
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
22
|
Nissinen L, Farshchian M, Riihilä P, Kähäri VM. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res 2016; 365:691-702. [PMID: 27411692 DOI: 10.1007/s00441-016-2457-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022]
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, and its incidence is increasing worldwide. Solar UV radiation is an important risk factor for cSCC and leads to genetic and epigenetic changes both in epidermal keratinocytes and dermal cells. Tumor cells in cutaneous cSCCs typically harbor several driver gene mutations, but epidermal keratinocytes in sun-exposed normal skin also contain mutations in these same genes. Therefore, alterations in the microenvironment of premalignant lesions are evidently required for their progression to invasive and metastatic cSCC. For example, alterations in the composition of basement membrane and dermal extracellular matrix are early events in cSCC progression. The presence of microbial structures and the influx of inflammatory cells promote the secretion of proteases, which in turn regulate the availability of growth factors, cytokines, and chemokines and thus influence the growth and invasion of cSCC. Together, these observations emphasize the role of the tumor microenvironment in the progression of cSCC and identify it as a novel therapeutic target in cSCC and other malignant tumors. Graphical abstract Tumor-stroma interactions in the progression of cutaneous squamous cell carcinoma (cSCC). Epidermal layer is separated by a well-organized basement membrane (BM) from the dermal layer. UV radiation, other environmental insults, and aging target both epidermal keratinocytes and dermal fibroblasts and lead to genetic and epigenetic changes in these cells. In addition, epidermal keratinocytes in normal sun-exposed skin harbor several mutations in the cSCC driver genes. During transition to premalignant actinic keratosis (AK), the differentiation of keratinocytes is disturbed resulting in a neoplastic epithelium with hyperplastic cells. Expression of proteinases, such as matrix metalloproteinases (MMP) by neoplastic cells and activated stromal fibroblasts and macrophages is induced in AK, and collagen XV and XVIII are lost from the dermal BM. Furthermore, inflammatory cells accumulate at the site of the hyperplastic epithelium. During a later stage of cSCC progression, the number of inflammatory cells increases, and the expression of complement components and inhibitors by tumor cells is induced (CFI complement factor I, CFH complement factor H, FHL-1 Factor H-like protein 1). In addition to MMPs, activated fibroblasts also produce growth factors and promote inflammation, growth, and invasion of tumor cells.
Collapse
Affiliation(s)
- Liisa Nissinen
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Mehdi Farshchian
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Pilvi Riihilä
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Veli-Matti Kähäri
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland. .,MediCity Research Laboratory University of Turku, Turku, Finland.
| |
Collapse
|
23
|
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060868. [PMID: 27271600 PMCID: PMC4926402 DOI: 10.3390/ijms17060868] [Citation(s) in RCA: 609] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.
Collapse
Affiliation(s)
- Pavida Pittayapruek
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Ornicha Prapapan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
24
|
MMP7 is required to mediate cell invasion and tumor formation upon Plakophilin3 loss. PLoS One 2015; 10:e0123979. [PMID: 25875355 PMCID: PMC4395386 DOI: 10.1371/journal.pone.0123979] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/30/2022] Open
Abstract
Plakophilin3 (PKP3) loss results in increased transformation in multiple cell lines in vitro and increased tumor formation in vivo. A microarray analysis performed in the PKP3 knockdown clones, identified an inflammation associated gene signature in cell lines derived from stratified epithelia as opposed to cell lines derived from simple epithelia. However, in contrast to the inflammation associated gene signature, the expression of MMP7 was increased upon PKP3 knockdown in all the cell lines tested. Using vector driven RNA interference, it was demonstrated that MMP7 was required for in-vitro cell migration and invasion and tumor formation in vivo. The increase in MMP7 levels was due to the increase in levels of the Phosphatase of Regenerating Liver3 (PRL3), which is observed upon PKP3 loss. The results suggest that MMP7 over-expression may be one of the mechanisms by which PKP3 loss leads to increased cell invasion and tumor formation.
