1
|
Guarina A, Farruggia P, Mariani E, Saracco P, Barone A, Onofrillo D, Cesaro S, Angarano R, Barberi W, Bonanomi S, Corti P, Crescenzi B, Dell'Orso G, De Matteo A, Giagnuolo G, Iori AP, Ladogana S, Lucarelli A, Lupia M, Martire B, Mastrodicasa E, Massaccesi E, Arcuri L, Giarratana MC, Menna G, Miano M, Notarangelo LD, Palazzi G, Palmisani E, Pestarino S, Pierri F, Pillon M, Ramenghi U, Russo G, Saettini F, Timeus F, Verzegnassi F, Zecca M, Fioredda F, Dufour C. Diagnosis and management of acquired aplastic anemia in childhood. Guidelines from the Marrow Failure Study Group of the Pediatric Haemato-Oncology Italian Association (AIEOP). Blood Cells Mol Dis 2024; 108:102860. [PMID: 38889660 DOI: 10.1016/j.bcmd.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Acquired aplastic anemia (AA) is a rare heterogeneous disorder characterized by pancytopenia and hypoplastic bone marrow. The incidence is 2-3 per million population per year in the Western world, but 3 times higher in East Asia. Survival in severe aplastic anemia (SAA) has improved significantly due to advances in hematopoietic stem cell transplantation (HSCT), immunosuppressive therapy, biologic agents, and supportive care. In SAA, HSCT from a matched sibling donor (MSD) is the first-line treatment. If a MSD is not available, options include immunosuppressive therapy (IST), matched unrelated donor, or haploidentical HSCT. The purpose of this guideline is to provide health care professionals with clear guidance on the diagnosis and management of pediatric patients with AA. A preliminary evidence-based document prepared by a group of pediatric hematologists of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Hemato-Oncology (AIEOP) was discussed, modified and approved during a series of consensus conferences that started online during COVID 19 and continued in the following years, according to procedures previously validated by the AIEOP Board of Directors.
Collapse
Affiliation(s)
- A Guarina
- Pediatric Onco-Hematology Unit, A.R.N.A.S. Civico Hospital, Palermo, Italy
| | - P Farruggia
- Pediatric Onco-Hematology Unit, A.R.N.A.S. Civico Hospital, Palermo, Italy
| | - E Mariani
- Scuola di Specializzazione in Pediatria, University of Milano-Bicocca, Milan, Italy; Pediatric Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - P Saracco
- Hematology Unit, "Regina Margherita" Children's Hospital, Turin, Italy
| | - A Barone
- Pediatric Onco-Hematology Unit, University Hospital, Parma, Italy
| | - D Onofrillo
- Hematology Unit, Hospital of Pescara, Pescara, Italy
| | - S Cesaro
- Pediatric Hematology Oncology Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - R Angarano
- Pediatric Oncology-Hematology Unit, AOU Policlinico, Bari, Italy
| | - W Barberi
- Hematology, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - S Bonanomi
- Pediatric Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - P Corti
- Pediatric Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - B Crescenzi
- Hematology and Bone Marrow Transplantation Unit, Hospital of Perugia, Perugia, Italy
| | - G Dell'Orso
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - A De Matteo
- Oncology Hematology and Cell Therapies Department, AORN Santobono-Pausilipon, Naples, Italy
| | - G Giagnuolo
- Oncology Hematology and Cell Therapies Department, AORN Santobono-Pausilipon, Naples, Italy
| | - A P Iori
- Hematology and HSCT Unit, University La Sapienza, Rome, Italy
| | - S Ladogana
- Pediatric Onco-Hematology Unit, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - A Lucarelli
- Pediatric Emergency Department, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - M Lupia
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - B Martire
- Pediatrics and Neonatology Unit, Maternal-Infant Department, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - E Mastrodicasa
- Hematology and Bone Marrow Transplantation Unit, Hospital of Perugia, Perugia, Italy
| | - E Massaccesi
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - L Arcuri
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - M C Giarratana
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - G Menna
- Oncology Hematology and Cell Therapies Department, AORN Santobono-Pausilipon, Naples, Italy
| | - M Miano
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - L D Notarangelo
- Medical Direction, Children's Hospital, ASST-Spedali Civili, Brescia, Italy
| | - G Palazzi
- Department of Mother and Child, University Hospital of Modena, Modena, Italy
| | - E Palmisani
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - S Pestarino
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - F Pierri
- HSCT Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - M Pillon
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - U Ramenghi
- Hematology Unit, "Regina Margherita" Children's Hospital, Turin, Italy
| | - G Russo
- Division of Pediatric Hematology/Oncology, University of Catania, Catania, Italy
| | - F Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - F Timeus
- Pediatrics Department, Chivasso Hospital, Turin, Italy
| | - F Verzegnassi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - M Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Fioredda
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - C Dufour
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy.
| |
Collapse
|
2
|
Shimano KA, Sasa G, Broglie L, Gloude NJ, Myers K, Nakano TA, Sharathkumar A, Rothman JA, Pereda MA, Overholt K, Narla A, McGuinn C, Lau BW, Geddis AE, Dror Y, de Jong JLO, Castillo P, Allen SW, Boklan J. Treatment of relapsed/refractory severe aplastic anemia in children: Evidence-based recommendations. Pediatr Blood Cancer 2024; 71:e31075. [PMID: 38764170 DOI: 10.1002/pbc.31075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Severe aplastic anemia (SAA) is a rare potentially fatal hematologic disorder. Although overall outcomes with treatment are excellent, there are variations in management approach, including differences in treatment between adult and pediatric patients. Certain aspects of treatment are under active investigation in clinical trials. Because of the rarity of the disease, some pediatric hematologists may have relatively limited experience with the complex management of SAA. The following recommendations reflect an up-to-date evidence-based approach to the treatment of children with relapsed or refractory SAA.
