1
|
Zivkovic M, Pols - van Veen E, van der Vegte V, Sebastian SA, de Moor AS, Korporaal SJ, Schutgens RE, Urbanus RT. Functional characterization of a nanobody-based glycoprotein VI-specific platelet agonist. Res Pract Thromb Haemost 2024; 8:102582. [PMID: 39512585 PMCID: PMC11541698 DOI: 10.1016/j.rpth.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024] Open
Abstract
Background Glycoprotein (GP)VI is a platelet-specific collagen receptor required for platelet activation during hemostasis. Platelet reactivity toward collagen is routinely assessed during diagnostic workup of platelet disorders. GPVI can be activated by inducing receptor clustering with suspensions of fibrillar collagen or synthetic cross-linked collagen-related peptide (CRP-XL). However, these suspensions are poorly standardized or difficult to produce. Nanobodies are small recombinant camelid-derived heavy-chain antibody variable regions. They are highly stable, specific, and ideal candidates for developing a stable GPVI agonist for diagnostic assays. Objectives Develop a stable nanobody-based GPVI agonist. Methods Nanobody D2 (NbD2) was produced as dimers and purified. Tetramers were generated via C-terminal fusion of dimers with click chemistry. Nanobody constructs were functionally characterized with light transmission aggregometry (LTA) in platelet-rich plasma and whole blood flow cytometry. Diagnostic performance was assessed in patients with inherited platelet function disorders with LTA and flow cytometry. Results NbD2 was specific for human platelet GPVI. Dimers did not result in platelet activation in LTA or flow cytometry settings and fully inhibited CRP-XL-induced P-selectin expression and fibrinogen binding in whole blood and attenuated collagen-induced platelet aggregation in platelet-rich plasma. However, NbD2 tetramers caused full platelet aggregation, as well as P-selectin expression and fibrinogen binding. NbD2 tetramers were able to discriminate between inherited platelet function disorder patients and healthy controls based on fibrinogen binding, similar to CRP-XL. Conclusion Nanobody tetramers to GPVI induce platelet activation and can be used to assess the GPVI pathway in diagnostic assays.
Collapse
Affiliation(s)
- Minka Zivkovic
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elisabeth Pols - van Veen
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vossa van der Vegte
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Silvie A.E. Sebastian
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annick S. de Moor
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzanne J.A. Korporaal
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roger E.G. Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rolf T. Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Cattaneo M. Inherited Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Arthur JF, Gardiner EE, Andrews RK, Al-Tamimi M. Focusing on plasma glycoprotein VI. Thromb Haemost 2017; 107:648-55. [DOI: 10.1160/th11-10-0745] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/10/2011] [Indexed: 12/18/2022]
Abstract
SummaryNew methods for analysing both platelet and plasma forms of the platelet-specific collagen receptor, glycoprotein VI (GPVI) in experimental models or human clinical samples, and the development of the first therapeutic compounds based on dimeric soluble GPVI-Fc or anti-GPVI antibody-based constructs, coincide with increased understanding of the potential pathophysiological role of GPVI ligand binding and shedding. Platelet GPVI not only mediates platelet activation at the site of vascular injury where collagen is exposed, but is also implicated in the pathogenesis of other diseases, such as atherosclerosis and coagulopathy, rheumatoid arthritis and tumour metastasis. Here, we describe some of the critical mechanisms for generating soluble GPVI from platelets, and future avenues for exploiting this unique platelet-specific receptor for diagnosis and/or disease prevention.
Collapse
|
4
|
Klümpers V, Müller I, Hellstern P, Schulze TJ, Mannhalter C, Bugert P, Eichler H. Characterization and diagnostic work-up of a patient with functionally impaired platelet GP6. Hamostaseologie 2017; 37:17-01-0004. [PMID: 28816339 DOI: 10.5482/hamo-17-01-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/16/2017] [Indexed: 11/05/2022] Open
|
5
|
Abstract
Proteolytic shedding of the extracellular ectodomain of platelet receptors provides a key mechanism for irreversible loss of ligand-binding capacity, and for regulating platelet function in health and disease. Platelets derived from megakaryocytes are small anucleate cells in peripheral blood, with the ability to rapidly adhere, become activated, and secrete an array of procoagulant and proinflammatory factors at sites of vascular injury or disease, and to form a platelet aggregate (thrombus) which is not only critical in normal hemostasis and wound healing, but in atherothrombotic diseases including myocardial infarction and ischemic stroke. Basic mechanisms of receptor shedding on platelets have important distinctions from how receptors on other cell types might be shed, in that shedding is rapidly initiated (within seconds to minutes) and occurs under altered shear conditions encountered in flowing blood or experimentally ex vivo. This review will consider the key components of platelet receptor shedding, that is, the receptor with relevant cleavage site, the (metallo)proteinase or sheddase and how its activity is regulated, and the range of known regulatory factors that control platelet receptor shedding including receptor-associated molecules such as calmodulin, factors controlling sheddase surface expression and activity, and other elements such as shear stress, plasma membrane properties, cellular activation status or age. Understanding these basic mechanisms of platelet receptor shedding is significant in terms of utilizing receptor surface expression or soluble proteolytic fragments as platelet-specific biomarkers and/or ultimately therapeutic targeting of these mechanisms to control platelet reactivity and function.
