1
|
Gomez A, Espejo C, Eixarch H, Casacuberta-Serra S, Mansilla MJ, Sanchez R, Pereira S, Lopez-Estevez S, Gimeno R, Montalban X, Barquinero J. Myeloid-Derived Suppressor Cells are Generated during Retroviral Transduction of Murine Bone Marrow. Cell Transplant 2014. [DOI: 10.3727/096368912x658971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous work by our group showed that transferring bone marrow cells transduced with an autoantigen into nonmyeloablated mice with experimental autoimmune encephalomyelitis induced immune tolerance and improved symptoms of the disease. Because this effect occurred in the absence of molecular chimerism, we hypothesized that the cells responsible did not have repopulating ability and that they were not mediating central but peripheral tolerance mechanisms. In the present study, we analyzed the immunophenotype of the cells that are generated in the transduction cultures and we evaluated the immunosuppressive activity of the main cell subpopulations produced. We show that both granulocytic (CD11b+ Gr-1hi) and monocytic (CD11b+Gr-1lo) myeloid-derived suppressor cells (G- and M-MDSCs, respectively) are generated during standard 4-day γ-retroviral transduction cultures (representing about 25% and 40% of the total cell output, respectively) and that the effectively transduced cells largely consist of these two cell types. A third cell population representing about 15% of the transduced cells did not express CD45 or hematopoietic lineage markers and expressed mesenchymal stromal cell markers. Transduced total bone marrow cells and sorted M-MDSCs expressed arginase and inducible nitric oxide synthase activities, produced reactive oxygen species, and inhibited antigen-induced T-cell proliferation in vitro. Transgene-expressing MDSCs could be exploited therapeutically to induce tolerance in autoimmune diseases and in gene therapy protocols.
Collapse
Affiliation(s)
- Alba Gomez
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Espejo
- Unitat de Neuroimmunologia Clínica, Centre d'Esclerosi Múltiple de Catalunya (CEM-Cat), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Herena Eixarch
- Unitat de Neuroimmunologia Clínica, Centre d'Esclerosi Múltiple de Catalunya (CEM-Cat), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Casacuberta-Serra
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Jose Mansilla
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rebeca Sanchez
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sonia Pereira
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergio Lopez-Estevez
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Gimeno
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Unitat de Neuroimmunologia Clínica, Centre d'Esclerosi Múltiple de Catalunya (CEM-Cat), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. Blood 2011; 118:554-64. [DOI: 10.1182/blood-2010-12-322081] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We used a retroviral integration screen to search for novel genes that regulate HSC function. One of the genes that conferred HSC dominance when overexpressed due to an adjacent retroviral insertion was Musashi 2 (Msi2), an RNA-binding protein that can act as a translational inhibitor. A gene-trap mouse model that inactivates the gene shows that Msi2 is more highly expressed in long-term (LT) and short-term (ST) HSCs, as well as in lymphoid myeloid primed progenitors (LMPPs), but much less in intermediate progenitors and mature cells. Mice lacking Msi2 are fully viable for up to a year or more, but exhibit severe defects in primitive precursors, most significantly a reduction in the number of ST-HSCs and LMPPs and a decrease in leukocyte numbers, effects that are exacerbated with age. Cell-cycle and gene-expression analyses suggest that the main hematopoietic defect in Msi2-defective mice is the decreased proliferation capacity of ST-HSCs and LMPPs. In addition, HSCs lacking Msi2 are severely impaired in competitive repopulation experiments, being overgrown by wild-type cells even when mutant cells were provided in excess. Our data indicate that Msi2 maintains the stem cell compartment mainly by regulating the proliferation of primitive progenitors downstream of LT-HSCs.
Collapse
|
3
|
McMillin DW, Landázuri N, Gangadharan B, Hewes B, Archer DR, Spencer HT, Le Doux JM. Highly efficient transduction of repopulating bone marrow cells using rapidly concentrated polymer-complexed retrovirus. Biochem Biophys Res Commun 2005; 330:768-75. [PMID: 15809063 DOI: 10.1016/j.bbrc.2005.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Indexed: 02/07/2023]
Abstract
Using the cationic polymer, Polybrene, and the anionic polymer, chondroitin sulfate C, we concentrated recombinant retrovirus pseudotyped with an ecotropic envelope, which is susceptible to inactivation by high-speed concentration methods. To evaluate gene marking, murine bone marrow was harvested from C3H mice, transduced with polymer-concentrated GFP virus, and transplanted into lethally irradiated recipients. Total gene marking in mice averaged 30-35% at 8 weeks post-transplant and transgene expression remained stable for over 16 weeks. Using the polymer concentration method, a second retroviral vector encoding the drug resistant variant of dihydrofolate reductase (L22Y-DHFR) was concentrated and tested. Approximately 40% of transduced murine bone marrow progenitor cells were protected against trimetrexate concentrations that completely eliminated the growth of non-modified cells. These results show that anionic and cationic polymers can be combined to rapidly concentrate viruses that are normally difficult to concentrate, and the concentrated virus efficiently transduces hematopoietic stem cells.