Collapse
|
25
|
Hata H, Abe R, Suto A, Homma E, Fujita Y, Aoyagi S, Shimizu H. MMP13 can be a useful differentiating marker between squamous cell carcinoma and benign hyperkeratotic lesions in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2015; 172:769-73. [PMID: 25066310 DOI: 10.1111/bjd.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 02/02/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe hereditary mechanobullous disease resulting from mutations in the COL7A1 gene, coding for type VII collagen. Patients with RDEB tend to develop squamous cell carcinomas (SCCs) at sites of chronic ulceration or scarring on the whole body. Distinguishing SCC from benign hyperkeratotic lesions is often difficult, not only clinically but also histologically in patients with RDEB. We investigated several matrix metallopeptidase (MMP) subtypes by comparing the DNA amplification microarray findings between evident SCCs and benign hyperkeratotic lesions in the same patient with RDEB. We report that MMP13 was found to be strongly positive in SCCs but negative in benign hyperkeratotic lesions. We found that there is an evident difference in the transitional area between SCCs and benign hyperkeratotic lesions. We propose that MMP13 may be a useful differentiating marker between SCC and benign hyperkeratotic lesions in RDEB.
Collapse
Affiliation(s)
- H Hata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Complement factor I promotes progression of cutaneous squamous cell carcinoma. J Invest Dermatol 2014; 135:579-588. [PMID: 25184960 DOI: 10.1038/jid.2014.376] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 01/25/2023]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is rising worldwide. We have examined the role of complement components in the progression of cSCC. Analysis of cSCC cell lines (n=8) and normal human epidermal keratinocytes (n=11) with whole transcriptome profiling (SOLiD), quantitative real-time reverse transcriptase-PCR, and western blotting revealed marked overexpression of complement factor I (CFI) in cSCC cells. Immunohistochemical analysis for CFI in vivo showed stronger tumor cell-specific labeling intensity in invasive sporadic cSCCs (n=83) and recessive dystrophic epidermolysis bullosa-associated cSCCs (n=7) than in cSCC in situ (n=65), premalignant epidermal lesions (actinic keratoses, n=64), benign epidermal papillomas (seborrheic keratoses, n=39), and normal skin (n=9). The expression of CFI was higher in the aggressive Ha-ras-transformed cell line (RT3) than in less tumorigenic HaCaT cell lines (HaCaT, A5, and II-4). The expression of CFI by cSCC cells was upregulated by IFN-γ and IL-1β. Knockdown of CFI expression inhibited proliferation and migration of cSCC cells and resulted in inhibition of basal extracellular signal-regulated kinase (ERK) 1/2 activation. Knockdown of CFI expression potently inhibited growth of human cSCC xenograft tumors in vivo. These results provide evidence for the role of CFI in the progression of cSCC and identify it as a potential therapeutic target in this nonmelanoma skin cancer.
Collapse
|
27
|
Kivisaari A, Kähäri VM. Squamous cell carcinoma of the skin: Emerging need for novel biomarkers. World J Clin Oncol 2013; 4:85-90. [PMID: 24926428 PMCID: PMC4053710 DOI: 10.5306/wjco.v4.i4.85] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
The incidence of non-melanoma skin cancers (NMSC) is rising worldwide resulting in demand for clinically useful prognostic biomarkers for these malignant tumors, especially for invasive and metastatic cutaneous squamous cell carcinoma (cSCC). Important risk factors for the development and progression of cSCC include ultraviolet radiation, chronic skin ulcers and immunosuppression. Due to the role of cumulative long-term sun exposure, cSCC is usually a disease of the elderly, but the incidence is also growing in younger individuals due to increased recreational exposure to sunlight. Although clinical diagnosis of cSCC is usually easy and treatment with surgical excision curable, it is responsible for the majority of NMSC related deaths. Clinicians treating skin cancer patients are aware that certain cSCCs grow rapidly and metastasize, but the underlying molecular mechanisms responsible for the aggressive progression of a subpopulation of cSCCs remain incompletely understood. Recently, new molecular markers for progression of cSCC have been identified.