Collapse
Affiliation(s)
- Robert K Andrews
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia 3004.,b Department of Cancer Biology and Therapeutics, the John Curtin School of Medical Research , Australian National University , Canberra , Australia 2600
| | - Elizabeth E Gardiner
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia 3004.,b Department of Cancer Biology and Therapeutics, the John Curtin School of Medical Research , Australian National University , Canberra , Australia 2600
| |
Collapse
|
6
|
Lipsky AH, Farooqui MZH, Tian X, Martyr S, Cullinane AM, Nghiem K, Sun C, Valdez J, Niemann CU, Herman SEM, Saba N, Soto S, Marti G, Uzel G, Holland SM, Lozier JN, Wiestner A. Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica 2015; 100:1571-8. [PMID: 26430171 DOI: 10.3324/haematol.2015.126672] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023] Open
Abstract
Ibrutinib is associated with bleeding-related adverse events of grade ≤ 2 in severity, and infrequently with grade ≥ 3 events. To investigate the mechanisms of bleeding and identify patients at risk, we prospectively assessed platelet function and coagulation factors in our investigator-initiated trial of single-agent ibrutinib for chronic lymphocytic leukemia. At a median follow-up of 24 months we recorded grade ≤ 2 bleeding-related adverse events in 55% of 85 patients. No grade ≥ 3 events occurred. Median time to event was 49 days. The cumulative incidence of an event plateaued by 6 months, suggesting that the risk of bleeding decreases with continued therapy. At baseline, von Willebrand factor and factor VIII levels were often high and normalized on treatment. Platelet function measured via the platelet function analyzer (PFA-100™) was impaired in 22 patients at baseline and in an additional 19 patients on ibrutinib (often transiently). Collagen and adenosine diphosphate induced platelet aggregation was tested using whole blood aggregometry. Compared to normal controls, response to both agonists was decreased in all patients with chronic lymphocytic leukemia, whether on ibrutinib or not. Compared to untreated chronic lymphocytic leukemia patients, response to collagen showed a mild further decrement on ibrutinib, while response to adenosine diphosphate improved. All parameters associated with a significantly increased risk of bleeding-related events were present at baseline, including prolonged epinephrine closure time (HR 2.74, P=0.012), lower levels of von Willebrand factor activity (HR 2.73, P=0.009) and factor VIII (HR 3.73, P=0.0004). In conclusion, both disease and treatment-related factors influence the risk of bleeding. Patients at greater risk for bleeding of grade ≤ 2 can be identified by clinical laboratory tests and counseled to avoid aspirin, non-steroidal anti-inflammatory drugs and fish oils. ClinicalTrials.gov identifier NCT01500733.
Collapse
Affiliation(s)
- Andrew H Lipsky
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA Department of Internal Medicine, Montefiore Medical Center, Bronx, New York, NY, USA
| | - Mohammed Z H Farooqui
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Martyr
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann M Cullinane
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Khanh Nghiem
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Clare Sun
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Janet Valdez
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carsten U Niemann
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah E M Herman
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nakhle Saba
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Soto
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerald Marti
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steve M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jay N Lozier
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Cattaneo M. Congenital Disorders of Platelet Function. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Arthur JF, Qiao J, Shen Y, Davis AK, Dunne E, Berndt MC, Gardiner EE, Andrews RK. ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways. J Thromb Haemost 2012; 10:1133-41. [PMID: 22489915 DOI: 10.1111/j.1538-7836.2012.04734.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ligation of the platelet-specific collagen receptor, GPVI/FcRγ, causes rapid, transient disulfide-dependent homodimerization, and the production of intracellular reactive oxygen species (ROS) generated by the NADPH oxidase, linked to GPVI via TRAF4. OBJECTIVES The aim of this study was to evaluate the role of early signaling events in ROS generation following engagement of either GPVI/FcRγ or a second immunoreceptor tyrosine-based activation motif (ITAM)-containing receptor on platelets, FcγRIIa. METHODS AND RESULTS Using an H(2) DCF-DA-based flow cytometric assay to measure intracellular ROS, we show that treatment of platelets with either the GPVI agonists, collagen-related peptide (CRP) or convulxin (Cvx), or the FcγRIIa agonist 14A2, increased intraplatelet ROS; other platelet agonists such as ADP and TRAP did not. Basal ROS in platelet-rich plasma from 14 healthy donors displayed little inter-individual variability. CRP, Cvx or 14A2 induced an initial burst of ROS within 2 min followed by additional ROS reaching a plateau after 15-20 min. The Syk inhibitor BAY61-3606, which blocks ITAM-dependent signaling, had no effect on the initial ROS burst, but completely inhibited the second phase. CONCLUSIONS Together, these results show for the first time that ROS generation downstream of GPVI or FcγRIIa consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation.