Collapse
Affiliation(s)
- Douglas W McMillin
- Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Bueren JA, Guenechea G, Casado JA, Lamana ML, Segovia JC. Genetic modification of hematopoietic stem cells: recent advances in the gene therapy of inherited diseases. Arch Med Res 2003; 34:589-99. [PMID: 14734099 DOI: 10.1016/j.arcmed.2003.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hematopoietic stem cells constitute a rare population of precursor cells with remarkable properties for being used as targets in gene therapy protocols. The last years have been particularly productive both in the fields of gene therapy and stem cell biology. Results from ongoing clinical trials have shown the first unquestionable clinical benefits of immunodeficient patients transplanted with genetically modified autologous stem cells. On the other hand, severe side effects in a few patients treated with gene therapy have also been reported, indicating the usefulness of further improving the vectors currently used in gene therapy clinical trials. In the field of stem cell biology, evidence showing the plastic potential of adult hematopoietic stem cells and data indicating the multipotency of adult mesenchymal precursor cells have been presented. Also, the generation of embryonic stem cells by means of nuclear transfer techniques has appeared as a new methodology with direct implications in gene therapy.
Collapse
Affiliation(s)
- Juan A Bueren
- Hematopoietic Gene Therapy Program, Comisión Interministerial de Ciencia y Tecnología/Fundación Marcelino Botín, Madrid, Spain.
| | | | | | | | | |
Collapse
|
5
|
Implantation of bone marrow beneath the kidney capsule results in transfer not only of functional stroma but also of hematopoietic repopulating cells. Blood 2000. [DOI: 10.1182/blood.v96.6.2307.h8002307_2307_2309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Renal ossicles are ossified structures developed after the implantation of a bone marrow (BM) plug beneath the kidney capsule. The authors have investigated the origin of the hematopoietic cells in murine renal ossicles by conducting sex-mismatched implants into Ly-5 congenic mice. BM plugs from transgenic mice provided additional genotypic tracers. Flow cytometry analyses on nonadherent cells from long-term cultures established with ossicles excised at 17 to 40 weeks postimplantation evidenced the presence of 5% to 70% of donor-derived myeloid cells. The genetic analysis of the day 12 colony-forming unit (CFU-S12) population in ossicles excised at 10 to 40 weeks postimplantation revealed that 16% to 93% of the colonies were of donor origin. Moreover, we describe for the first time the presence of long-term repopulating cells of donor origin in ossicles excised at 10 to 19 weeks postimplantation.
Collapse
|
6
|
Implantation of bone marrow beneath the kidney capsule results in transfer not only of functional stroma but also of hematopoietic repopulating cells. Blood 2000. [DOI: 10.1182/blood.v96.6.2307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Renal ossicles are ossified structures developed after the implantation of a bone marrow (BM) plug beneath the kidney capsule. The authors have investigated the origin of the hematopoietic cells in murine renal ossicles by conducting sex-mismatched implants into Ly-5 congenic mice. BM plugs from transgenic mice provided additional genotypic tracers. Flow cytometry analyses on nonadherent cells from long-term cultures established with ossicles excised at 17 to 40 weeks postimplantation evidenced the presence of 5% to 70% of donor-derived myeloid cells. The genetic analysis of the day 12 colony-forming unit (CFU-S12) population in ossicles excised at 10 to 40 weeks postimplantation revealed that 16% to 93% of the colonies were of donor origin. Moreover, we describe for the first time the presence of long-term repopulating cells of donor origin in ossicles excised at 10 to 19 weeks postimplantation.
Collapse
|
7
|
Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 2000. [DOI: 10.1182/blood.v95.10.3085.010k01_3085_3093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to develop efficient procedures of human hematopoietic gene therapy, retrovirally transduced CD34+ cord blood cells were transplanted into NOD/SCID mice to evaluate the repopulating potential of transduced grafts. Samples were prestimulated on Retronectin-coated dishes and infected with gibbon ape leukemia virus (GALV)-pseudotyped FMEV vectors encoding the enhanced green fluorescent protein (EGFP). Periodic analyses of bone marrow (BM) from transplanted recipients revealed a sustained engraftment of human hematopoietic cells expressing the EGFP transgene. On average, 33.6% of human CD45+ cells expressed the transgene 90 to120 days after transplantation. Moreover, 11.9% of total NOD/SCID BM consisted of human CD45+ cells expressing the EGFP transgene at this time. The transplantation of purified EGFP+ cells increased the proportion of CD45+ cells positive for EGFP expression to 57.7% at 90 to 120 days after transplantation. At this time, 18.9% and 4.3% of NOD/SCID BM consisted of CD45+/EGFP+ and CD34+/EGFP+ cells, respectively. Interestingly, the transplantation of EGFP− cells purified at 24 hours after infection also generated a significant engraftment of CD45+/EGFP+ and CD34+/EGFP+ cells, suggesting that a number of transduced repopulating cells did not express the transgene at that time. Molecular analysis of NOD/SCID BM confirmed the high levels of engraftment of human transduced cells deduced from FACS analysis. Finally, the analysis of the provirus insertion sites by conventional Southern blotting indicated that the human hematopoiesis in the NOD/SCID BM was predominantly oligoclonal.