Collapse
Affiliation(s)
- Kristin A Shimano
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplant, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Ghadir Sasa
- Sarah Cannon Transplant and Cellular Therapy Network, San Antonio, Texas, USA
| | - Larisa Broglie
- Department of Pediatric Hematology/Oncology/Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nicholas J Gloude
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Kasiani Myers
- Department of Pediatrics, Division of Bone Marrow Transplantation and Immune Deficiency, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Taizo A Nakano
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Anjali Sharathkumar
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jennifer A Rothman
- Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria A Pereda
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kathleen Overholt
- Department of Pediatrics, Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Catherine McGuinn
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Bonnie W Lau
- Department of Pediatrics, Pediatric Hematology-Oncology, Dartmouth-Hitchcock, Lebanon, Pennsylvania, USA
| | - Amy E Geddis
- Department of Paediatrics, Division of Hematology/Oncology, Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington, USA
| | - Yigal Dror
- Department of Pediatrics, Marrow Failure and Myelodysplasia Program, The Hospital for Sick Children, Toronto, Canada
| | - Jill L O de Jong
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, UF Health Shands Children's Hospital, Gainesville, Florida, USA
| | - Steven W Allen
- Department of Pediatrics, Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jessica Boklan
- Department of Pediatrics, Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Liu Y, Han TT, Chen Y, Chen H, Fu HX, Zhang YY, Wang FR, Wang JZ, Yan CH, Han W, Chen YY, Sun YQ, Wang Y, Tang FF, Liu KY, Zhang XH, Huang XJ, Xu LP. [Safety of rabbit anti-human thymocyte immunoglobulin in second allogeneic hematopoietic stem cell transplantation for patients with hematological diseases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:853-857. [PMID: 36709200 PMCID: PMC9669623 DOI: 10.3760/cma.j.issn.0253-2727.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/30/2023]
Abstract
Objective: To look into the security of a second allogeneic hematopoietic stem cell transplantation (allo-HSCT) using rabbit anti-human thymocyte immunoglobulin (rATG) . Methods: Twenty-seven patients who used rATG in the first and second allo-HSCT at the Institute of Hematology, Peking University were enrolled in the study. Experienced toxicities associated with the conditioning protocol within 10 days (-5 d to +3 d) following the beginning of the rATG application, including fever, diarrhea, arrhythmia, reduced blood pressure, liver damage, seizures, and other problems. Results: The overall incidence of conditioning regimen early adverse reactions during the first transplantation and the second allo-HSCT conditioning regimen was 96.3% and 77.8% (P=0.043) . Fever rates were 81.5% and 63.0% (P=0.129) , diarrhea rates were 59.3% and 25.9% (P=0.013) , liver damage rates were 22.2% and 25.9% (P=0.75) , and the rates of other events (cardiac arrhythmia, low blood pressure, and epilepsy) were 3.7% and 18.5% (P=0.083) . Adverse reactions that occurred during both the first and second course of rATG applications have been improved with symptomatic treatment, and no treatment interruptions occurred. Conclusion: Reusing rATG in a second transplant was risk-free and did not result in higher early toxicities.
Collapse
Affiliation(s)
- Y Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China The Third People's Hospital of Zhengzhou, Zhengzhou 450099, China
| | - T T Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - H Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - H X Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - F R Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Z Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - W Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - F F Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - K Y Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
4
|
Li JP, Peng GX, Ye L, Li Y, Yang WR, Li Y, Fan HH, Zhao X, Zhou K, Jing LP, Zhang L, Zhang FK. [Retreatment with immunosuppression for 23 patients with refractory or relapsed severe aplastic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:661-665. [PMID: 32942820 PMCID: PMC7525170 DOI: 10.3760/cma.j.issn.0253-2727.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 11/05/2022]
Abstract
Objective: This study aims to evaluate the efficacy and safety of secondary immunosuppressive therapy (IST) in refractory or relapsed severe aplastic anemia. Methods: The hematologic response and safety of 23 patients with refractory or relapsed SAA treated with secondary IST (including ATG/ALG + cyclosporine or HD-CTX) in our hospital were retrospectively analyzed. Results: A total of 23 patients were involved, including 11 males and 12 females, with a median age of 21 (11-62) years. In the refractory group, the interval of IST was 7 (6-12) months. In the relapsed group, on the other hand, the interval between two courses of IST was 39 (14-51) months. At 6 months after IST, the overall response rate was 69.5% (16/23) ; 60% (6/10) of the refractory group vs 77% (10/13) of the relapsed group; 64% (7/11) of the ATG/ALG group vs 75% (9/12) of the HD-CTX group. Among the patients who got the hematologic response, two patients relapsed again, all of them from the relapse group. After the third IST, they got the response again. Conclusion: The second IST is safe and effective for refractory and relapsed SAA patients; the early serologic reaction should be paid attention to when using the same ATG/ALG, and the risk can be reduced by changing the type of ATG/ALG or other IST programs. The third IST can still obtain the treatment response for the second relapse patients.
