1
|
Poyer F, Jimenez Heredia R, Novak W, Zeitlhofer P, Nebral K, Dworzak MN, Haas OA, Boztug K, Kager L. Case Report: Refractory Cytopenia With a Switch From a Transient Monosomy 7 to a Disease-Ameliorating del(20q) in a NHEJ1-Deficient Long-term Survivor. Front Immunol 2022; 13:869047. [PMID: 35812385 PMCID: PMC9263211 DOI: 10.3389/fimmu.2022.869047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
We report the case of a male Pakistani patient with a pathogenic homozygous loss of function variant in the non-homologous end-joining factor 1 (NHEJ1) gene. The growth retarded and microcephalic boy with clinodactyly of both hands and hyperpigmentation of the skin suffered from recurrent respiratory infections. He was five and a half years old when he came to our attention with refractory cytopenia and monosomy 7. Hematopoietic stem cell transplantation was considered but not feasible because there was no suitable donor available. Monosomy 7 was not detected anymore in subsequent bone marrow biopsies that were repeated in yearly intervals. Instead, seven and a half years later, a novel clone with a del(20q) appeared and steadily increased thereafter. In parallel, the patient’s blood count, which had remained stable for over 20 years without necessitating any specific therapeutic interventions, improved gradually and the erythropoiesis-associated dysplasia resolved.
Collapse
Affiliation(s)
- Fiona Poyer
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Raúl Jimenez Heredia
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Center for Molecular Medicine Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolfgang Novak
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Zeitlhofer
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Labdia, Labordiagnostik, Vienna, Austria
| | - Karin Nebral
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Labdia, Labordiagnostik, Vienna, Austria
| | - Michael N. Dworzak
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Oskar A. Haas
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Labdia, Labordiagnostik, Vienna, Austria
- *Correspondence: Oskar A. Haas, ; Kaan Boztug, ; Leo Kager,
| | - Kaan Boztug
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Center for Molecular Medicine Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- *Correspondence: Oskar A. Haas, ; Kaan Boztug, ; Leo Kager,
| | - Leo Kager
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- *Correspondence: Oskar A. Haas, ; Kaan Boztug, ; Leo Kager,
| |
Collapse
|
2
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Abstract
Haploinsufficiency of GATA2 caused by heterozygous loss-of-function mutations is associated with cytopenias and predisposition to myelodysplasia and AML with other variable extrahematopoietic manifestions, including lymphedema, pulmonary alveolar proteinosis, and hearing loss. The authors report on 2 siblings with the disorder whose father was asymptomatic because of an acquired missense mutation in the affected allele that was restricted to hematopoietic cells; surprisingly, he also had no extrahematopoietic complications.
Collapse
|
4
|
Tsai FD, Lindsley RC. Clonal hematopoiesis in the inherited bone marrow failure syndromes. Blood 2020; 136:1615-1622. [PMID: 32736377 PMCID: PMC7530647 DOI: 10.1182/blood.2019000990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are characterized by ineffective hematopoiesis and increased risk for developing myeloid malignancy. The pathophysiologies of different IBMFSs are variable and can relate to defects in diverse biological processes, including DNA damage repair (Fanconi anemia), telomere maintenance (dyskeratosis congenita), and ribosome biogenesis (Diamond-Blackfan anemia, Shwachman-Diamond syndrome). Somatic mutations leading to clonal hematopoiesis have been described in IBMFSs, but the distinct mechanisms by which mutations drive clonal advantage in each disease and their associations with leukemia risk are not well understood. Clinical observations and laboratory models of IBMFSs suggest that the germline deficiencies establish a qualitatively impaired functional state at baseline. In this context, somatic alterations can promote clonal hematopoiesis by improving the competitive fitness of specific hematopoietic stem cell clones. Some somatic alterations relieve baseline fitness constraints by normalizing the underlying germline deficit through direct reversion