Collapse
|
8
|
Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 2000. [DOI: 10.1182/blood.v95.10.3085] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In an attempt to develop efficient procedures of human hematopoietic gene therapy, retrovirally transduced CD34+ cord blood cells were transplanted into NOD/SCID mice to evaluate the repopulating potential of transduced grafts. Samples were prestimulated on Retronectin-coated dishes and infected with gibbon ape leukemia virus (GALV)-pseudotyped FMEV vectors encoding the enhanced green fluorescent protein (EGFP). Periodic analyses of bone marrow (BM) from transplanted recipients revealed a sustained engraftment of human hematopoietic cells expressing the EGFP transgene. On average, 33.6% of human CD45+ cells expressed the transgene 90 to120 days after transplantation. Moreover, 11.9% of total NOD/SCID BM consisted of human CD45+ cells expressing the EGFP transgene at this time. The transplantation of purified EGFP+ cells increased the proportion of CD45+ cells positive for EGFP expression to 57.7% at 90 to 120 days after transplantation. At this time, 18.9% and 4.3% of NOD/SCID BM consisted of CD45+/EGFP+ and CD34+/EGFP+ cells, respectively. Interestingly, the transplantation of EGFP− cells purified at 24 hours after infection also generated a significant engraftment of CD45+/EGFP+ and CD34+/EGFP+ cells, suggesting that a number of transduced repopulating cells did not express the transgene at that time. Molecular analysis of NOD/SCID BM confirmed the high levels of engraftment of human transduced cells deduced from FACS analysis. Finally, the analysis of the provirus insertion sites by conventional Southern blotting indicated that the human hematopoiesis in the NOD/SCID BM was predominantly oligoclonal.
Collapse
|
9
|
García-Castro J, Segovia JC, Bueren JA. Transplantation of syngenic bone marrow contaminated with NGFr-marked WEHI-3B cells: an improved model of leukemia relapse in mice. Leukemia 2000; 14:457-65. [PMID: 10720142 DOI: 10.1038/sj.leu.2401697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With the aim of developing a model mimicking the relapse of patients transplanted with leukemia-contaminated grafts, myelomonocytic leukemia WEHI-3B D+ cells were first transduced with a retroviral vector encoding the low-affinity human nerve growth factor receptor (NGFr). Clones with a stable and homogeneous expression of the transgene and with a similar in vitro behavior to the parental cell line were selected for further experiments. The analysis of bone marrow (BM) contaminated with WEHI-3B/NGFr cells revealed a linear correlation (r2 = 0.999) between the actual values of BM contamination and the experimental data determined by flow cytometry. Balb/c mice were myeloablated and transplanted with syngenic BM contaminated with graded numbers of leukemic cells; dose-dependent survival curves were obtained, regardless of whether parental or WEHI-3B/NGFr cells were infused. The leukemia dissemination in recipients transplanted with WEHI-3B/NGFr contaminated grafts was easily determined by means of simple flow cytometry analysis of the NGFr marker. A leukemia dose-dependent increase in the number of PB leukocytes was observed in transplanted recipients at 20 days post-transplantation with no changes in myelomonocytic cells. As deduced from our observations, the transplantation of syngenic BM contaminated with WEHI-3B/NGFr cells constitutes an improved model of autograft-mediated leukemia relapse and a good tool for studies of leukemia cell purging.
