1
|
Rosenbaum D, Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10). FEBS J 2024; 291:2733-2766. [PMID: 37218105 DOI: 10.1111/febs.16870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The 'A Disintegrin And Metalloproteinase 10' (ADAM10) has gained considerable attention due to its discovery as an 'α-secretase' involved in the nonamyloidogenic processing of the amyloid precursor protein, thereby possibly preventing the excessive generation of the amyloid beta peptide, which is associated with the pathogenesis of Alzheimer's disease. ADAM10 was found to exert many additional functions, cleaving about 100 different membrane proteins. ADAM10 is involved in many pathophysiological conditions, ranging from cancer and autoimmune disorders to neurodegeneration and inflammation. ADAM10 cleaves its substrates close to the plasma membrane, a process referred to as ectodomain shedding. This is a central step in the modulation of the functions of cell adhesion proteins and cell surface receptors. ADAM10 activity is controlled by transcriptional and post-translational events. The interaction of ADAM10 with tetraspanins and the way they functionally and structurally depend on each other is another topic of interest. In this review, we will summarize findings on how ADAM10 is regulated and what is known about the biology of the protease. We will focus on novel aspects of the molecular biology and pathophysiology of ADAM10 that were previously poorly covered, such as the role of ADAM10 on extracellular vesicles, its contribution to virus entry, and its involvement in cardiac disease, cancer, inflammation, and immune regulation. ADAM10 has emerged as a regulator controlling cell surface proteins during development and in adult life. Its involvement in disease states suggests that ADAM10 may be exploited as a therapeutic target to treat conditions associated with a dysfunctional proteolytic activity.
Collapse
Affiliation(s)
- David Rosenbaum
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
2
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
3
|
Gruba N, Piwkowska A, Lesner A. Initial study of the detection of ADAM 10 in the urine of type-2 diabetic patients. Bioorg Chem 2023; 140:106826. [PMID: 37666108 DOI: 10.1016/j.bioorg.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Kugelmann D, Anders M, Sigmund AM, Egu DT, Eichkorn RA, Yazdi AS, Sárdy M, Hertl M, Didona D, Hashimoto T, Waschke J. Role of ADAM10 and ADAM17 in the Regulation of Keratinocyte Adhesion in Pemphigus Vulgaris. Front Immunol 2022; 13:884248. [PMID: 35844545 PMCID: PMC9279611 DOI: 10.3389/fimmu.2022.884248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The severe autoimmune blistering disease Pemphigus vulgaris (PV) is mainly caused by autoantibodies (IgG) against desmoglein (Dsg) 3 and Dsg1. The mechanisms leading to the development of blisters are not fully understood, but intracellular signaling seems to play an important role. Sheddases ADAM10 and ADAM17 are involved in the turnover of the desmosomal cadherin Dsg2 and ADAM10 has been shown to contribute to acantholysis in a murine pemphigus model. In the present study, we further examined the role of ADAM10 and ADAM17 both in keratinocyte adhesion and in the pathogenesis of PV. First, we found that inhibition of ADAM10 enhanced adhesion of primary human keratinocytes but not of immortalized keratinocytes. In dissociation assays, inhibition of ADAM10 shifted keratinocyte adhesion towards a hyperadhesive state. However, ADAM inhibition did neither modulate protein levels of Dsg1 and Dsg3 nor activation of EGFR at Y1068 and Y845. In primary human keratinocytes, inhibition of ADAM10, but not ADAM17, reduced loss of cell adhesion and fragmentation of Dsg1 and Dsg3 immunostaining in response to a PV1-IgG from a mucocutaneous PV patient. Similarly, inhibition of ADAM10 in dissociation assay decreased fragmentation of primary keratinocytes induced by a monoclonal antibody against Dsg3 and by PV-IgG from two other patients both suffering from mucosal PV. However, such protective effect was not observed in both cultured cells and ex vivo disease models, when another mucocutaneous PV4-IgG containing more Dsg1 autoantibodies was used. Taken together, ADAM10 modulates both hyperadhesion and PV-IgG-induced loss of cell adhesion dependent on the autoantibody profile.