Collapse
Affiliation(s)
- J P Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - G X Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W R Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - H H Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - K Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L P Jing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - F K Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
5
|
Pierri F, Dufour C. Management of aplastic anemia after failure of frontline immunosuppression. Expert Rev Hematol 2019; 12:809-819. [PMID: 31311355 DOI: 10.1080/17474086.2019.1645003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: About 60% of aplastic anemia (AA) patients are in need of further treatment after frontline standard immunosuppressive therapy (IST). This along with the prolonged survival of AA subjects who do not respond to or relapse after this treatment makes management of these patients a rising and very challenging issue. Areas covered: Literature research, carried out from the most commonly used databases, included the following keywords: aplastic anemia, immunosuppressive treatment, antithymocyte globuline, ciclosporine A, refractory aplastic anemia, relapsing aplastic anemia, hematopoietic stem cell transplantation including haploidentical and cord blood transplantations thrombopoietin mimetics, supportive treatment, chelation and infections. Studies on the treatment of aplastic anemia with different levels of evidence were included. Top level of evidence studies (metanalyses and randomized prospective controlled trials) were a minority because severe AA, particularly in the subset of patients who fail upfront IST, is an extremely rare disease. Guidelines from National Societies and review articles were also included. Expert opinion: The most commonly used treatments after failure of upfront immunosuppression are hematopoietic stem cell transplantation, a second course of immunosuppression and thrombopoietin mimetics alone or in combination with immunosuppression. Other potential options are alemtuzumab, androgens, oral cyclosporine A in monotherapy. Not many comparative studies exist to clearly establish the superiority of one over another strategy. Therefore, the choice of the best treatment for these patients should rely on major driving factors like patient's age and comorbidities, availability of a matched unrelated donor, donor's characteristics and drug-availability.
Collapse
Affiliation(s)
- Filomena Pierri
- Hematology Unit, G. Gaslini Children's Research Hospital , Genova , Italy
| | - Carlo Dufour
- Hematology Unit, G. Gaslini Children's Research Hospital , Genova , Italy
| |
Collapse
|
6
|
Abstract
Overall survival in severe aplastic anemia has markedly improved in the past four decades due to advances in stem cell transplantation, immunosuppressive therapies and supportive care. Horse anti-thymocyte globulin plus cyclosporine is the standard immunosuppressive regimen in severe aplastic anemia, and often employed as initial therapy as most are not candidates for a matched related stem cell transplantation. With this regimen, hematologic response can be achieved in 60 to 70% of cases, but relapse is observed in 30 to 40% of responders and clonal evolution in 10 to 15% of patients. Efforts to improve outcomes beyond horse anti-thymocyte globulin plus cyclosporine have been disappointing, with no significant improvement in the critical parameter of hematologic response, which strongly correlates with long-term survival in severe aplastic anemia. Furthermore, rates of relapse and clonal evolution have also not improved with the development of three drug regimens or with more lymphocytotoxic therapies. Therefore, horse anti-thymocyte globulin plus cyclosporine remains the standard immunosuppression of choice as first therapy in severe aplastic anemia. Interestingly, survival has markedly improved over the years in large part due to better anti-infective therapy and more successful salvage therapies with immunosuppression and stem cell transplantation. In this review general aspects of diagnosis and management are discussed.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, US
| |
Collapse
|
7
|
Schrezenmeier H, Körper S, Höchsmann B. Immunosuppressive therapy for transplant-ineligible aplastic anemia patients. Expert Rev Hematol 2015; 8:89-99. [PMID: 25572607 DOI: 10.1586/17474086.2015.978759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aplastic anemia is a rare life-threatening bone marrow failure that is characterized by bicytopenia or pancytopenia in the peripheral blood and a hypoplastic or aplastic bone marrow. The patients are at risk of infection and hemorrhage due to neutropenia and thrombocytopenia and suffer from symptoms of anemia. The main treatment approaches are allogeneic stem cell transplantation and immunosuppression. Here, we review current standard immunosuppression and the attempts that have been made in the past two decades to improve results: review of recent developments also reveals that sometimes not only the advent of new drugs, good ideas and well-designed clinical trials decide the progress in the field but also marketing considerations of pharmaceutical companies. Aplastic anemia experts unfortunately had to face the situation that efficient drugs were withdrawn simply for marketing considerations. We will discuss the current options and challenges in first-line treatment and management of relapsing and refractory patients with an emphasis on adult patients. Some promising new approaches are currently under investigation in prospective, randomized trials.