Collapse
MESH Headings
- Animals
- Bone Marrow Purging
- Bone Marrow Transplantation/adverse effects
- Cell Count
- DNA, Neoplasm/analysis
- Disease Models, Animal
- Flow Cytometry
- Genes, Reporter
- Genetic Vectors/genetics
- Humans
- Leukemia, Myelomonocytic, Acute/pathology
- Mice
- Mice, Inbred BALB C
- Neoplasm Recurrence, Local/etiology
- Neoplasm Transplantation
- Radiation Chimera
- Receptors, Nerve Growth Factor/genetics
- Retroviridae/genetics
- Transfection
- Transplantation, Autologous/adverse effects
- Treatment Failure
- Tumor Cells, Cultured/transplantation
- Tumor Cells, Cultured/virology
Collapse
Affiliation(s)
- J García-Castro
- Unidad de Biología Molecular y Celular, CIEMAT, Madrid, Spain
| | | | | |
Collapse
|
10
|
Albella B, Segovia JC, Guenechea G, Pragnell IB, Bueren JA. Preserved long-term repopulation and differentiation properties of hematopoietic grafts subjected to ex vivo expansion with stem cell factor and interleukin 11. Transplantation 1999; 67:1348-57. [PMID: 10360589 DOI: 10.1097/00007890-199905270-00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ex vivo expansion of hematopoietic grafts has been proposed as an efficient procedure for improving the hematological recovery of recipients. The fate of the long-term repopulating cells during the ex vivo manipulation of the graft is, however, a critical issue in ex vivo expansion protocols and ultimately will define the applicability of this new technology in hematopoietic transplants. METHODS The repopulating ability of mouse hematopoietic samples was determined by means of bone marrow (BM*) competition assays, using congenic strains that express the pan-leukocyte Ly-5.1 and Ly-5.2 antigens. The generation of potential changes in the repopulating properties of human hematopoietic samples subjected to ex vivo expansion was determined by comparing the engraftment of fresh and ex vivo-manipulated CD34+ cord blood cells in irradiated nonobese diabetic/severe-combined immunodeficient (NOD/SCID) mice. RESULTS Under our optimized conditions of mouse BM incubation (stem cell factor plus interleukin-11, either with or without macrophage inflammatory protein-1alpha or Flt3 ligand), both the short-term and the mid-term repopulating ability of the ex vivo-expanded samples were significantly improved when compared with fresh samples. In the long-term, no changes in the repopulation and differentiation properties of the graft were observed as a result of the ex vivo expansion process. As deduced from the analysis of NOD/SCID mice transplanted with fresh and ex vivo expanded human CD34+ cord blood cells, the in vitro stimulation mediated by SCF/IL-11/FLT3L was capable of preserving the ability of the grafts to repopulate the lympho-hematopoiesis of recipients for at least 3 months. CONCLUSION These results indicate that under our optimized conditions of ex vivo expansion, the amplification of the hematopoietic progenitors responsible for the short- and mid-term repopulating properties of the graft can take place without compromising the long-term lympho-hematopoietic repopulating properties.
Collapse
Affiliation(s)
- B Albella
- Molecular and Cell Biology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Delayed Engraftment of Nonobese Diabetic/Severe Combined Immunodeficient Mice Transplanted With Ex Vivo–Expanded Human CD34+ Cord Blood Cells. Blood 1999. [DOI: 10.1182/blood.v93.3.1097.403k04_1097_1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ex vivo expansion of hematopoietic progenitors is a promising approach for accelerating the engraftment of recipients, particularly when cord blood (CB) is used as a source of hematopoietic graft. With the aim of defining the in vivo repopulating properties of ex vivo–expanded CB cells, purified CD34+ cells were subjected to ex vivo expansion, and equivalent proportions of fresh and ex vivo–expanded samples were transplanted into irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. At periodic intervals after transplantation, femoral bone marrow (BM) samples were obtained from NOD/SCID recipients and the kinetics of engraftment evaluated individually. The transplantation of fresh CD34+ cells generated a dose-dependent engraftment of recipients, which was evident in all of the posttransplantation times analyzed (15 to 120 days). When compared with fresh CB, samples stimulated for 6 days with interleukin-3 (IL-3)/IL-6/stem cell factor (SCF) contained increased numbers of hematopoietic progenitors (20-fold increase in colony-forming unit granulocyte-macrophage [CFU-GM]). However, a significant impairment in the short-term repopulation of recipients was associated with the transplantation of the ex vivo–expanded versus the fresh CB cells (CD45+repopulation in NOD/SCIDs BM: 3.7% ± 1.2% v 26.2% ± 5.9%, respectively, at 20 days posttransplantation; P < .005). An impaired short-term engraftment was also observed in mice transplanted with CB cells incubated with IL-11/SCF/FLT-3 ligand (3.5% ± 1.7% of CD45+ cells in femoral BM at 20 days posttransplantation). In contrast to these data, a similar repopulation with the fresh and the ex vivo–expanded cells was observed at later stages posttransplantation. At 120 days, the repopulation of CD45+ and CD45+/CD34+ cells in the femoral BM of recipients ranged between 67.2% to 81.1% and 8.6% to 12.6%, respectively, and no significant differences of engraftment between recipients transplanted with fresh and the ex vivo–expanded samples were found. The analysis of the engrafted CD45+ cells showed that both the fresh and the in vitro–incubated samples were capable of lymphomyeloid reconstitution. Our results suggest that although the ex vivo expansion of CB cells preserves the long-term repopulating ability of the sample, an unexpected delay of engraftment is associated with the transplantation of these manipulated cells.