Collapse
Affiliation(s)
- Daniela Kugelmann
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Maresa Anders
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Anna M. Sigmund
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Desalegn T. Egu
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ramona A. Eichkorn
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany
| | - Amir S. Yazdi
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Takashi Hashimoto
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- *Correspondence: Jens Waschke,
| |
Collapse
|
6
|
Gül C, Kilic S, Şehitoğlu MH. The importance of ADAM10 and ADAM17 metalloproteinases in the pathogenesis of psoriasis. Clin Exp Dermatol 2022; 47:1673-1678. [PMID: 35474465 DOI: 10.1111/ced.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disorder characterized by inflammation, hyperproliferation, andneoangiogenesis. The disease pathogenesis has not been fully elucidated. ADAM17 and ADAM10 are important proteases serving as regulators of inflammation. OBJECTIVES This study aimed to determine the role of ADAM17 and ADAM10 in the pathogenesis of Psoriasis through the comparison of serum ADAM17 and ADAM10 levels between Psoriasis patients and healthy controls. METHODS A total of 179 subjects, including 90 psoriasis patients and 89 healthy controls, were included in the study. Serum ADAM17 and serum ADAM10 levels were measured by the ELISA method for each participant from the patient and control groups. The statistical data analysis was performed using the SPSS 19.0 program. P-value < 0.05 was considered statistically significant. RESULTS The mean values for serum ADAM10 and ADAM17 were respectively 3.1±2.2 and 76.5±31.1 in the patient group, whereas 8.6±3.7 and 29.5±22.4 in the control group. A statistically significant difference was detected between the patient and control groups regarding ADAM10 and ADAM17 levels (p=0.0001). CONCLUSIONS Considering the high levels of ADAM17 in Psoriasis patient group, ADAM17 protease might have a crucial role in the pathogenesis of psoriasis, while the low levels of ADAM10 might be attributed to its regulatory effect on keratinocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Ceren Gül
- Departments of Dermatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sevilay Kilic
- Departments of Dermatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Müşerref H Şehitoğlu
- Departments of Medical Biochemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
7
|
Rath M, Pitiot A, Kirr M, Fröhlich W, Plosnita B, Schliep S, Bauerschmitz J, Baur AS, Ostalecki C. Multi-Antigen Imaging Reveals Inflammatory DC, ADAM17 and Neprilysin as Effectors in Keloid Formation. Int J Mol Sci 2021; 22:ijms22179417. [PMID: 34502327 PMCID: PMC8430546 DOI: 10.3390/ijms22179417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Keloid is an aberrant scarring process of the skin, characterized by excessive extracellular matrix synthesis and deposition. The pathogenesis of this prevalent cutaneous disorder is not fully understood; however, a persistent inflammatory process is observed. To obtain more insight into this process, we analyzed lesional, perilesional and healthy tissue using multi-antigen-analysis (MAA) in conjunction with a data mining approach. Here, we demonstrate that monocyte-derived inflammatory dendritic cells (CD1a+, CD11c+, CD14+) and activated CD4+ T lymphocytes (CD45 RO+) dominated the immune infiltration in keloids while associating with fibroblasts. In perilesional tissue, precursor immune cells were dominant in the perivascular area, suggesting that they were attracted by an immune process, potentially in the lesional area. Supporting this hypothesis, only in keloid lesions, high levels of ADAM10/17 and Neprilysin (CD10) were observed in both fibroblasts and leukocytes. The spatial proximity of these two cell types, which could be confirmed by image analysis only in lesional tissue, could be a potential factor leading to the activation of fibroblasts. Our findings provide new insight into the pathogenesis of keloid formation and reveal metalloproteinases as a target for therapeutical intervention.