Collapse
|
8
|
Barone A, Lucarelli A, Onofrillo D, Verzegnassi F, Bonanomi S, Cesaro S, Fioredda F, Iori AP, Ladogana S, Locasciulli A, Longoni D, Lanciotti M, Macaluso A, Mandaglio R, Marra N, Martire B, Maruzzi M, Menna G, Notarangelo LD, Palazzi G, Pillon M, Ramenghi U, Russo G, Svahn J, Timeus F, Tucci F, Cugno C, Zecca M, Farruggia P, Dufour C, Saracco P. Diagnosis and management of acquired aplastic anemia in childhood. Guidelines from the Marrow Failure Study Group of the Pediatric Haemato-Oncology Italian Association (AIEOP). Blood Cells Mol Dis 2015; 55:40-7. [DOI: 10.1016/j.bcmd.2015.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/28/2015] [Indexed: 02/03/2023]
|
9
|
Zhang L, Jing L, Zhou K, Wang H, Peng G, Li Y, Li Y, Li J, Ye L, Shi L, Fan H, Zhao X, Wang J, Zhang F. Rabbit antithymocyte globulin as first-line therapy for severe aplastic anemia. Exp Hematol 2015; 43:286-94. [PMID: 25583265 DOI: 10.1016/j.exphem.2014.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 01/26/2023]
Abstract
Rabbit antithymocyte globulin (rATG) was proven effective as salvage therapy for refractory aplastic anemia (AA), or for relapse after initial therapy with horse ATG (hATG). Several clinical trials were performed to assess the efficiency of rATG as a first-line therapy for AA patients; however, their results were variable. The aim of the present study was to assess hematologic response and survival in severe AA (SAA) and very severe AA (VSAA) patients treated with rATG and cyclosporin A (CsA) in our center. The factors involved in these outcomes were also explored. A total of 292 patients with newly diagnosed, acquired SAA or VSAA received a combination of rATG and CsA as first-line therapy, and the results were retrospectively assessed. The median age was 18 years (range = 2-73 years). The early death rate was 5.5%, and the total response rates were 49.0% (143 responders), 60.3% (176 responders), 65.8% (192 responders), and 68.5% (200 responders) at 3, 6, 9, and 12 months, respectively, after immunosuppressive therapy. In multivariate analysis, initial response to granulocyte colony-stimulating factor (G-CSF) was the predictive factor for response to therapy at 12 months. Median follow-up of surviving patients was 34 months (range = 0-117 months). Five-year overall survival was 83.2%, and the 5-year, event-free survival was 67.2%. Independent prognostic factors for overall survival were neutrophil count and achievement of any response following rATG therapy. Our results indicate that rATG/CsA is a safe and effective first-line treatment for SAA/VSAA.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Liping Jing
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Kang Zhou
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Huijun Wang
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Guangxin Peng
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Yang Li
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Yuan Li
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Jianping Li
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Lei Ye
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Lihui Shi
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Huihui Fan
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Xin Zhao
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Jianxiang Wang
- Department of Leukemia Therapeutic Centre, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Fengkui Zhang
- Department of Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China.
| |
Collapse
|
10
|
Abstract
Abstract
Refractory aplastic anemia (AA) is defined as a lack of response to first-line immunosuppressive therapy (IST) with antithymocyte globulin and cyclosporin and is manifested as persistence of severe cytopenias at 6 months after IST. Although supportive care is critical for AA patients, it is of paramount importance for refractory disease in view of the longer duration of pancytopenia and susceptibility to life-threatening infections due to IST. Improvements in supportive care have largely contributed to better outcome over the past 2 decades, with 5-year overall survival reaching 57% during 2002 to 2008 for patients with AA unresponsive to initial IST. Exclusion of hypocellular myelodysplastic syndrome and constitutional BM failure masquerading as apparent idiopathic AA should be done in conjunction with centers of excellence. Hematopoietic stem cell transplantation is indicated if refractory AA patients are fit and have a suitably matched donor, either a sibling (> 40-50 years) or unrelated donor. Patients lacking a fully matched donor should be considered for a second course of antithymocyte globulin plus cyclosporin, although response in the refractory setting is only ∼ 30% to 35%. Response may also occur with alemtuzumab or the thrombopoietin mimetic eltrombopag in refractory AA. The emerging data for alternate donor (cord or haploidentical) transplantation in AA has provided additional therapeutic choices to consider in refractory disease.
Collapse
|
11
|
Abstract
Abstract
Refractory aplastic anemia (AA) is defined as a lack of response to first-line immunosuppressive therapy (IST) with antithymocyte globulin and cyclosporin and is manifested as persistence of severe cytopenias at 6 months after IST. Although supportive care is critical for AA patients, it is of paramount importance for refractory disease in view of the longer duration of pancytopenia and susceptibility to life-threatening infections due to IST. Improvements in supportive care have largely contributed to better outcome over the past 2 decades, with 5-year overall survival reaching 57% during 2002 to 2008 for patients with AA unresponsive to initial IST. Exclusion of hypocellular myelodysplastic syndrome and constitutional BM failure masquerading as apparent idiopathic AA should be done in conjunction with centers of excellence. Hematopoietic stem cell transplantation is indicated if refractory AA patients are fit and have a suitably matched donor, either a sibling (>40-50 years) or unrelated donor. Patients lacking a fully matched donor should be considered for a second course of antithymocyte globulin plus cyclosporin, although response in the refractory setting is only ∼30% to 35%. Response may also occur with alemtuzumab or the thrombopoietin mimetic eltrombopag in refractory AA. The emerging data for alternate donor (cord or haploidentical) transplantation in AA has provided additional therapeutic choices to consider in refractory disease.
Collapse
|
12
|
Maury S, Balère-Appert ML, Pollichieni S, Oneto R, Yakoub-Agha I, Locatelli F, Dalle JH, Lanino E, Fischer A, Pession A, Huynh A, Barberi W, Mohty M, Risitano A, Milpied N, Socié G, Bacigalupo A, Marsh J, Passweg JR. Outcome of patients activating an unrelated donor search for severe acquired aplastic anemia. Am J Hematol 2013; 88:868-73. [PMID: 23804195 DOI: 10.1002/ajh.23522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/12/2022]
Abstract
Patients with severe aplastic anemia (SAA) without a sibling donor receive immunosuppressive treatment (IST) with anti-thymocyte globulin (ATG). In the case of no response to IST, a voluntary unrelated donor (VUD) search is usually started. This study analyzes the outcome of ATG-refractory SAA patients activating a VUD search. Of 179 patients, 68 had at least one HLA-A, -B, and -DR matched donor identified and underwent HSCT while 50 also with a donor were not transplanted because of early death (8), late response to IST (34), transplant refusal (1), or other (7). Conversely, 61 had no matched donor, 13 of those ultimately received a mismatched HSCT. All but one received marrow stem cells. Among patients aged <17 years, those with at least one matched donor had a significant higher 4-year survival as compared to others (79% ± 6% versus 53% ± 10%, P = 0.01). There was also a survival advantage independent of recipient age when the donor search was initiated in the recent 2000-2005 study-period (74% ± 6% versus 47% ± 10%, P < 0.05). In multivariate analysis, the identification of a matched VUD tended to impact favourably on survival in patients with a recent donor search (P = 0.07). This study provides evidence for the use of unrelated donor HSCT in children and adults with IST-refractory SAA.