Collapse
|
28
|
Complement factor H: a biomarker for progression of cutaneous squamous cell carcinoma. J Invest Dermatol 2013; 134:498-506. [PMID: 23938460 DOI: 10.1038/jid.2013.346] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 12/25/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing globally. We have studied the expression of complement system components in cSCC. Expression profiling of cSCC cell lines (n=8) and normal human epidermal keratinocytes (n=5) with Affymetrix and quantitative real-time PCR (qPCR) revealed upregulation of complement factor H (CFH) and factor H-like protein-1 (FHL-1) in cSCC cell lines. The expression of CFH and FHL-1 mRNAs was also significantly higher in cSCC tumors (n=6) than in normal skin (n=11). Analysis of CFH and FHL-1 expression in vivo in invasive cSCCs (n=65), in situ cSCCs (n=38), and premalignant lesions (actinic keratoses, n=37) by immunohistochemistry showed that they were specifically expressed by tumor cells in cSCCs and the staining intensity was stronger in cSCCs than in in situ cSCCs and actinic keratoses. The expression of CFH by cSCC cells was upregulated by IFN-γ and the basal CFH and FHL-1 expression was dependent on extracellular signal-regulated kinase (ERK)1/2 and p38 signaling. Knockdown of CFH and FHL-1 expression inhibited proliferation and migration of cSCC cells and inhibited basal ERK1/2 activation. These results provide evidence for a role of CFH and FHL-1 in cSCC progression and identify them as progression markers and potential therapeutic targets in SCCs of skin.
Collapse
|
29
|
Toll A, Masferrer E, Hernández-Ruiz ME, Ferrandiz-Pulido C, Yébenes M, Jaka A, Tuneu A, Jucglà A, Gimeno J, Baró T, Casado B, Gandarillas A, Costa I, Mojal S, Peña R, de Herreros AG, García-Patos V, Pujol RM, Hernández-Muñoz I. Epithelial to mesenchymal transition markers are associated with an increased metastatic risk in primary cutaneous squamous cell carcinomas but are attenuated in lymph node metastases. J Dermatol Sci 2013; 72:93-102. [PMID: 23928229 DOI: 10.1016/j.jdermsci.2013.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epithelial to mesenchymal transition (EMT) is a process involving loss of intercellular adhesion, acquisition of a mesenchymal phenotype and enhanced migratory potential; epithelial markers, such as E-cadherin, are down-regulated and mesenchymal proteins (Vimentin), increased. OBJECTIVE To investigate the expression of EMT markers in metastatic SCC (MSCC) and their corresponding metastases, and to correlate them with clinico-pathological factors associated with an increased risk of metastasis. METHODS We performed a retrospective study that included 146 cSCC samples (51 primary non-metastatic, 56 primary metastatic, 39 lymphatic metastases). Immunohistochemistry for E-cadherin, Vimentin, Snail, beta-catenin, Twist, Zeb1 and Podoplanin was performed. RESULTS Loss of membranous E-cadherin was observed in 77% cSCCs, with no differences between MSCC and non-MSCC. Among the transcriptional factors controlling EMT, no significant Snail1 expression was detected. Twist, Zeb1, Vimentin, beta-catenin and Podoplanin were significantly overexpressed in MSCCs. Twist ectopic expression in SCC13 cells induced Zeb1, Vimentin and Podoplanin expression and E-cadherin delocalization. These changes resulted in a scattered migration pattern in vitro. Expression of EMT markers was decreased in the metastases when compared with the corresponding primary tumors. CONCLUSION These results suggest that a partial EMT, characterized by the expression of Twist but without a total E-cadherin depletion, is involved in the acquisition of invasive traits by cSCC, but the process is downregulated in lymph node metastases.
Collapse
Affiliation(s)
- Agustí Toll
- Servei de Dermatologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Matrix metalloproteinases, a group of over 26 zinc-dependent enzymes, share a similar structure to each other and functionally are capable of degrading almost every component of the extracellular matrix. They are essential to normal development during embryogenesis and extracellular matrix remodeling and, given this, understandably enough have been implicated in multiple pathologic processes that encompass the inflammatory and neoplastic spectrum of disease. This review attempts to define roles of matrix metalloproteinases of relevance in normal skin and to elucidate their roles in inflammatory dermatoses and benign and malignant neoplasms.