or indirect compensation, whereas others do so by subverting senescence or tumor-suppressor pathways. Clones with normalizing somatic mutations may have limited transformation potential that is due to retention of functionally intact fitness-sensing and tumor-suppressor pathways, whereas those with mutations that impair cellular elimination may have increased risk for malignant transformation that is due to subversion of tumor-suppressor pathways. Because clonal hematopoiesis is not deterministic of malignant transformation, rational surveillance strategies will depend on the ability to prospectively identify specific clones with increased leukemic potential. We describe a framework by which an understanding of the processes that promote clonal hematopoiesis in IBMFSs may inform clinical surveillance strategies.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - R Coleman Lindsley
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
5
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
6
|
Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am 2018; 32:687-700. [DOI: 10.1016/j.hoc.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Delaporta P, Sofocleous C, Economou M, Makis A, Kostaridou S, Kattamis A. The Greek Registry of Shwachman Diamond-Syndrome: Molecular and clinical data. Pediatr Blood Cancer 2017; 64. [PMID: 28509441 DOI: 10.1002/pbc.26630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/14/2023]
Abstract
This study presents the clinical phenotype and molecular analysis findings from 11 patients recorded in the Greek Shwachman-Diamond syndrome (SDS) Registry. The most severely affected patient in our registry was diagnosed at birth and is the first patient reported to require bone marrow transplantation so early in life. Severe psoriasis, a feature not previously reported in SDS, was observed in one patient. Mutations in the Shwachman-Bodian-Diamond syndrome gene (SBDS) were found in all patients. Cytogenetic analyses revealed clonal abnormalities, one novel, in two patients.
Collapse
Affiliation(s)
- Polyxeni Delaporta
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christalena Sofocleous
- Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece.,Research Institute for the Study of Genetic and Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Marina Economou
- First Department of Pediatrics, University of Thessaloniki, Greece
| | - Alexandros Makis
- Department of Pediatrics, University Hospital of Ioannina, Greece
| | - Stavroula Kostaridou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Mosaic chromosome 20q deletions are more frequent in the aging population. Blood Adv 2017; 1:380-385. [PMID: 29296952 DOI: 10.1182/bloodadvances.2016003129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Deletions on the long-arm of chromosome 20, del(20q), are common karyotypic abnormalities in myeloid disorders. Bioinformatic analyses of the B-allele frequency and log R ratio values from genome-wide association data have identified individuals who are mosaic for large structural abnormalities (>2 Mb). We investigated the most common autosomal event, namely mosaic del(20q), in 46 254 nonhematologic cancer cases and 36 229 cancer-free controls. We detected 91 mosaic del(20q) in leukocytes (80%) and buccal material (20%). The mosaic del(20q) mapped to a well-characterized minimally deleted region (MDR) reported in myeloid disorders. Common breakpoint clusters map to the coordinates of 29.9 to 31.5 Mb on the centromeric side of mosaic del(20q), and 42.0 to 45.4 Mb and 48.1 to 50.7 Mb on the telomeric end (GRCh36). Multivariate analyses suggest del(20q) increases with age, and is more common in males but less common in individuals of African ancestry. No conclusive associations were noted between the presence of mosaic del(20q) and subsequent solid tumor risk. Our observations demonstrate that the MDR of del(20q) is the most common large scale mosaic autosomal abnormality in whole blood and has a frequency of ∼1 in every 1000 adults over the age of 50, which exceeds the expected incidence of myeloid leukemia in the population. Our results indicate that subclonal mosaic events of a region implicated in myeloid disorders on 20q are more frequent than the predicted population-estimated incidence of myeloid diseases, and thus suggest that these events can be tolerated until additional events accumulate that drive myeloid disorders.