Collapse
Affiliation(s)
- J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zahid M, Loyau S, Bouabdelli M, Aubrey N, Jandrot-Perrus M, Billiald P. Design and reshaping of an scFv directed against human platelet glycoprotein VI with diagnostic potential. Anal Biochem 2011; 417:274-82. [PMID: 21771576 DOI: 10.1016/j.ab.2011.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Blood platelets play a key role in physiological hemostasis and in thrombosis. As a consequence, platelet functional analysis is widely used in the diagnosis of hemorrhagic disorders as well as in the evaluation of thrombosis risks and of the efficacy of antithrombotics. Glycoprotein (GP) VI is a platelet-specific collagen-signaling receptor. Clinical studies suggest that increased GPVI expression is associated with a risk of arterial thrombosis. Conversely, GPVI deficiencies have been identified in patients with defective platelet responses to collagen. Currently, there is no standard test available for measuring GPVI expression, essentially because antibodies usually cross-link GPVI upon binding, leading to platelet activation and consecutive changes in GPVI expression. Here, we designed a recombinant monovalent antibody fragment (scFv) derived from an anti-GPVI monoclonal IgG, 3J24, with the characteristics required to analyze GPVI expression. Guided by in silico modeling and V-KAPPA chain analysis, a Protein L (PpL) recognition pattern was engineered in the scFv, making possible its purification and detection using PpL conjugates. The PpL affinity-purified scFv is functional. It retains GPVI-binding specificity and allows detection of platelet surface-expressed GPVI without inducing platelet activation. In conclusion, the reshaped scFv may be very useful in the development of diagnostic approaches.
Collapse
Affiliation(s)
- Muhammad Zahid
- Université Paris-Sud 11, IFR 141, Faculté de Pharmacie, 92260 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
10
|
Qiao JL, Shen Y, Gardiner EE, Andrews RK. Proteolysis of platelet receptors in humans and other species. Biol Chem 2011; 391:893-900. [PMID: 20482312 DOI: 10.1515/bc.2010.081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 5 years, metalloproteinase-mediated ectodomain shedding of platelet receptors has emerged as a new mechanism for modulating platelet function. By regulating surface expression of the platelet-specific receptors, glycoprotein (GP)VI that binds collagen, and GPIbalpha (the major ligand-binding subunit of the GPIb-IX-V complex) that binds von Willebrand factor (VWF) and other procoagulant and proinflammatory ligands, shedding not only irreversibly downregulates GPVI/GPIbalpha function, but generates proteolytic fragments that might be unique biomarkers or modulators in plasma. This is potentially significant because GPVI and GPIbalpha are involved in initiating thrombotic diseases such as heart attack and stroke, as well as autoimmune diseases where anti-platelet antibodies result in thrombocytopenia. Altered expression levels of GPIbalpha/GPVI are associated with both thrombotic propensity and platelet aging, suggesting an additional role in platelet clearance. Although emerging data are elucidating molecular mechanisms underlying GPIbalpha/GPVI shedding, evidence for the functional consequences of shedding in vivo, either clinically or in animal models, is far more limited. Here we consider recent published evidence for GPVI or GPIbalpha shedding in humans, nonhuman primates and mice, and whether conservation of sheddase cleavage sites across species points to a functional role for metalloproteolytic shedding in vivo.