Collapse
|
31
|
Meephansan J, Komine M, Tsuda H, Ohtsuki M. Suppressive effect of calcipotriol on the induction of matrix metalloproteinase (MMP)-9 and MMP-13 in a human squamous cell carcinoma cell line. Clin Exp Dermatol 2012; 37:889-96. [PMID: 22924547 DOI: 10.1111/j.1365-2230.2012.04381.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vitamin D3 is a potent regulator of cell growth, differentiation and death, tumour invasion, and angiogenesis. Production of matrix metalloproteinase (MMP)-9 and MMP-13 by tumour cells may promote tumour growth, invasion and metastasis. AIM To investigate whether calcipotriol could suppress the expression of MMP-9 and MMP-13 in a human squamous cell carcinoma (SCC) cell line (DJM cells), and to examine the mechanism of modulation of MMP-9 and MMP-13 by calcipotriol in DJM cells treated with tumour necrosis factor (TNF)-α. METHODS Protein and mRNA levels of MMP-9 and MMP-13 were examined by ELISA and real-time PCR, respectively. Activation of signalling cascades was assessed using several inhibitors of signalling molecules and western blot analysis. RESULTS Production of MMP-9 and MMP-13 markedly increased when the cells were treated with TNF-α. Calcipotriol suppressed the production of MMP-9 and MMP-13 mRNA and proteins significantly, in a dose-dependent manner. Induction of MMP-9 by TNF-α was suppressed by an extracellular signal-regulated kinase (ERK) inhibitor but not by a p38 inhibitor, whereas induction of MMP-13 was inhibited by a p38 inhibitor but not by an ERK inhibitor. Calcipotriol inhibited the phosphorylation of both ERK and p38, as shown by western blotting. CONCLUSION Calcipotriol reduces MMP-9 and MMP-13 production through inhibiting the phosphorylation of ERK and p38, respectively.
Collapse
Affiliation(s)
- J Meephansan
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | | | | | | |
Collapse
|
32
|
Xu N, Zhang L, Meisgen F, Harada M, Heilborn J, Homey B, Grandér D, Ståhle M, Sonkoly E, Pivarcsi A. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem 2012; 287:29899-908. [PMID: 22782903 DOI: 10.1074/jbc.m112.391243] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer. Although dysregulation of microRNAs (miRNAs) is known to be involved in a variety of cancers, the role of miRNAs in cSCC is unclear. In this study, we aimed to identify tumor suppressive and oncogenic miRNAs involved in the pathogenesis of cSCC. MiRNA expression profiles in healthy skins (n = 4) and cSCCs (n = 4) were analyzed using MicroRNA Low Density Array. MiR-125b expression was analyzed by quantitative real-time PCR and in situ hybridization in skin biopsies from 40 healthy donors, 13 actinic keratosis, and 74 cSCC patients. The effect of miR-125b was analyzed in wound closure, colony formation, migration, and invasion assays in two cSCC cell lines, UT-SCC-7 and A431. The genes regulated by miR-125b in cSCC were identified by microarray analysis and its direct target was validated by luciferase reporter assay. Comparing cSCC with healthy skin, we identified four up-regulated miRNAs (miR-31, miR-135b, miR-21, and miR-223) and 54 down-regulated miRNAs, including miR-125b, whose function was further examined. We found that miR-125b suppressed proliferation, colony formation, migratory, and invasive capacity of cSCC cells. Matrix metallopeptidase 13 (MMP13) was identified as a direct target suppressed by miR-125b, and there was an inverse relationship between the expression of miR-125b and MMP13 in cSCC. Knockdown of MMP13 expression phenocopied the effects of miR-125b overexpression. These findings provide a novel molecular mechanism by which MMP13 is up-regulated in cSCCs and indicate that miR-125b plays a tumor suppressive role in cSCC.