Collapse
Affiliation(s)
- Mathias Rath
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Alain Pitiot
- Laboratory of Image & Data Analysis, Ilixa Ltd., London W1U 6NQ, UK;
| | - Michael Kirr
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.K.); (W.F.); (S.S.); (J.B.); (A.S.B.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, 91054 Erlangen, Germany
| | - Waltraud Fröhlich
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.K.); (W.F.); (S.S.); (J.B.); (A.S.B.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, 91054 Erlangen, Germany
| | | | - Stefan Schliep
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.K.); (W.F.); (S.S.); (J.B.); (A.S.B.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, 91054 Erlangen, Germany
| | - Jürgen Bauerschmitz
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.K.); (W.F.); (S.S.); (J.B.); (A.S.B.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, 91054 Erlangen, Germany
| | - Andreas S. Baur
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.K.); (W.F.); (S.S.); (J.B.); (A.S.B.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, 91054 Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.K.); (W.F.); (S.S.); (J.B.); (A.S.B.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, 91054 Erlangen, Germany
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8532965
| |
Collapse
|
8
|
Smith TM, Tharakan A, Martin RK. Targeting ADAM10 in Cancer and Autoimmunity. Front Immunol 2020; 11:499. [PMID: 32265938 PMCID: PMC7105615 DOI: 10.3389/fimmu.2020.00499] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Generating inhibitors for A Disintegrin And Metalloproteinase 10 (ADAM10), a zinc-dependent protease, was heavily invested in by the pharmaceutical industry starting over 20 years ago. There has been much enthusiasm in basic research for these inhibitors, with a multitude of studies generating significant data, yet the clinical trials have not replicated the same results. ADAM10 is ubiquitously expressed and cleaves many important substrates such as Notch, PD-L1, EGFR/HER ligands, ICOS-L, TACI, and the "stress related molecules" MIC-A, MIC-B and ULBPs. This review goes through the most recent pre-clinical data with inhibitors as well as clinical data supporting the use of ADAM10 inhibitor use in cancer and autoimmunity. It additionally addresses how ADAM10 inhibitor therapy can be improved and if inhibitor therapy can be paired with other drug treatments to maximize effectiveness in various disease states. Finally, it examines the ADAM10 substrates that are important to each disease state and if any of these substrates or ADAM10 itself is a potential biomarker for disease.
Collapse
Affiliation(s)
| | | | - Rebecca K. Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Ivars M, España A, Alzuguren P, Pelacho B, Lasarte JJ, López-Zabalza MJ. The involvement of ADAM10 in acantholysis in mucocutaneous pemphigus vulgaris depends on the autoantibody profile of each patient. Br J Dermatol 2019; 182:1194-1204. [PMID: 31370093 DOI: 10.1111/bjd.18382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Acantholysis in pemphigus vulgaris (PV) may be triggered by desmoglein (Dsg) and non-Dsg autoantibodies. The autoantibody profile of each patient results in distinct intracellular signalling patterns. OBJECTIVES Based on our previous findings, we aimed to elucidate whether PV acantholysis in a mouse model may be mediated by activation of a disintegrin and metalloproteinase 10 (ADAM10). METHODS We used three PV-IgG fractions from different patients containing high or low levels of anti-Dsg1 and anti-Dsg3 antibodies, and the presence or not of anti-desmocollin (Dsc) antibodies, using a passive transfer mouse model of PV. RESULTS Although all of the PV-IgG fractions produced suprabasal acantholysis, only those containing anti-Dsg1/3, but not anti-Dsc2/3 antibodies, induced ADAM10 activation in a Src-dependent way, and an increase in the epidermal growth factor (EGF) receptor ligands EGF and betacellulin (BTC). In contrast, the presence of anti-Dsc2/3 antibodies, in addition to anti-Dsg1/3, triggered earlier and ADAM10-independent epidermal detachment, with no increase in EGF and BTC, which was associated with an earlier and more intense acantholysis. CONCLUSIONS All PV-IgG fractions produced suprabasal acantholysis, but our results reveal that depending on the levels of anti-Dsg antibodies or the presence of non-Dsg antibodies, such as anti-Dsc, more severe cell-cell epidermal detachment will occur at different times, and in an ADAM10-dependent manner or not. Acantholysis in these different groups of patients with PV may be a consequence of the activation of specific intracellular mechanisms downstream of Autoantibodies binding to Dsg or non-Dsg proteins, and therefore more specific therapeutic approaches in PV should be used. What's already known about this topic? Suprabasal acantholysis in pemphigus vulgaris (PV) may be triggered by both desmoglein (Dsg) and non-Dsg autoantibodies. The autoantibody profile of each patient is associated with a distinct intracellular signalling pattern. What does this study add? In patients with PV with anti-Dsg3 and anti-Dsg1, but not anti-desmocollin (Dsc)3 antibodies, ADAM10 activation is induced in an Src-dependent way, together with an increase in the epidermal growth factor receptor (EGFR) ligands EGF and betacellulin. The presence of anti-Dsc3 antibodies triggers an earlier and ADAM10-independent acantholysis, without increasing EGFR ligands, and is associated with more severe epidermal detachment. Lower levels of anti-Dsc3 antibodies are associated with less severe acantholysis. What is the translational message? In some patients with PV, the severity and the timing for cell-cell detachment seem to depend on the level of anti-Dsg1/3 antibodies, although other as yet uncharacterized antibodies may also participate. These patients with PV would exhibit inhibition of acantholysis by Src, ADAM10, EGF and EGFR inhibitors. In other patients, the presence of non-Dsg antibodies, such as anti-Dsc2/3, would produce an earlier and more severe ADAM10-independent suprabasal acantholysis.