Collapse
|
9
|
Nacci L, Valli R, Maria Pinto R, Zecca M, Cipolli M, Morini J, Cesaro S, Boveri E, Rosti V, Corti P, Ambroni M, Pasquali F, Danesino C, Maserati E, Minelli A. Parental origin of the deletion del(20q) in Shwachman-Diamond patients and loss of the paternally derived allele of the imprintedL3MBTL1gene. Genes Chromosomes Cancer 2016; 56:51-58. [DOI: 10.1002/gcc.22401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lucia Nacci
- Department of Molecular Medicine; University of Pavia; Pavia Italy
| | - Roberto Valli
- Department of Clinical and Experimental Medicine; University of Insubria; Varese Italy
| | - Rita Maria Pinto
- Ospedale Bambino Gesù IRCCS; Oncoematologia e Medicina Trasfusionale; Roma Italy
| | - Marco Zecca
- Oncoematologia Pediatrica, Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Marco Cipolli
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria; Verona Italy
| | | | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaliera Universitaria Integrata; Verona Italy
| | - Emanuela Boveri
- Fondazione IRCCS Policlinico; Anatomic Pathology Section; San Matteo, Pavia Italy
| | - Vittorio Rosti
- IRCCS Policlinico San Matteo; Center for the Study of Myelofibrosis, Biotechnology Research Area; Pavia Italy
| | - Paola Corti
- Pediatrics Unit, Fondazione Medico e Brianza per il Bambino e la sua Mamma; Monza Italy
| | - Maura Ambroni
- Cystic Fibrosis Regional Center, Ospedale M. Bufalini; Cesena Italy
| | - Francesco Pasquali
- Department of Clinical and Experimental Medicine; University of Insubria; Varese Italy
| | - Cesare Danesino
- Department of Molecular Medicine; University of Pavia; Pavia Italy
| | - Emanuela Maserati
- Department of Clinical and Experimental Medicine; University of Insubria; Varese Italy
| | | |
Collapse
|
10
|
Cytogenetic monitoring in Shwachman-Diamond syndrome: a note on clonal progression and a practical warning. J Pediatr Hematol Oncol 2015; 37:307-10. [PMID: 25887640 DOI: 10.1097/mph.0000000000000268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We analyzed the results of periodic chromosome analyses performed on bone marrow of 22 patients with Shwachman-Diamond syndrome (SDS), 8 directly observed and 14 from the literature, selected because of changes in the cytogenetic picture during the course of the disease. This study points out some features of the cytogenetic evolution in SDS relevant for prognostic evaluation but never noted in the literature. In particular, the lack of any clonal progression and the frequent appearance of independent clones with chromosomal changes different from the one initially discovered, with possible severe prognostic implications, are reported.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure and cancer predisposition syndrome that affects multiple organ systems. Mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene are found in the majority of patients, but the molecular function of the SBDS protein product remains unclear. In this article, we review recent progress in the clinical and molecular characterization of SDS. RECENT FINDINGS Emerging data support a multifunctional role for the SBDS protein. Current studies indicate that SBDS functions in 60S large ribosomal subunit maturation and in mitotic spindle stabilization. Recent data suggest that it may also affect actin polymerization, vacuolar pH regulation, and DNA metabolism. SBDS loss results in both hematopoietic cell-intrinsic defects as well as marrow stromal abnormalities. SUMMARY SDS is a multisystemic disease arising from defects in a protein that participates in several essential cellular processes. Elucidating the molecular function of SBDS will provide important insights into how defects in ribosome biogenesis and mitotic spindle stabilization result in hematopoietic failure, cancer predisposition, and abnormalities.
Collapse
|
12
|
White JS, Zordan A, Batzios C, Campbell LJ. Deletion(20q) as the sole abnormality in plasma cell myeloma is not associated with plasma cells as identified by cIg FISH. Cancer Genet 2012. [PMID: 23200818 DOI: 10.1016/j.cancergen.2012.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deletion of 20q is a common finding in myeloid disorders but it is also observed in plasma cell myeloma (PCM). As a del(20q) in a patient receiving treatment for myeloma may indicate therapy-related myelodysplastic syndrome (t-MDS), it is important to differentiate chromosome abnormalities associated with myeloma from those reflecting t-MDS. We performed fluorescence in situ hybridization (FISH) using a 20q12 probe (D20S108) in conjunction with cytoplasmic immunoglobulin (cIg) staining in 20 PCM cases with a del(20q) in order to confirm the cell type involved. Of the nine cases studied with a clone showing a del(20q) as the sole abnormality, 8 of 9 demonstrated loss of the D20S108 signals in non-plasma cells only and 5 of 9 had either a confirmed myeloid malignancy in addition to PCM or showed evidence of dysplastic changes in the marrow; however, of the 11 patients with a del(20q) within a complex PCM karyotype, 4 of 11 showed loss of the D20S108 signals in plasma cells only and 7 of 11 showed no significant loss in either plasma cells or non-plasma cells. Therefore, our results indicate that a del(20q) as the sole abnormality in PCM is present in non-plasma cells and, therefore, suggests the presence of an associated myeloid malignancy.