Collapse
Affiliation(s)
- Ning Xu
- Molecular Dermatology Research Group, Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, SE-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res 2012; 351:255-68. [DOI: 10.1007/s00441-012-1410-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
|
34
|
Toriseva M, Ala-aho R, Peltonen S, Peltonen J, Grénman R, Kähäri VM. Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells. PLoS One 2012; 7:e33041. [PMID: 22427941 PMCID: PMC3299721 DOI: 10.1371/journal.pone.0033041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/09/2012] [Indexed: 12/26/2022] Open
Abstract
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.
Collapse
Affiliation(s)
- Mervi Toriseva
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
| | - Risto Ala-aho
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
35
|
Farshchian M, Kivisaari A, Ala-Aho R, Riihilä P, Kallajoki M, Grénman R, Peltonen J, Pihlajaniemi T, Heljasvaara R, Kähäri VM. Serpin peptidase inhibitor clade A member 1 (SerpinA1) is a novel biomarker for progression of cutaneous squamous cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1110-9. [PMID: 21723846 DOI: 10.1016/j.ajpath.2011.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/08/2011] [Accepted: 05/04/2011] [Indexed: 01/26/2023]
Abstract
The incidence of keratinocyte-derived nonmelanoma skin cancers is increasing worldwide because of cumulative recreational exposure to sunlight. At present, no specific molecular markers are available for assessing the progression of premalignant actinic keratoses to invasive cutaneous squamous cell carcinoma (SCC). We examined the role of the Serpin family in skin SCCs. Expression profiling of cutaneous SCC cell lines (n = 8) revealed up-regulation of SerpinA1 compared with normal epidermal keratinocytes (n = 5). Analysis with quantitative RT-PCR showed that the mean level of SerpinA1 mRNA was markedly up-regulated in cutaneous SCC cell lines (n = 8) compared with in normal keratinocytes. SerpinA1 production by SCC cells was dependent on p38 mitogen-activated protein kinase activity and was up-regulated by epidermal growth factor, tumor necrosis factor-α, interferon-γ, and IL-1β. Immunostaining of tissue arrays with 148 human tissue samples revealed tumor cell-associated expression of SerpinA1 in 19 of 36 actinic keratoses, 22 of 29 Bowen's disease samples, 67 of 71 sporadic SCCs, and all 12 recessive dystrophic epidermolysis bullosa-associated SCCs examined. Moreover, tumor cell-associated SerpinA1 staining was detected in all chemically induced mouse skin SCCs studied (n = 17). Overexpression of SerpinA1 mRNA was also detected by quantitative RT-PCR in chemically induced mouse skin SCCs (n = 14) compared with control tissues (n = 14). These data identify SerpinA1 as a novel tumor cell-associated biomarker for progression of cutaneous SCCs.
Collapse
Affiliation(s)
- Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gruber C, Gratz IK, Murauer EM, Mayr E, Koller U, Bruckner-Tuderman L, Meneguzzi G, Hintner H, Bauer JW. Spliceosome-mediated RNA trans-splicing facilitates targeted delivery of suicide genes to cancer cells. Mol Cancer Ther 2011; 10:233-41. [PMID: 21209069 DOI: 10.1158/1535-7163.mct-10-0669] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), a hereditary blistering disease of epithelia, show susceptibility to develop highly aggressive squamous cell carcinoma (SCC). Tumors metastasize early and are associated with mortality in the 30th-40th years of life in this patient group. So far, no adequate therapy is available for RDEB SCC. An approach is suicide gene therapy, in which a cell death-inducing agent is introduced to cancer cells. However, lack of specificity has constrained clinical application of this modality. Therefore, we used spliceosome-mediated RNA trans-splicing technology, capable of replacing a tumor-specific transcript with one encoding a cell death-inducing peptide/toxin, to provide tumor-restricted expression. We designed 3' pre-trans-splicing molecules (PTM) and evaluated their efficiency to trans-splice an RDEB SCC-associated target gene, the matrix metalloproteinase-9 (MMP9), in a fluorescence-based test system. A highly efficient PTM was further adapted to insert the toxin streptolysin O (SLO) of Streptococcus pyogenes into the MMP9 gene. Transfection of RDEB SCC cells with the SLO-PTM resulted in cell death and induction of toxin function restricted to RDEB SCC cells. Thus, RNA trans-splicing is a suicide gene therapy approach with increased specificity to treat highly malignant SCC tumors.