Collapse
|
13
|
The optimal immunosuppressive therapy for aplastic anemia. Int J Hematol 2013; 97:564-72. [PMID: 23605367 DOI: 10.1007/s12185-013-1331-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
Immunosuppressive treatment (IST) has been the most effective therapeutic modality for patients with aplastic anemia (AA) who are not eligible for allogeneic stem cell transplantation from HLA-matched siblings because of donor unavailability, old age, or comorbidities. The combination of horse anti-thymocyte globulin (ATG) with cyclosporine A (CsA) has shown satisfactory results for these patients, and so it has been regarded as the standard IST regimen. However, treatment failure including unresponsiveness, relapse, and occurrence of clonal evolution remains a major problem, although the results of IST have been improved in the past two decades. Many studies have been conducted to overcome these problems; however, they have yet to show any satisfactory results. This review will discuss immune-mediated pathophysiology of AA, which is associated with therapeutic targets of immunosuppressive agents and clinical outcomes of most commonly used IST regimens. Several trials to improve IST including the addition of other immunosuppressive agents or growth factors to standard IST regimen, comparison between horse ATG/CsA and rabbit ATG/CsA as first-line treatment, and promising alternative agents including alemtuzumab and eltrombopag will also be discussed, focusing on recently published literatures.
Collapse
|
14
|
Tang X, Liu F, Li L, Liu C, Zhang S, Xiao H, Zheng C, Xu S, Ma R. Antithymocyte globulin/antilymphocyte globulin plus kidney-nourishing Chinese medicinal: effect on severe aplastic anemia. J TRADIT CHIN MED 2013; 32:604-8. [PMID: 23427396 DOI: 10.1016/s0254-6272(13)60078-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To explore the effect of antithymocyte globulin (ATG)/antilymphocyte globulin (ALG) plus kidney-nourishing Chinese medicinal (KNCM) on severe aplastic anemia (SAA). METHODS Twenty-five subjects of severe aplastic anemia were treated with ATG/ALD plus KNCM between 1992 and 2009, and the clinical data before and after treatment were collected and analyzed. RESULTS Of the 25 patients, 9 were nearly cured, 6 were improved, 5 were in remission, and 5 failed. The overall effective rate was 80.0%. The 3-year, 5-year, 10-year, 15-year survival rate were respectively 98.6%, 97.3%, 97.3%, 67.5%, and median survival time was 180 months. Compared to the conditions before administering the medication of ATG/ ALG plus KNCM, after 2 weeks, reticulocyte was first improved (P = 0.001); one month later, followed by palette (P = 0.037); two months later, by neutrophil cell in peripheral blood (P = 0.001); three months later, then by the hemoglobin (P = 0.012). By conducting 1-year follow-up, 1 case of complication--paroxysmal nocturnal hemoglobinuria (PNH) was identified and the patient still alive today. CONCLUSION ATG/ALG plus KNCM had better effect on SAA and could improve patients' survival rate.
Collapse
Affiliation(s)
- Xudong Tang
- Department of Hematology, Xi Yuan Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing 100091, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gupta V, Kumar A, Tilak V, Saini I, Bhatia B. Immunosuppressive therapy in aplastic anemia. Indian J Pediatr 2012; 79:1587-91. [PMID: 22274992 DOI: 10.1007/s12098-012-0691-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/11/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the response to antithymocyte globulin based immunosuppressive therapy (IST) in pediatric patients with idiopathic aplastic anemia. METHODS Thirty patients (19 boys and 11 girls) with aplastic anemia received antithymocyte globulin and cyclosporine. Twenty-two patients had severe and 8 had very severe aplastic anemia. RESULTS Mean age of the patients was 9.19 ± 2.56 y. Three patients died within 1 mo of therapy, two due to sepsis and one due to intracranial hemorrhage. Twenty-seven patients were analyzed for response to therapy. Eight patients (29.7%) responded at 3 mo: 3 complete response (CR) and 5 partial response (PR). Six mo after the therapy, overall response (OR) was seen in 9/27 (33.3%), with one more patient in no response group achieving partial response. At 1 year, patients in CR maintained their status and 1 patient in PR group relapsed. He again achieved partial response with repeat course of ATG. Responders had significantly shorter duration of illness and higher absolute neutrophil count as compared to non responders to IST. None of the patients developed acute leukemia in the follow up. CONCLUSIONS The treatment of aplastic anemia in pediatric patients is a challenging task. One third of the patients achieved overall response which included both complete and partial response.