Collapse
Affiliation(s)
- M Ivars
- Department of Dermatology, University Clinic of Navarra, School of Medicine, Pamplona, Navarra, Spain
| | - A España
- Department of Dermatology, University Clinic of Navarra, School of Medicine, Pamplona, Navarra, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - P Alzuguren
- Department of Dermatology, University Clinic of Navarra, School of Medicine, Pamplona, Navarra, Spain
| | - B Pelacho
- IdiSNA, Navarra Institute for Health Research, Pamplona, Navarra, Spain.,Laboratory of Regenerative Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | - J J Lasarte
- IdiSNA, Navarra Institute for Health Research, Pamplona, Navarra, Spain.,Center for Applied Medical Research, Program of Immunology and Immunotherapy, University of Navarra, Pamplona, Navarra, Spain
| | - M J López-Zabalza
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
10
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
11
|
Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, Meisterfeld S, Beissert S, Guck J, Günther C. Toll-Like Receptor-Mediated Upregulation of CXCL16 in Psoriasis Orchestrates Neutrophil Activation. J Invest Dermatol 2018; 138:344-354. [DOI: 10.1016/j.jid.2017.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 12/27/2022]
|
12
|
Wetzel S, Seipold L, Saftig P. The metalloproteinase ADAM10: A useful therapeutic target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624438 DOI: 10.1016/j.bbamcr.2017.06.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteolytic cleavage represents a unique and irreversible posttranslational event regulating the function and half-life of many intracellular and extracellular proteins. The metalloproteinase ADAM10 has raised attention since it cleaves an increasing number of protein substrates close to the extracellular membrane leaflet. This "ectodomain shedding" regulates the turnover of a number of transmembrane proteins involved in cell adhesion and receptor signaling. It can initiate intramembrane proteolysis followed by nuclear transport and signaling of the cytoplasmic domain. ADAM10 has also been implicated in human disorders ranging from neurodegeneration to dysfunction of the immune system and cancer. Targeting proteases for therapeutic purposes remains a challenge since these enzymes including ADAM10 have a wide range of substrates. Accelerating or inhibiting a specific protease activity is in most cases associated with unwanted side effects and a therapeutic useful window of application has to be carefully defined. A better understanding of the regulatory mechanisms controlling the expression, subcellular localization and activity of ADAM10 will likely uncover suitable drug targets which will allow a more specific and fine-tuned modulation of its proteolytic activity.
Collapse
Affiliation(s)
- Sebastian Wetzel
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
13
|
Isozaki T, Ishii S, Nishimi S, Nishimi A, Oguro N, Seki S, Miura Y, Miwa Y, Oh K, Toyoshima Y, Nakamura M, Inagaki K, Kasama T. A disintegrin and metalloprotease-10 is correlated with disease activity and mediates monocyte migration and adhesion in rheumatoid arthritis. Transl Res 2015; 166:244-53. [PMID: 25796462 DOI: 10.1016/j.trsl.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
A disintegrin and metalloproteases (ADAMs) are a family of proteins that have been reported to be involved in several inflammatory conditions. We examined the secretion of ADAM-10 in biological fluids from patients with rheumatoid arthritis (RA) and the role it plays in monocyte migration. ADAM-10 levels were measured using enzyme-linked immunosorbent assays and immunofluorescence. To examine the role of ADAM-10 in RA synovial fluids (SFs), we studied THP-1 (human acute monocyte leukemia cell line) and monocyte chemotaxis. To determine whether ADAM-10 plays a role in cell proliferation in the RA synovium, we assayed the proliferation of ADAM-10 small interfering RNA (siRNA)-transfected RA fibroblast-like synoviocytes (FLSs). The ADAM-10 level in RA serum was significantly higher than that in normal serum and was correlated with a disease activity score of 28. ADAM-10-depleted RA SFs showed a decrease in THP-1 and monocyte migratory activity compared with that of sham-depleted controls. ADAM-10 siRNA inhibited monocyte adhesion to RA FLSs. Finally, blocking ADAM-10 secretion in RA FLSs resulted in decreased production of fractalkine/CX3CL1 and vascular endothelial cell growth factor. These data indicate that ADAM-10 plays a role in monocyte migration in RA and suggest that targeting ADAM-10 may provide a method of decreasing inflammation and potentially treating other inflammatory diseases.