Collapse
Affiliation(s)
- Christina Gruber
- Division of Molecular Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kivisaari AK, Kallajoki M, Ala-aho R, McGrath JA, Bauer JW, Königová R, Medvecz M, Beckert W, Grénman R, Kähäri VM. Matrix metalloproteinase-7 activates heparin-binding epidermal growth factor-like growth factor in cutaneous squamous cell carcinoma. Br J Dermatol 2010; 163:726-35. [PMID: 20586780 DOI: 10.1111/j.1365-2133.2010.09924.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tumour-specific expression of matrix metalloproteinase (MMP)-7 has been noted in cutaneous squamous cell carcinomas (SCCs) in patients with recessive dystrophic epidermolysis bullosa (RDEB). OBJECTIVES To examine the potential role of MMP-7 in shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in RDEB-associated and sporadic SCCs. METHODS Tissue microarrays of RDEB-associated SCC (n = 20), non-EB SCC (n = 60) and Bowen disease (n = 28) were immunostained for MMP-7, CD44 variant 3 (CD44v3) and HB-EGF. Shedding of HB-EGF was studied in vitro using two cutaneous SCC cell lines. RESULTS Immunohistochemical analysis showed that HB-EGF was absent in tumour cells when MMP-7 and CD44v3 colocalized, and that the absence of HB-EGF was more pronounced in RDEB-associated SCCs than in non-EB SCCs. The loss of HB-EGF in MMP-7-CD44v3 double-positive areas was interpreted to indicate shedding and activation of HB-EGF; this was also detected in Bowen disease indicating its importance in the early phase of SCC development. Specific knockdown of MMP-7 expression in human cutaneous SCC cells by small interfering RNA inhibited shedding of HB-EGF and resulted in diminished activation of the EGF receptor (EGFR) and ERK1/2, and in reduced proliferation of SCC cells. CONCLUSIONS These findings provide evidence for the role of MMP-7 in promoting the growth of cutaneous SCCs by shedding HB-EGF, and identify EGFR signalling as a potential therapeutic target in RDEB-associated SCC and unresectable sporadic cutaneous SCC.
Collapse
Affiliation(s)
- A K Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, PO Box 52, 20521 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Purdie KJ, Pourreyron C, Fassihi H, Cepeda-Valdes R, Frew JW, Volz A, Weissenborn SJ, Pfister H, Proby CM, Bruckner-Tuderman L, Murrell DF, Salas-Alanis JC, McGrath JA, Leigh IM, Harwood CA, South AP. No evidence that human papillomavirus is responsible for the aggressive nature of recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. J Invest Dermatol 2010; 130:2853-5. [PMID: 20739945 DOI: 10.1038/jid.2010.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Abstract
The recessive forms of epidermolysis bullosa (EB) are common in Scandinavia, especially in the northern parts of Norway and Sweden. The daily care of EB in Scandinavia is organized around the patient via settings at the local hospital or health service. However, the diagnosis of EB and providing correct patient/family information usually require a specialized service. Specialized EB care in Scandinavia is mainly provided by dermatologists, pediatricians, and dentists working together in a team. The increasing number of EB families with foreign ethnic backgrounds and language problems is a challenge to the health service, especially in Sweden, and demands increased facilities. Also, the high expectations by parents of children with junctional EB and recessive dystrophic EB about new, revolutionizing therapies are challenges that can only be met by international collaboration and more research in specialized centers for EB. A close collaboration with patient organizations and various charity organizations will be very helpful in this respect.