Collapse
Affiliation(s)
- Joanne S White
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital Melbourne, Fitzroy, Australia.
| | | | | | | |
Collapse
|
13
|
Myers KC, Davies SM, Shimamura A. Clinical and molecular pathophysiology of Shwachman-Diamond syndrome: an update. Hematol Oncol Clin North Am 2012; 27:117-28, ix. [PMID: 23351992 DOI: 10.1016/j.hoc.2012.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited neutropenia syndrome associated with a significant risk of aplastic anemia and malignant transformation. Multiple additional organ systems, including the pancreas, liver, and skeletal and central nervous systems, are affected. Mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene are present in most patients. There is growing evidence that SBDS functions in ribosomal biogenesis and other cellular processes. This article summarizes the clinical phenotype of SDS, diagnostic and treatment approaches, and novel advances in our understanding of the molecular pathophysiology of this disease.
Collapse
Affiliation(s)
- Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 7015, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
14
|
Jurisic V, Colovic N, Terzic T, Djordjevic V, Colovic M. Transformation of primary myelofibrosis with 20q− in Philadelphia-positive acute lymphoblastic leukemia: Case report and review of literature. Pathol Res Pract 2012; 208:420-3. [PMID: 22658480 DOI: 10.1016/j.prp.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/29/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
15
|
Pressato B, Valli R, Marletta C, Mare L, Montalbano G, Curto FL, Pasquali F, Maserati E. Deletion of chromosome 20 in bone marrow of patients with Shwachman-Diamond syndrome, loss of the EIF6 gene and benign prognosis. Br J Haematol 2012; 157:503-5. [DOI: 10.1111/j.1365-2141.2012.09033.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara Pressato
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Roberto Valli
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Cristina Marletta
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Lydia Mare
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Giuseppe Montalbano
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Francesco Lo Curto
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Francesco Pasquali
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| | - Emanuela Maserati
- Genetica umana e medica; Dipartimento di Medicina Clinica e Sperimentale; Università dell'Insubria; Varese; Italy
| |
Collapse
|
16
|
Deletion of Chromosome 20q: Friend or foe? Leuk Res 2011; 35:844-5. [DOI: 10.1016/j.leukres.2011.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 03/27/2011] [Accepted: 03/27/2011] [Indexed: 12/26/2022]
|
17
|
Maserati E, Pressato B, Valli R, Minelli A, Sainati L, Patitucci F, Marletta C, Mastronuzzi A, Poli F, Lo Curto F, Locatelli F, Danesino C, Pasquali F. The route to development of myelodysplastic syndrome/acute myeloid leukaemia in Shwachman-Diamond syndrome: the role of ageing, karyotype instability, and acquired chromosome anomalies. Br J Haematol 2009; 145:190-7. [PMID: 19222471 DOI: 10.1111/j.1365-2141.2009.07611.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An investigation of 22 new patients with Shwachman-Diamond syndrome (SDS) and the follow-up of 14 previously reported cases showed that (i) clonal chromosome changes of chromosomes 7 and 20 were present in the bone marrow (BM) of 16 out of 36 cases, but if non-clonal changes were taken into account, the frequency of anomalies affecting these chromosomes was 20/36: a specific SDS karyotype instability was thus confirmed; (ii) the recurrent isochromosome i(7)(q10) did not include short arm material, whereas it retained two arrays of D7Z1 alphoid sequences; (iii) the deletion del(20)(q11) involved the minimal region of deletion typical of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML); (iv) only one patient developed MDS, during the rapid expansion of a BM clone with a chromosome 7 carrying additional material on the short arms; (v) the acquisition of BM clonal chromosome anomalies was age-related. We conclude that karyotype instability is part of the natural history of SDS through a specific mutator effect, linked to lacking SBDS protein, with consequent clonal anomalies of chromosomes 7 and 20 in BM, which may eventually promote MDS/AML with the patients' ageing.
Collapse
Affiliation(s)
- Emanuela Maserati
- Biologia e Genetica, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università dell'lnsubria, Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|