Collapse
Affiliation(s)
- Takeo Isozaki
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan.
| | - Sho Ishii
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Shinichiro Nishimi
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Airi Nishimi
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Nao Oguro
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Shinya Seki
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yoko Miura
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yusuke Miwa
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Koei Oh
- Department of Orthopedics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yoichiro Toyoshima
- Department of Orthopedics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Masanori Nakamura
- Department of Orthopedics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Katsunori Inagaki
- Department of Orthopedics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
14
|
Mezentsev A, Nikolaev A, Bruskin S. Matrix metalloproteinases and their role in psoriasis. Gene 2014; 540:1-10. [PMID: 24518811 DOI: 10.1016/j.gene.2014.01.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
This review summarizes the contribution of matrix metalloproteinases to the pathogenesis of psoriasis. In psoriasis, matrix metalloproteinases are involved in the structural changes of the epidermis via the modification of intracellular contacts and the composition of the extracellular matrix, promoting angiogenesis in the dermal blood vessels and the infiltration of immune cells. Moreover, some matrix metalloproteinases become differentially expressed during the disease eruption and their expression correlates with the clinical score. A separate section of the review is dedicated to the pharmacological approaches that are used to control matrix metalloproteinases, such as oral metalloproteinase inhibitors, such as azasugars and phosphonamides. The aim of this manuscript is to assess the role of matrix metalloproteinases in the physiological processes that accompany the disease. Moreover, it is especially important to evaluate progress in this field and characterize recently appeared medicines. Because any experimental drugs that target matrix metalloproteinases are involved in active clinical trials, this manuscript also reviews the latest experimental data regarding distribution and expression of matrix metalloproteinases in healthy skin and lesional skin. Therefore, the performed analysis highlights potential problems associated with the use of metalloproteinase inhibitors in clinical studies and suggests simple and easy understandable criteria that future innovative metalloproteinase inhibitors shall satisfy.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| | - Alexander Nikolaev
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Expression of disintegrin and metalloproteinase family proteins 10, 12 and 17 in cholesteatoma. The Journal of Laryngology & Otology 2013; 127:153-8. [DOI: 10.1017/s0022215112003106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjective:Proteases of the disintegrin and metalloproteinase family (also known as ADAM proteins) are involved in various physiological and pathological processes. This study assessed the expression of disintegrin and metalloproteinase family proteins 10, 12 and 17 in cholesteatoma.Materials and methods:The study evaluated cholesteatoma specimens from 19 patients, and external ear canal skin samples from 7 of the same patients (as controls), for the expression of disintegrin and metalloproteinase family proteins 10, 12 and 17, using immunohistochemical methods.Results and analysis:The study observed over-expression of proteins 10 and 17 in blood vessels, and over-expression of proteins 12 and 17 in cholesteatoma stroma. Immunostaining scores for proteins 10, 12 and 17 in epithelial and inflammatory cells from cholesteatoma specimens versus control specimens showed no statistically significant differences.Conclusion:Over-expression of disintegrin and metalloproteinase family proteins 10, 12 and 17 in cholesteatoma may be related to cholesteatoma pathogenesis. These proteins deserve further study as they may represent potential targets for cholesteatoma treatment.