Collapse
Affiliation(s)
- Anders Vahlquist
- Department of Medical Sciences, Uppsala University, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
40
|
Alexandroff A, Flohr C, Johnston G. Updates from the British Association of Dermatologists 89th Annual Meeting, 7-10 July 2009, Glasgow, U.K. Br J Dermatol 2010; 163:27-37. [DOI: 10.1111/j.1365-2133.2010.09814.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Uitto J, McGrath JA, Rodeck U, Bruckner-Tuderman L, Robinson EC. Progress in epidermolysis bullosa research: toward treatment and cure. J Invest Dermatol 2010; 130:1778-84. [PMID: 20393479 DOI: 10.1038/jid.2010.90] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of blistering disorders with considerable morbidity and mortality. Two decades ago, EB entered the molecular era with the identification of mutations in specific genes expressed within the cutaneous basement membrane zone; mutations in 14 genes have now been identified. This progress has now formed the basis for development of novel molecular therapies for this disease.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
42
|
Luukkaa H, Klemi P, Hirsimäki P, Vahlberg T, Kivisaari A, Kähäri VM, Grénman R. Matrix metalloproteinase (MMP)-7 in salivary gland cancer. Acta Oncol 2010; 49:85-90. [PMID: 19929564 DOI: 10.3109/02841860903287197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION High levels of certain matrix metalloproteinases (MMPs) have been detected in various human cancers. The purpose of this study was to analyze the expression of MMP-7 in salivary gland cancer (SGC) by immunohistochemistry and to associate the results with the clinical data and the 10-year survival of the SGC patients. MATERIAL AND METHODS Immunohistochemistry for MMP-7 was performed in a series of 107 paraffin-embedded sections of SGC. The samples represent the entire SGC population in Finland from 1991-1996. Mortality follow-up ended December 31, 2006. RESULTS The study population of 107 patients consisted of 47 male and 60 female subjects, ranging in age at the time of diagnosis between 23 and 90 years. The minimum follow-up time was 10.6 years and the maximum 15.9 years. By age-adjusted analysis lower staining intensity was associated with worse overall survival of patients with acinic cell carcinoma (p = 0.047, HR 6.5, 95% Cl 1.0-41.7) and in mucoepidermoid carcinoma (p = 0.010, HR 9.3, 95% CI 1.7-50.0). Low staining intensity was also associated with worse disease-specific survival of patients with acinic cell carcinoma (0-1 vs. 2-3; p = 0.047, HR 13.7, 1.0-200.0). VCI Ki-67 was an important prognostic factor for survival of the entire data set (p < 0.0001, HR 4.7, 95% Cl 2.3-9.8). CONCLUSIONS MMP-7 is associated with the prognosis of patients with acinic cell and mucoepidermoid carcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Carcinoma, Acinar Cell/metabolism
- Carcinoma, Acinar Cell/mortality
- Carcinoma, Acinar Cell/pathology
- Carcinoma, Ductal/metabolism
- Carcinoma, Ductal/mortality
- Carcinoma, Ductal/pathology
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/mortality
- Carcinoma, Mucoepidermoid/pathology
- Female
- Humans
- Immunohistochemistry
- Male
- Matrix Metalloproteinase 7/biosynthesis
- Middle Aged
- Neoplasm Staging
- Prognosis
- Salivary Gland Neoplasms/metabolism
- Salivary Gland Neoplasms/mortality
Collapse
Affiliation(s)
- Heikki Luukkaa
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
South AP, O'Toole EA. Understanding the pathogenesis of recessive dystrophic epidermolysis bullosa squamous cell carcinoma. Dermatol Clin 2010; 28:171-8. [PMID: 19945632 DOI: 10.1016/j.det.2009.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patients with recessive dystrophic epidermolysis bullosa develop numerous life-threatening skin cancers. The reasons for this remain unclear. Parallels exist with other scarring skin conditions, such as Marjolin ulcer. We summarize observational and experimental data and discuss proposed theories for the development of such aggressive skin cancers. A context-driven situation seems to be emerging, but more focused research is required to elucidate the pathogenesis of epidermolysis bullosa-associated squamous cell carcinoma.