Collapse
|
12
|
Delayed Engraftment of Nonobese Diabetic/Severe Combined Immunodeficient Mice Transplanted With Ex Vivo–Expanded Human CD34+ Cord Blood Cells. Blood 1999. [DOI: 10.1182/blood.v93.3.1097] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe ex vivo expansion of hematopoietic progenitors is a promising approach for accelerating the engraftment of recipients, particularly when cord blood (CB) is used as a source of hematopoietic graft. With the aim of defining the in vivo repopulating properties of ex vivo–expanded CB cells, purified CD34+ cells were subjected to ex vivo expansion, and equivalent proportions of fresh and ex vivo–expanded samples were transplanted into irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. At periodic intervals after transplantation, femoral bone marrow (BM) samples were obtained from NOD/SCID recipients and the kinetics of engraftment evaluated individually. The transplantation of fresh CD34+ cells generated a dose-dependent engraftment of recipients, which was evident in all of the posttransplantation times analyzed (15 to 120 days). When compared with fresh CB, samples stimulated for 6 days with interleukin-3 (IL-3)/IL-6/stem cell factor (SCF) contained increased numbers of hematopoietic progenitors (20-fold increase in colony-forming unit granulocyte-macrophage [CFU-GM]). However, a significant impairment in the short-term repopulation of recipients was associated with the transplantation of the ex vivo–expanded versus the fresh CB cells (CD45+repopulation in NOD/SCIDs BM: 3.7% ± 1.2% v 26.2% ± 5.9%, respectively, at 20 days posttransplantation; P < .005). An impaired short-term engraftment was also observed in mice transplanted with CB cells incubated with IL-11/SCF/FLT-3 ligand (3.5% ± 1.7% of CD45+ cells in femoral BM at 20 days posttransplantation). In contrast to these data, a similar repopulation with the fresh and the ex vivo–expanded cells was observed at later stages posttransplantation. At 120 days, the repopulation of CD45+ and CD45+/CD34+ cells in the femoral BM of recipients ranged between 67.2% to 81.1% and 8.6% to 12.6%, respectively, and no significant differences of engraftment between recipients transplanted with fresh and the ex vivo–expanded samples were found. The analysis of the engrafted CD45+ cells showed that both the fresh and the in vitro–incubated samples were capable of lymphomyeloid reconstitution. Our results suggest that although the ex vivo expansion of CB cells preserves the long-term repopulating ability of the sample, an unexpected delay of engraftment is associated with the transplantation of these manipulated cells.
Collapse
|
13
|
Bunnell BA, Kluge KA, Lee-Lin SQ, Byrne ER, Orlic D, Metzger ME, Agricola BA, Wersto RP, Bodine DM, Morgan RA, Donahue RE. Transplantation of transduced nonhuman primate CD34+ cells using a gibbon ape leukemia virus vector: restricted expression of the gibbon ape leukemia virus receptor to a subset of CD34+ cells. Gene Ther 1999; 6:48-56. [PMID: 10341875 DOI: 10.1038/sj.gt.3300808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transduction efficiencies of immunoselected rhesus macaque (Macaca mulatta) CD34+ cells and colony-forming progenitor cells based on polymerase chain reaction (PCR) analysis were comparable for an amphotropic Moloney murine leukemia virus (MLV) retroviral vector and a retroviral vector derived from the gibbon ape leukemia virus (GaLV) packaging cell line, PG13. On performing autologous transplantation studies using immunoselected CD34+ cells transduced with the GaLV envelope (env) retroviral vector, less than 1% of peripheral blood (PB) contained provirus. This was true whether bone marrow (BM) or cytokine-mobilized PB immunoselected CD34+ cells were reinfused. This level of marking was evident in two animals whose platelet counts never fell below 50,000/microliter and whose leukocyte counts had recovered by days 8 and 10 after having received 1.7 x 10(7) or greater of cytokine-mobilized CD34+ PB cells/kg. Reverse transcriptase(RT)-PCR analysis of CD34+ subsets for both the GaLV and amphotropic receptor were performed. The expression of the GaLV receptor was determined to be restricted to CD34+ Thy-1+ cells, and both CD34+ CD38+ and CD34+ CD38dim cells, while the amphotropic receptor was present on all CD34+ cell subsets examined. Our findings suggest that, in rhesus macaques, PG13-derived retroviral vectors may only be able to transduce a subset of CD34+ cells as only CD34+ Thy-1+ cells express the GaLV receptor.