Collapse
Affiliation(s)
- Jian L Qiao
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Wei AH, Schoenwaelder SM, Andrews RK, Jackson SP. New insights into the haemostatic function of platelets. Br J Haematol 2009; 147:415-30. [DOI: 10.1111/j.1365-2141.2009.07819.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Nurden P, Tandon N, Takizawa H, Couzi L, Morel D, Fiore M, Pillois X, Loyau S, Jandrot-Perrus M, Nurden AT. An acquired inhibitor to the GPVI platelet collagen receptor in a patient with lupus nephritis. J Thromb Haemost 2009; 7:1541-9. [PMID: 19583823 DOI: 10.1111/j.1538-7836.2009.03537.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND GPVI is a major platelet collagen signaling receptor. In rare cases of immune thrombocytopenic purpura (ITP), autoantibodies to GPVI result in receptor shedding. OBJECTIVES To investigate a possible pathogenic role of plasma anti-GPVI antibody located in a woman with lupus nephritis. METHODS Measured were (i) platelet aggregation to collagen and convulxin, (ii) platelet GPVI expression (flow cytometry and western blotting), (iii) plasma soluble GPVI (sGPVI, dual antibody ELISA), and (iv) plasma anti-GPVI antibody (ELISA using recombinant sGPVI). RESULTS In 2006 and early 2007, the patient had a normal platelet count but a virtual absence of platelet aggregation to collagen and convulxin. Her platelets responded normally to other agonists including cross-linking ITAM-dependent FcgammaRIIA by monoclonal antibody, IV.3. Flow cytometry and western blotting showed a platelet deficiency of GPVI. Plasma sGPVI levels were undetectable whereas ELISA confirmed the presence of anti-GPVI antibody. Sequencing revealed a normal GPVI cDNA structure. The patient's plasma and the isolated IgG3 fraction activated and induced GPVI shedding from normal platelets. A deteriorating clinical condition led to increasingly strict immunosuppressive therapy. This was globally associated with a fall in plasma anti-GPVI titres, the restoration of platelet GPVI and the convulxin response, and the loss of her nephrotic syndrome. CONCLUSIONS Our results show that this patient acquired a potent anti-GPVI IgG3 antibody with loss of GPVI and collagen-related platelet function. Further studies are required to determine whether anti-GPVI antibodies occur in other lupus patients with nephritis.
Collapse
Affiliation(s)
- P Nurden
- CRPP/PTIB, Hôpital Xavier Arnozan, Pessac, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hermans C, Wittevrongel C, Thys C, Smethurst PA, Van Geet C, Freson K. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J Thromb Haemost 2009; 7:1356-63. [PMID: 19552682 DOI: 10.1111/j.1538-7836.2009.03520.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The physiological relevance of the collagen glycoprotein VI (GPVI) receptor was known prior to its recognition as a platelet membrane receptor as several patients lacking GPVI as a consequence of autoantibody inhibition presented with a mild bleeding diathesis. Remarkably, patients with a proven GPVI gene mutation have not yet been identified. RESULTS In the present study, we describe a patient with a lifelong history of bleeding problems, structurally normal platelets but a functional platelet defect. Platelet aggregations are normal except for an absent response to Horm collagen, convulxin and the collagen-related peptide (CRP). ATP dense granule secretion is normal with ADP but absent with Horm collagen. Thrombus formation on a collagen surface in flowing blood is reduced but more single platelets are attached. Remarkably, the platelet function analyzer-100 shows a shortened collagen/ADP closure time. Flow cytometry demonstrates an absent expression of GPVI whereas immunoblot analysis shows strongly reduced levels of GPVI. The patient is compound heterozygous for an out-of-frame 16-bp deletion and a missense mutation S175N in a highly conserved residue of the 2nd Ig-like GPVI domain. The parents without clinical bleeding problems are heterozygous carriers. The mother carries the S175N mutation and presents with a mild functional platelet defect. In vitro studies show a reduced membrane expression and convulxin binding with the mutated S175N compared with the wild-type (WT) GPVI receptor. CONCLUSIONS This study presents the first patient with a proven genetic GPVI defect.