Collapse
Affiliation(s)
- Andrew P South
- Centre For Oncology and Molecular Medicine, Ninewell's Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | |
Collapse
|
44
|
Luukkaa H, Klemi P, Leivo I, Mäkitie AA, Irish J, Gilbert R, Perez-Ordonez B, Hirsimäki P, Vahlberg T, Kivisaari A, Kähäri VM, Grénman R. Expression of matrix metalloproteinase-1, -7, -9, -13, Ki-67, and HER-2 in epithelial-myoepithelial salivary gland cancer. Head Neck 2009; 32:1019-27. [DOI: 10.1002/hed.21277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Dammak A, Zribi J, Boudaya S, Mseddi M, Meziou TJ, Masmoudi A, Ellouze Z, Keskes H, Turki H. Squamous cell carcinoma complicating recessive dystrophic epidermolysis bullosa-Hallopeau-Siemens: a report of four cases. Int J Dermatol 2009; 48:588-91. [PMID: 19538366 DOI: 10.1111/j.1365-4632.2009.04006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB), an autosomal-recessive genodermatosis, is one of the more severe forms of the epidermolysis bullosa dystrophica group, and is characterized by generalized blistering of the skin and mucous membranes. Cutaneous squamous cell carcinoma is one of the most serious complications of this disease. METHODS We report four patients (three females and one male), two of whom were under 20 years of age, suffering from RDEB-Hallopeau-Siemens. RESULTS All patients developed well-differentiated squamous cell carcinoma. No metastases were detected. All cases were treated surgically. Fatal evolution was noted in one patient. A second tumor was detected in another patient during the follow-up period. No further tumors or metastases were observed in the other patients. CONCLUSIONS Regular clinical and histologic examination of any nodular lesions or non healing ulcers of all patients suffering from RDEB-Hallopeau-Siemens to detect an early malignancy is recommended.
Collapse
Affiliation(s)
- Anis Dammak
- Dermatology Department, Hedi Chaker Hospital, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Martins VL, Vyas JJ, Chen M, Purdie K, Mein CA, South AP, Storey A, McGrath JA, O'Toole EA. Increased invasive behaviour in cutaneous squamous cell carcinoma with loss of basement-membrane type VII collagen. J Cell Sci 2009; 122:1788-99. [PMID: 19435799 DOI: 10.1242/jcs.042895] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type VII collagen (ColVII) is the main component of anchoring fibrils, attachment structures within the lamina densa of the basement membrane that are responsible for attachment of the epidermis to the dermis in skin. Mutations in the human ColVII gene, COL7A1, cause the severe inherited blistering disorder recessive dystrophic epidermolysis bullosa (RDEB) affecting skin and mucosae, associated with a greatly increased risk of skin cancer. In this study, we examined the effect of loss of ColVII on squamous cell carcinoma (SCC) tumourigenesis using RNAi in a 3D organotypic skin model. Our findings suggest that loss of ColVII promotes SCC migration and invasion as well as regulating cell differentiation with evidence for concomitant promotion of epithelial-mesenchymal transition (EMT). Immunostaining of RDEB skin and a tissue array of sporadic cutaneous SCCs confirmed that loss of ColVII correlates with decreased involucrin expression in vivo. Gene-expression-array data and immunostaining demonstrated that loss of ColVII increases expression of the chemokine ligand-receptor CXCL10-CXCR3 and downstream-associated PLC signalling, which might contribute to the increased metastatic potential of SCCs with reduced or absent ColVII expression. Together, these findings may explain the aggressive behaviour of SCCs in RDEB patients and may also be relevant to non-RDEB skin cancer, as well as other tumours from organs where ColVII is expressed.
Collapse
Affiliation(s)
- Vera L Martins
- Centre for Cutaneous Research, Cancer Research UK Skin Tumour Laboratory, Institute of Cell and Molecular Science, William Harvey Research Unit, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London E1 2AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Current world literature. Curr Opin Otolaryngol Head Neck Surg 2009; 17:132-41. [PMID: 19363348 DOI: 10.1097/moo.0b013e32832ad5ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|