Collapse
Affiliation(s)
- B A Bunnell
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gerwin N, Gonzalo JA, Lloyd C, Coyle AJ, Reiss Y, Banu N, Wang B, Xu H, Avraham H, Engelhardt B, Springer TA, Gutierrez-Ramos JC. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity 1999; 10:9-19. [PMID: 10023766 DOI: 10.1016/s1074-7613(00)80002-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ICAM-2-deficient mice exhibit prolonged accumulation of eosinophils in lung interstitium concomitant with a delayed increase in eosinophil numbers in the airway lumen during the development of allergic lung inflammation. The ICAM-2-dependent increased and prolonged accumulation of eosinophils in lung interstitium results in prolonged, heightened airway hyperresponsiveness. These findings reveal an essential role for ICAM-2 in the development of the inflammatory and respiratory components of allergic lung disease. This phenotype is caused by the lack of ICAM-2 expression on non-hematopoietic cells. ICAM-2 deficiency on endothelial cells causes reduced eosinophil transmigration in vitro. ICAM-2 is not essential for lymphocyte homing or the development of leukocytes, with the exception of megakaryocyte progenitors, which are significantly reduced.
Collapse
Affiliation(s)
- N Gerwin
- Millennium Biotherapeutics, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wolff G, Körner IJ, Schumacher A, Arnold W, Dörken B, Mapara MY. Ex vivo breast cancer cell purging by adenovirus-mediated cytosine deaminase gene transfer and short-term incubation with 5-fluorocytosine completely prevents tumor growth after transplantation. Hum Gene Ther 1998; 9:2277-84. [PMID: 9794211 DOI: 10.1089/hum.1998.9.15-2277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peripheral blood progenitor harvests of breast cancer patients are contaminated with tumor cells, suggesting a potential role for these cells in the relapse after high-dose chemotherapy. Whereas physical purging methods do not eliminate contaminating tumor cells completely, pharmacological purging, although highly efficient, is hampered by a strong nonspecific toxicity toward hematopoietic progenitor cells. Taking advantage of the high efficiency of adenovirus-mediated gene transfer to epithelial cells, we selectively loaded breast cancer cells in vitro with a cytotoxic drug by gene transfer of the prodrug-converting enzyme cytosine deaminase (AdCMV.CD) and 5-fluorocytosine (5-FC). Despite the low dose of vector administered, limited exposure to 5-FC, and transplantation only of viable tumor cells into SCID mice, all animals that received cells treated in vitro with AdCMV.CD plus 5-FC were completely free of tumor development. These data show that the selective loading of tumor cells with AdCMV.CD/5-FC might be useful for purging of autografts.
Collapse
Affiliation(s)
- G Wolff
- Department of Hematology, Oncology, and Tumor Immunology, Robert-Rössle-Klinik, University Medical Center, Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Rahman ZU, Hortobagyi GN, Buzdar AU, Champlin R. High-dose chemotherapy with autologous stem cell support in patients with breast cancer. Cancer Treat Rev 1998; 24:249-63. [PMID: 9805506 DOI: 10.1016/s0305-7372(98)90060-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Z U Rahman
- Department of Breast Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | | | | | |
Collapse
|
17
|
Khanna A, Thomson AW. Hematopoietic growth factors in transplantation: Biology and applications. Transplant Rev (Orlando) 1998. [DOI: 10.1016/s0955-470x(98)80019-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Abstract
Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.
Collapse
|
19
|
Abstract
Abstract
Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.
Collapse
|
20
|
Does the Granulocyte-Macrophage Colony-Forming Unit Content in Ex Vivo–Expanded Grafts Predict the Recovery of the Recipient Leukocytes? Blood 1997. [DOI: 10.1182/blood.v90.1.464.464_464_470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the leukocyte-repopulating-predictive value of granulocyte-macrophage colony-forming unit (CFU-GM) analyses in ex vivo–expanded versus fresh murine bone marrow (BM) grafts. After the transplantation of graded numbers of normal BM cells (from 15 to 5 × 103 CFU-GMs/mice), a dose-dependent increase in the recipient leukocytes was observed between the first and third weeks posttransplantation. During these stages, increases in the graft size of 100-fold improved the leukocyte counts up to 30-fold and shortened the leukopenia period by 5 to 11 days, depending on the leukocyte threshold considered. To investigate whether similar correlations could be established using ex vivo–expanded samples, the size of the CFU-GM population was maximized by means of the preactivation of the BM with 5-fluorouracil (9-day 5FU-BM), followed by 3 days of incubation with interleukin-1 plus stem cell factor. Under these conditions, the CFU-GM content of the ex vivo–expanded grafts was 73-fold higher than that observed in equivalent femoral fractions of normal fresh BM. When equivalent fractions of both graft types were transplanted, an improved leukocyte recovery was observed in mice transfused with the expanded grafts. However, the leukocyte values obtained after the transplantation of the ex vivo–expanded samples were not as high as expected, based on the number of transplanted CFU-GMs. Analyses performed during the second week posttransplantation showed that, in comparison with normal fresh BM, ex vivo–expanded grafts containing 6 to 50 times more CFU-GMs were required to generate a similar number of leukocytes. These results were confirmed in both the peripheral blood leukocytes and the myeloid Gr1+ cells, when similar numbers of CFU-GMs were transfused in the fresh and the ex vivo–expanded BM. The possibility that the preactivation of the ex vivo–expanded grafts with 5FU had a role in this effect was ruled out, because the leukocyte repopulation capacity of fresh 5FU-treated BM was as high as that observed in normal fresh BM which contained a similar number of CFU-GMs. Neither by extending the ex vivo incubation period nor by using other hematopoietic growth factor combinations was the functional capacity of the expanded grafts improved. The results presented in this study are consistent with the belief that ex vivo expansion procedures will be a useful tool for improving the hematologic recovery of patients who receive hematopoietic transplants. However, our data indicate that predicting the leukocyte repopulating capacity of ex vivo–expanded grafts according to correlations established with numbers of fresh CFU-GMs can lead to overestimations of their function, and therefore to unexpected and delayed hematopoietic engraftments.