Collapse
Affiliation(s)
- Vineeta Gupta
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Samarasinghe S, Webb DKH. How I manage aplastic anaemia in children. Br J Haematol 2012; 157:26-40. [PMID: 22348483 DOI: 10.1111/j.1365-2141.2012.09058.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 01/09/2023]
Abstract
Aplastic anaemia (AA) is a rare heterogeneous condition in children. 15-20% of cases are constitutional and correct diagnosis of these inherited causes of AA is important for appropriate management. For idiopathic severe aplastic anaemia, a matched sibling donor (MSD) haematopoietic stem cell transplant (HSCT) is the treatment of choice. If a MSD is not available, the options include immunosuppressive therapy (IST) or unrelated donor HSCT. IST with horse anti-thymocyte globulin (ATG) is superior to rabbit ATG and has good long-term results. In contrast, IST with rabbit ATG has an overall response of only 30-40%. Due to improvements in outcome over the last two decades in matched unrelated donor (MUD) HSCT, results are now similar to that of MSD HSCT. The decision to proceed with IST with ATG or MUD HSCT will depend on the likelihood of finding a MUD and the differing risks and benefits that each therapy provides.
Collapse
Affiliation(s)
- Sujith Samarasinghe
- Paediatric Haematopoietic Stem Cell Transplant Unit, Department of Adolescent and Paediatric Haematology and Oncology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
18
|
Activity of alemtuzumab monotherapy in treatment-naive, relapsed, and refractory severe acquired aplastic anemia. Blood 2011; 119:345-54. [PMID: 22067384 DOI: 10.1182/blood-2011-05-352328] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antithymocyte globulin (ATG) + cyclosporine is effective in restoring hematopoiesis in severe aplastic anemia (SAA). We hypothesized that the humanized anti-CD52 mAb alemtuzumab might be active in SAA because of its lymphocytotoxic properties. We investigated alemtuzumab monotherapy from 2003-2010 in treatment-naive, relapsed, and refractory SAA in 3 separate research protocols at the National Institutes of Health. Primary outcome was hematologic response at 6 months. For refractory disease, patients were randomized between rabbit ATG + cyclosporine (n = 27) and alemtuzumab (n = 27); the response rate for alemtuzumab was 37% (95% confidence interval [CI], 18%-57%) and for rabbit ATG 33% (95% CI, 14%-52%; P = .78). The 3-year survival was 83% (95% CI, 68%-99%) for alemtuzumab and 60% (95% CI, 43%-85%) for rabbit ATG (P = .16). For relapsed disease (n = 25), alemtuzumab was administered in a single-arm study; the response rate was 56% (95% CI, 35%-77%) and the 3-year survival was 86% (95% CI, 72%-100%). In treatment-naive patients (n = 16), alemtuzumab was compared with horse and rabbit ATG in a 3-arm randomized study; the response rate was 19% (95% CI 0%-40%), and the alemtuzumab arm was discontinued early. We conclude that alemtuzumab is effective in SAA, but best results are obtained in the relapsed and refractory settings. The present trials were registered at www.clinicaltrials.gov as NCT00195624, NCT00260689, and NCT00065260.
Collapse
|
19
|
Balint B, Stamatovic D, Todorovic M, Elez M, Vojvodic D, Pavlovic M, Cucuz-Jokic M. Autologous transplant in the treatment of severe aplastic anemia--a case report. Transfus Apher Sci 2011; 45:137-41. [PMID: 21871837 DOI: 10.1016/j.transci.2011.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The initial use of immunosuppressive therapy (IST) in severe aplastic anemia (sAA) or reapplication of IST-centered methods following disease relapse is successful only in well-selected patients. The potential treatment by autologous stem cell (SC) transplant in sAA is still an innovative/pioneering therapeutic approach. To our best knowledge, this is the second published case of autologous SC transplant in sAA. The aim of this work was to optimize mobilization and timing for SC harvesting - using our own controlled-rate cryopreservation - with higher CD34(+)/CD90(+) subset yield and recovery in order to obtain complete and long-term hematopoietic reconstitution following autologous SC transplant. We report a 35 year-old sAA male patient who initially underwent IST using rabbit ATG and Cyclosporine A (CsA). He was supportive transfusion dependent for the whole period of IST-phase. After the second IST-cycle, polymorphonuclear (PMN) cell count increase (>2.0 × 10(9)/L) was observed, when SC mobilization, two large volume leukapheresis procedures and following autologous transplant were performed. The yields of harvested CD34(+) and CD34(+)/CD90(+) cells were 5.75 × 10(6)/kgbm and 1.7 × 10(6)/kgbm, respectively. The quantity of applied CD34(+) and CD34(+)/CD90(+) cells in autologous SC transplant were 5.45 × 10(6)/kgbm (7-AAD(CD34)(+)(viability)=95.42%) and 1.63 × 10(6)/kgbm (7-AAD(CD34)(+)(/CD90)(+)(viability)=95.42%), respectively. Hematopoietic reconstitution registered due to second month after autologous SC transplant and he is 24 months in complete medullar, hematological and clinical remission, with normal cytogenetic status - applying only continuous CsA therapy. The results obtained strongly confirm that in sAA, with no allogeneic SC donor, autologous transplant can result in a successful clinical outcome. We suggest that CD34(+)/CD90(+) subset count in peripheral blood and/or cell-harvest could be more valuable predictive factor than total CD34(+) quantity of optimized collection-timing and superior treatment efficacy of autologous SC transplant in sAA.