Collapse
Affiliation(s)
- C Hermans
- Department of Haematology, Haemostasis and Thrombosis Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Al-Tamimi M, Mu FT, Arthur JF, Shen Y, Moroi M, Berndt MC, Andrews RK, Gardiner EE. Anti-glycoprotein VI monoclonal antibodies directly aggregate platelets independently of FcγRIIa and induce GPVI ectodomain shedding. Platelets 2009; 20:75-82. [DOI: 10.1080/09537100802645029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Gardiner EE, Al-Tamimi M, Mu FT, Karunakaran D, Thom JY, Moroi M, Andrews RK, Berndt MC, Baker RI. Compromised ITAM-based platelet receptor function in a patient with immune thrombocytopenic purpura. J Thromb Haemost 2008; 6:1175-82. [PMID: 18485087 DOI: 10.1111/j.1538-7836.2008.03016.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Receptors on platelets that contain immunoreceptor tyrosine-based activation motifs (ITAMs) include collagen receptor glycoprotein (GP) VI, and FcgammaRIIa, a low affinity receptor for immunoglobulin (Ig) G. OBJECTIVES We examined the function of GPVI and FcgammaRIIa in a patient diagnosed with immune thrombocytopenic purpura (ITP) who had unexplained pathological bruising despite normalization of the platelet count with treatment. METHODS AND RESULTS Patient platelets aggregated normally in response to ADP, arachadonic acid and epinephrine, but not to GPVI agonists, collagen or collagen-related peptide, or to FcgammaRII-activating monoclonal antibody (mAb) 8.26, suggesting ITAM receptor dysfunction. Plasma contained an anti-GPVI antibody by MAIPA and aggregated normal platelets. Aggregating activity was partially (approximately 60%) blocked by FcgammaRIIa-blocking antibody, IV.3, and completely blocked by soluble GPVI ectodomain. Full-length GPVI on the patient platelet surface was reduced to approximately 10% of normal levels, and a approximately 10-kDa GPVI cytoplasmic tail remnant and cleaved FcgammaRIIa were detectable by western blot, indicating platelet receptor proteolysis. Plasma from the patient contained approximately 150 ng mL(-1) soluble GPVI by ELISA (normal plasma, approximately 15 ng mL(-1)) and IgG purified from patient plasma caused FcgammaRIIa-mediated, EDTA-sensitive cleavage of both GPVI and FcgammaRIIa on normal platelets. CONCLUSIONS In ITP patients, platelet autoantibodies can curtail platelet receptor function. Platelet ITAM receptor dysfunction may contribute to the increased bleeding phenotype observed in some patients with ITP.
Collapse
Affiliation(s)
- E E Gardiner
- Department of Immunology, Monash University, Alfred Medical Research & Education Precinct, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Salles II, Feys HB, Iserbyt BF, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Inherited traits affecting platelet function. Blood Rev 2008; 22:155-72. [DOI: 10.1016/j.blre.2007.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Abstract
Glycogen synthase kinase (GSK)3beta is a ser-thr kinase that is phosphorylated by the kinase Akt. Although Akt has been shown to regulate platelet function and arterial thrombosis, its effectors in platelets remain unknown. We show here that agonist-dependent phosphorylation of GSK3beta in platelets is Akt dependent. To determine whether GSK3beta regulates platelet function, platelets from mice lacking a single allele of GSK3beta were compared with those of wild-type (WT) controls. GSK3beta+/- platelets demonstrated enhanced agonist-dependent aggregation, dense granule secretion, and fibrinogen binding, compared with WT platelets. Treatment of human platelets with GSK3 inhibitors renders them more sensitive to agonist-induced aggregation, suggesting that GSK3 suppresses platelet function in vitro. Finally, the effect of GSK3beta on platelet function in vivo was evaluated using 2 thrombosis models in mice. In the first, 80% of GSK3beta+/- mice (n=10) formed stable occlusive thrombi after ferric chloride carotid artery injury, whereas the majority of wild-type mice (67%) formed no thrombi (n=15). In a disseminated thrombosis model, deletion of a single allele of GSK3beta in mice conferred enhanced sensitivity to thrombotic insult. Taken together, these results suggest that GSK3beta acts as a negative regulator of platelet function in vitro and in vivo.
Collapse
|
18
|
Abstract
Human patients with defects associated with the platelet collagen receptor, glycoprotein (GP)VI, are rare and usually described as having a mild bleeding disorder. However, here we review clinical profiles of patients with familial or acquired GPVI defects, revealing the bleeding defect is often severe and associated with immune dysfunction. GPVI is a member of the immunoreceptor family, and co-expressed on platelets with Fc receptor gamma-chain (FcRgamma). Ligand binding to GPVI leads to activation of platelet integrins, in particular alpha(IIb)beta(3) that mediates platelet aggregation; and activation of endogenous platelet metalloproteinases resulting in ectodomain shedding and release of a soluble GPVI fragment. Increasing evidence supports the functional importance of GPVI/FcRgamma in thrombus formation at arterial shear rates, and expression levels of platelet GPVI may be a marker of thrombotic risk. Over the past 20 years, patients have been reported with GPVI-related defects involving: (i) an acquired deficiency, resulting from (a) anti-GPVI autoantibodies or (b) other causes; or (ii) a congenital deficiency, where (c) GPVI is not expressed or (d) is expressed in a dysfunctional form with defective signalling to alpha(IIb)beta(3). Clinical consequences of GPVI-related defects may be uniquely informative about the role of platelet GPVI in health and disease.
Collapse
Affiliation(s)
- Jane F Arthur
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | | | | |
Collapse
|