Collapse
|
21
|
Does the Granulocyte-Macrophage Colony-Forming Unit Content in Ex Vivo–Expanded Grafts Predict the Recovery of the Recipient Leukocytes? Blood 1997. [DOI: 10.1182/blood.v90.1.464] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We have investigated the leukocyte-repopulating-predictive value of granulocyte-macrophage colony-forming unit (CFU-GM) analyses in ex vivo–expanded versus fresh murine bone marrow (BM) grafts. After the transplantation of graded numbers of normal BM cells (from 15 to 5 × 103 CFU-GMs/mice), a dose-dependent increase in the recipient leukocytes was observed between the first and third weeks posttransplantation. During these stages, increases in the graft size of 100-fold improved the leukocyte counts up to 30-fold and shortened the leukopenia period by 5 to 11 days, depending on the leukocyte threshold considered. To investigate whether similar correlations could be established using ex vivo–expanded samples, the size of the CFU-GM population was maximized by means of the preactivation of the BM with 5-fluorouracil (9-day 5FU-BM), followed by 3 days of incubation with interleukin-1 plus stem cell factor. Under these conditions, the CFU-GM content of the ex vivo–expanded grafts was 73-fold higher than that observed in equivalent femoral fractions of normal fresh BM. When equivalent fractions of both graft types were transplanted, an improved leukocyte recovery was observed in mice transfused with the expanded grafts. However, the leukocyte values obtained after the transplantation of the ex vivo–expanded samples were not as high as expected, based on the number of transplanted CFU-GMs. Analyses performed during the second week posttransplantation showed that, in comparison with normal fresh BM, ex vivo–expanded grafts containing 6 to 50 times more CFU-GMs were required to generate a similar number of leukocytes. These results were confirmed in both the peripheral blood leukocytes and the myeloid Gr1+ cells, when similar numbers of CFU-GMs were transfused in the fresh and the ex vivo–expanded BM. The possibility that the preactivation of the ex vivo–expanded grafts with 5FU had a role in this effect was ruled out, because the leukocyte repopulation capacity of fresh 5FU-treated BM was as high as that observed in normal fresh BM which contained a similar number of CFU-GMs. Neither by extending the ex vivo incubation period nor by using other hematopoietic growth factor combinations was the functional capacity of the expanded grafts improved. The results presented in this study are consistent with the belief that ex vivo expansion procedures will be a useful tool for improving the hematologic recovery of patients who receive hematopoietic transplants. However, our data indicate that predicting the leukocyte repopulating capacity of ex vivo–expanded grafts according to correlations established with numbers of fresh CFU-GMs can lead to overestimations of their function, and therefore to unexpected and delayed hematopoietic engraftments.
Collapse
|
22
|
Repopulation defect of stem hemopoietic cells after retroviral transduction of a foreign gene. Bull Exp Biol Med 1997. [DOI: 10.1007/bf02764383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997; 89:21-39. [PMID: 8978404 DOI: 10.1093/jnci/89.1.21] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene-based therapies for cancer in clinical trials include strategies that involve augmentation of immunotherapeutic and chemotherapeutic approaches. These strategies include ex vivo and in vivo cytokine gene transfer, drug sensitization with genes for prodrug delivery, and the use of drug-resistance genes for bone marrow protection from high-dose chemotherapy. Inactivation of oncogene expression and gene replacement for tumor suppressor genes are among the strategies for targeting the underlying genetic lesions in the cancer cell. A review of clinical trial results to date, primarily in patients with very advanced cancers refractory to conventional treatments, indicates that these treatments can mediate tumor regression with acceptably low toxicity. Vector development remains a critical area for future research. Important areas for future research include modifying viral vectors to reduce toxicity and immunogenicity, increasing the transduction efficiency of nonviral vectors, enhancing vector targeting and specificity, regulating gene expression, and identifying synergies between gene-based agents and other cancer therapeutics.