Collapse
|
16
|
Oh ST, Schramme A, Tilgen W, Gutwein P, Reichrath J. Overexpression of CXCL16 in lesional psoriatic skin. DERMATO-ENDOCRINOLOGY 2011; 1:114-8. [PMID: 20224694 DOI: 10.4161/derm.1.2.7750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/29/2009] [Accepted: 01/01/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND Psoriasis is characterized as an autoimmune disease resulting in an exaggerated innate immune response. The CXC-chemokine ligand 16 (CXCL16) is described to function as an adhesion molecule, a scavenger receptor or as a soluble molecule it acts as a chemoattractant. CXCL16 has been reported to be expressed in a variety of inflammatory diseases. However, no information has been reported in the literature about the expression of CXCL16 in psoriatic skin. PURPOSE The present study was designed to analyze the expression and localization of CXCL16 in human psoriatic skin tissues. RESULTS In normal skin, cytpoplasmic expression of CXCL16 was increased in keratinocytes of upper epidermal cell layers as compared to the lower epidermal cell layers. In lesional psoriatic skin, CXCL16 immunoreactivity was increased in the cytoplasm of keratinocytes of lower epidermal layer kerartinocytes as compared to the normal epidermis. Cytoplasmic CXCL16 expression was increased in the capillary endothelial cells of psoriatic dermis as compared to capillary endothelial cells of the normal dermis. Notably, almost all inflammatory cells in the dermis were negative for CXCL16. MATERIALS AND METHODS Ten paraffinized specimens of human lesional psoriatic skin and five paraffinized specimens of normal skin were studied using an immunohistochemical streptavidinperoxidase technique. CONCLUSION We here report for the first time alterations in the immunohistochemical staining pattern of CXCL16 in lesional psoriatic skin compared to the normal skin. These results suggest that CXCL16 may play a role in the pathogenesis of psoriasis.
Collapse
|
17
|
Kawaguchi M, Hearing VJ. The Roles of ADAMs Family Proteinases in Skin Diseases. Enzyme Res 2011; 2011:482498. [PMID: 21423681 PMCID: PMC3057028 DOI: 10.4061/2011/482498] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/12/2011] [Indexed: 11/20/2022] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) are members of a new gene family of transmembrane and secreted proteins, which belong to the zinc proteinase superfamily. These molecules are involved in various biological events such as cell adhesion, cell fusion, cell migration, membrane protein shedding, and proteolysis. Growing evidence now attests to the potential involvement of ADAMs proteinases in diverse processes such as skin wound healing, inflammation, pigmentation, tumor development, cell proliferation, and metastasis. This paper focuses on the roles of ADAMs proteinases in a wide variety of skin diseases.
Collapse
Affiliation(s)
- Masakazu Kawaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | |
Collapse
|
18
|
Weber S, Niessen MT, Prox J, Lüllmann-Rauch R, Schmitz A, Schwanbeck R, Blobel CP, Jorissen E, de Strooper B, Niessen CM, Saftig P. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 2011; 138:495-505. [PMID: 21205794 DOI: 10.1242/dev.055210] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The disintegrin and metalloproteinase Adam10 has been implicated in the regulation of key signaling pathways that determine skin morphogenesis and homeostasis. To address the in vivo relevance of Adam10 in the epidermis, we have selectively disrupted Adam10 during skin morphogenesis and in adult skin. K14-Cre driven epidermal Adam10 deletion leads to perinatal lethality, barrier impairment and absence of sebaceous glands. A reduction of spinous layers, not associated with differences in either proliferation or apoptosis, indicates that loss of Adam10 triggers a premature differentiation of spinous keratinocytes. The few surviving K14-Adam10-deleted mice and mice in which Adam10 was deleted postnatally showed loss of hair, malformed vibrissae, epidermal hyperproliferation, cyst formation, thymic atrophy and upregulation of the cytokine thymic stromal lymphopoetin (TSLP), thus indicating non cell-autonomous multi-organ disease resulting from a compromised barrier. Together, these phenotypes closely resemble skin specific Notch pathway loss-of-function phenotypes. Notch processing is indeed strongly reduced resulting in decreased levels of Notch intracellular domain fragment and functional Notch signaling. The data identify Adam10 as the major Site-2 processing enzyme for Notch in the epidermis in vivo, and thus as a central regulator of skin development and maintenance.
Collapse
Affiliation(s)
- Silvio Weber
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alexandroff A, Graham-Brown R. Report from the 67th Annual Meeting of the American Academy of Dermatology. Br J Dermatol 2009; 162:12-21. [DOI: 10.1111/j.1365-2133.2009.09395.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Erratum. Br J Dermatol 2008. [DOI: 10.1111/j.1365-2133.2007.08767.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|