Collapse
Affiliation(s)
- Bela Balint
- Institute for Medical Research, University of Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Füreder W, Valent P. Treatment of refractory or relapsed acquired aplastic anemia: review of established and experimental approaches. Leuk Lymphoma 2011; 52:1435-45. [DOI: 10.3109/10428194.2011.568646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Aplastic Anemia: First-line Treatment by Immunosuppression and Sibling Marrow Transplantation. Hematology 2010; 2010:36-42. [DOI: 10.1182/asheducation-2010.1.36] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract
Newly diagnosed aplastic anemia is a serious condition, with more than 75% (higher in young patients) becoming long-term survivors if diagnosed and treated appropriately. First-line treatment approaches include immunosuppressive treatment using the combination of antithymocyte globulin and cyclosporine A for patients without a sibling donor and HLA identical sibling transplant for patients younger than age 40 with a donor. Best transplant strategies have been defined and include conditioning with cyclophosphamide and antithymocyte globulin, marrow as a stem cell source, and graft-versus-host diease prophylaxis using cyclosporine A and methotrexate. It is against these standard treatment approaches that any therapeutic progress has to be measured.
Collapse
|
22
|
Risitano AM. Immunosuppressive therapies in the management of immune-mediated marrow failures in adults: where we stand and where we are going. Br J Haematol 2010; 152:127-40. [PMID: 21118194 DOI: 10.1111/j.1365-2141.2010.08439.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunosuppression is a key treatment strategy for aplastic anaemia (AA) and the related immune-mediated bone marrow failure syndromes (BMFS). For the last 20 years the standard immunosuppressive regimen for AA patients has been anti-thymocyte globulin (ATG) plus ciclosporin A (CyA), which results in response rates ranging between 50% and 70%, and even higher overall survival. However, primary and secondary failures after immunosuppressive therapy remain frequent, and to date all attempts aiming to overcome this problem have been unfruitful. This article reviews the state of the art of current immunosuppressive therapies for AA, focusing on open questions linked to standard immunosuppressive treatment, and on experimental immunosuppressive strategies which could lead to future improvement of current treatments. Specific immunosuppressive strategies employed for other BMFS, such as lineage-restricted marrow failures, myelodysplastic syndromes and large granular lymphocyte leukaemia-associated cytopenias, are also briefly discussed.
Collapse
Affiliation(s)
- Antonio M Risitano
- Department of Biochemistry and Medical Biotechnologies, Federico II University of Naples, Italy.
| |
Collapse
|
23
|
Marsh JCW, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, Keidan J, Laurie A, Martin A, Mercieca J, Killick SB, Stewart R, Yin JAL. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol 2009; 147:43-70. [PMID: 19673883 DOI: 10.1111/j.1365-2141.2009.07842.x] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Judith C W Marsh
- Department of Haematological Medicine, King's College Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Passweg JR, Tichelli A. Immunosuppressive treatment for aplastic anemia: are we hitting the ceiling? Haematologica 2009; 94:310-2. [PMID: 19252172 DOI: 10.3324/haematol.2008.002329] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Chandra J, Naithani R, Ravi R, Singh V, Narayan S, Sharma S, Pemde H, Dutta AK. Antithymocyte globulin and cyclosporin in children with acquired aplastic anemia. Indian J Pediatr 2008; 75:229-33. [PMID: 18376089 DOI: 10.1007/s12098-008-0050-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess the responses to ATG and cyclosporin combination in patients of aplastic anemia. METHODS Twenty three (17M: 6F) patients of aplastic anemia (11 very severe aplastic anemia (VSAA) and 12 severe aplastic anemia (SAA), were administered antithymocyte globulin and cyclosporin. RESULTS The median age of patents was 8 years (range 6-12 years). Three patients died within 2 months of therapy. Twenty children (11 SAA and 9 VSAA) were finally analysed. Six months after the start of treatment, 8/20 (40%) patients responded-2 complete (CR) and 6 partial responses (PR). At the end of 1 year; 2 patients maintained CR and seven patients continued PR (overall responders 45%). The response was better in SAA (54.5%) with 2 CR and 4 PR; than in VSAA (33%) with 3 PR . Eleven (55%) children were alive without response. One patient developed AML 13 months later. CONCLUSION We conclude that antithymocyte globulin and cyclosporin combination is an effective treatment for aplastic anemia patients who are ineligible for bone marrow transplantation.
Collapse
Affiliation(s)
- Jagdish Chandra
- Kalawati Saran Childrens Hospital, New Delhi, India. jchandra55@ yahoo.co.in
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The current outlook for a child with severe idiopathic aplastic anaemia (AA) is very much better than in previous decades. In part, this may reflect better differentiation of idiopathic and inherited marrow failure. For children with idiopathic AA and a human leucocyte antigen (HLA)-matched sibling donor (MSD), allogeneic haematopoietic stem-cell transplantation (AHSCT) is the primary therapy of choice, offering long-term disease-free survival of 90%, although graft-versus-host disease remains a cause of long-term morbidity. A greater treatment challenge remains for those children without a MSD. Combination immunosuppressive therapy (IST) is associated with response rates of 70% or more. However, relapse and clonal evolution with transformation to myelodysplasia or acute myeloid leukaemia remain significant problems after IST and long-term event-free survival rates are less impressive. For children who do not have a sustained response to IST, alternate donor AHSCT should be considered. New HLA typing technologies, novel stem cell sources, reduced-intensity conditioning and graft engineering have reduced toxicity and improved the outcome after alternate donor AHSCT. Emerging therapies that capitalise on recent advances in our understanding of the pathophysiology of idiopathic AA and the immunobiology of AHSCT and IST may further improve the long-term outcome of this disease.