Collapse
Affiliation(s)
- J A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
24
|
Benn SI, Whitsitt JS, Broadley KN, Nanney LB, Perkins D, He L, Patel M, Morgan JR, Swain WF, Davidson JM. Particle-mediated gene transfer with transforming growth factor-beta1 cDNAs enhances wound repair in rat skin. J Clin Invest 1996; 98:2894-902. [PMID: 8981938 PMCID: PMC507757 DOI: 10.1172/jci119118] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based on preliminary but variable results with direct DNA transfer into wounds, we evaluated in vivo gene transfer by particle-mediated DNA delivery to rat skin to determine whether overexpression of TGF-beta1 at the site of skin incisions would result in a significant improvement in repair. Optimization of the method with viral promoter-luciferase reporter constructs indicated that expression of luciferase activity persisted up to 5 d and was promoter, pressure, and site dependent (ventral > dorsal). Using cytomegalovirus (CMV)-driven human alpha1-antitrypsin, transgene expression was immunolocalized within keratinocytes of the stratum granulosum at 24 h. We measured tensile strength of skin incisions at 11-21 d in both normal and diabetic rats transfected with TGF-beta1 expression vectors at surgery. Native murine TGF-beta1 under an SV40 promoter produced positive effects, while wound strengthening was more pronounced in diabetic animals using a CMV-driven construct. Transfection of rat skin with constitutively active, mutant porcine TGF-beta1 under the control of the CMV and Moloney murine leukemia virus promoters significantly increased tensile strength up to 80% for 14-21 d after surgery. Transfection 24 h before surgery was more effective. Particle-mediated gene delivery can be used to deliver viral promoter-cytokine expression constructs into rat skin in a safe, efficient, and reproducible fashion. The extent of wound repair, as evidenced by enhanced tensile strength, can be markedly improved in tissues transfected with TGF-beta1 expression constructs.
Collapse
Affiliation(s)
- S I Benn
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9:1753-65. [PMID: 7622039 DOI: 10.1101/gad.9.14.1753] [Citation(s) in RCA: 465] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hox genes were first recognized for their role in embryonic development and may also play important lineage-specific functions in a variety of somatic tissues including the hematopoietic system. We have recently shown that certain members of the Hox A and B clusters, such as HOXB3 and HOXB4, are preferentially expressed in subpopulations of human bone marrow that are highly enriched for the most primitive hematopoietic cell types. To assess the role these genes may play in regulating the proliferation and/or differentiation of such cells, we engineered the overexpression of HOXB4 in murine bone marrow cells by retroviral gene transfer and analyzed subsequent effects on the behavior of various hematopoietic stem and progenitor cell populations both in vitro and in vivo. Serial transplantation studies revealed a greatly enhanced ability of HOXB4-transduced bone marrow cells to regenerate the most primitive hematopoietic stem cell compartment resulting in 50-fold higher numbers of transplantable totipotent hematopoietic stem cells in primary and secondary recipients, compared with serially passaged neo-infected control cells. This heightened expansion in vivo of HOXB4-transduced hematopoietic stem cells was not accompanied by identifiable anomalies in the peripheral blood of these mice. Enhanced proliferation in vitro of day-12 CFU-S and clonogenic progenitors was also documented. These results indicate HOXB4 to be an important regulator of very early but not late hematopoietic cell proliferation and suggest a new approach to the controlled amplification of genetically modified hematopoietic stem cell populations.
Collapse
Affiliation(s)
- G Sauvageau
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Bernad A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos JC. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1994; 1:725-31. [PMID: 7895162 DOI: 10.1016/s1074-7613(94)80014-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of blood cells from hematopoietic stem cells is controlled by multiple cytokines. These growth factors influence survival, cell cycle status, differentiation into lineage-committed progenitors, final maturation into blood cells, and perhaps self-renewal of stem cells. The specific contribution of IL-6 to these processes in vivo was evaluated in mice with a targeted disruption of the IL-6 gene. Decreases in the absolute numbers of CFU-Sd12 and preCFU-S, as well as in the functionality of LTRSC in these mutant mice, suggests a role for IL-6 in the survival, self-renewal, or both of hematopoietic stem cells and early progenitors. In addition, as a result of the IL-6 deficiency, the control between proliferation and differentiation of the progenitor cells of the granulocytic-monocytic, megakaryocytic, and erythroid lineages into mature blood cells is altered, leading to abnormal levels of committed progenitors of these lineages and to a slow recovery from hematopoietic ablation.
Collapse
Affiliation(s)
- A Bernad
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|