Collapse
Affiliation(s)
- Jeffrey K Davies
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- Hack Ki Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
28
|
Gupta V, Brooker C, Tooze JA, Yi QL, Sage D, Turner D, Kangasabapathy P, Marsh JCW. Clinical relevance of cytogenetic abnormalities at diagnosis of acquired aplastic anaemia in adults. Br J Haematol 2006; 134:95-9. [PMID: 16803574 DOI: 10.1111/j.1365-2141.2006.06105.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The outcome of 81 adult aplastic anaemia patients who had successful cytogenetics at diagnosis and received immunosuppressive therapy was evaluated. Ten patients had an abnormal karyotype, six of which had a trisomy. Four of five evaluable patients with a trisomy responded. One patient with monosomy 7 achieved a complete response and later developed haemolytic paroxysmal nocturnal haemoglobinuria but no recurrence of monosomy 7. None of the patients with a non-numerical karyotypic abnormality responded. No significant differences in survival or later clonal disorders were observed between patients with a normal karyotype and those with an abnormal karyotype.
Collapse
Affiliation(s)
- Vikas Gupta
- Department of Haematology, St George's Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108:2509-19. [PMID: 16778145 PMCID: PMC1895575 DOI: 10.1182/blood-2006-03-010777] [Citation(s) in RCA: 633] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Almost universally fatal just a few decades ago, aplastic anemia can now be cured or ameliorated by stem-cell transplantation or immunosuppressive drug therapy. The pathophysiology is immune mediated in most cases, with activated type 1 cytotoxic T cells implicated. The molecular basis of the aberrant immune response and deficiencies in hematopoietic cells is now being defined genetically; examples are telomere repair gene mutations in the target cells and dysregulated T-cell activation pathways. Immunosuppression with antithymocyte globulins and cyclosporine is effective at restoring blood-cell production in the majority of patients, but relapse and especially evolution of clonal hematologic diseases remain problematic. Allogeneic stem-cell transplant from histocompatible sibling donors is curative in the great majority of young patients with severe aplastic anemia; the major challenges are extending the benefits of transplantation to patients who are older or who lack family donors. Recent results with alternative sources of stem cells and a variety of conditioning regimens to achieve their engraftment have been promising, with survival in small pediatric case series rivaling conventional transplantation results.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute/NIH, 10 Center Drive, Bldg 10/CRC, Rm 3E-5140, Bethesda, MD 20892-1202, USA.
| | | | | |
Collapse
|
30
|
Marsh J. Making therapeutic decisions in adults with aplastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2006:78-85. [PMID: 17124044 DOI: 10.1182/asheducation-2006.1.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The management of adults presenting with aplastic anemia (AA) requires careful exclusion of other causes of bone marrow failure. Late-onset inherited forms of AA may present in adulthood with subclinical disease. Recent long-term studies of HLA identical sibling donor BMT show excellent survival for patients under the age of 40 years, but chronic graft-versus-host disease (GVHD) is still a major problem, impacting on quality of life. Recent improvements in outcome after matched unrelated donor BMT may reflect better donor matching and use of reduced intensity conditioning regimens. For patients treated with immunosuppressive therapy (IST), antithymocyte globulin (ATG) and cyclosporin (CSA) remain the standard regimen with excellent overall survival but less impressive failure-free survival due to nonresponse, relapse and later clonal disorders. The benefit of adding granulocyte colony-stimulating factor (G-CSF) to ATG and CSA is unclear and being assessed in a further prospective European study. Patients who are refractory to conventional IST and currently ineligible for BMT represent difficult management problems. For these patients, new approaches to transplantation are being evaluated, such as fludarabine-based conditioning regimens and the potential use of double umbilical cord blood transplants, but there is a need for new immunosuppressive agents. Improved supportive care is likely to be a major factor in improved outcome of all AA patients whether treated with IST or BMT. Robust predictive factors for response to IST are needed to help in decision making at diagnosis and to help justify exploring novel approaches to therapy.
Collapse
Affiliation(s)
- Judith Marsh
- St. George's Hospital, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
31
|
Abstract
Abstract
The primary therapeutic approach to acquired aplastic anemia (AA) in older adults differs from the primary approach used in children and younger adults because in the former group, the results of allogeneic bone marrow transplantation (BMT) are less favorable. With increasing age of the patients, immunosuppressive therapy with antithymocyte globulin (ATG) and cyclosporine (CsA) constitutes the primary treatment option and may be better than BMT. There are very few clinical clues as to the selection of patients likely to respond to immunosuppression. Repeated ATG/CsA cycles are often used as salvage regimens, but in refractory patients BMT may be the best treatment option, as the prognosis for non-responders is poor without definitive treatment. Conservative therapy such as intense immunosuppression is associated with a high relapse rate but does not impact the survival and overall prognosis. The inability to eliminate autoimmune T cell clones using current therapeutic strategies suggests that prolonged immunosuppressive maintenance therapy may be needed for a substantial proportion of patients. Late clonal complications of conservatively treated patients include evolution to myelodysplasia and paroxysmal nocturnal hemoglobinuria and may develop in 20% of the patients. However, BMT also has several sequelae including an increased frequency of solid tumors. Novel immunosuppressive and immunomodulatory agents and constantly improving results of allogeneic BMT will further improve the survival rate of adult patients with AA.
Collapse
Affiliation(s)
- Jaroslaw P Maciejewski
- The Cleveland Clinic Foundation, Taussig Cancer Center, Cleveland Clinic College of Medicine of the Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|