1
|
Mahmood N, Younas H, Zafar M, Shahid S, Ajmal S, Qursehi ZUA, Nasir SB. Effects of plants extracts on the expression of major genes of JAK/STAT pathway. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:434-469. [PMID: 33749513 DOI: 10.1080/15257770.2021.1896000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study analyzed the effects of the plant extracts (Citrus limon, Solanum lycopersicum, Zingiber officinale, Vitis vinifera and Allium sativum) on the growth of mammalian cells (Vero and MDA-MB-231) and evaluated the most effective plant extract for the expression of specific genes of the JAK/STAT pathway in human breast cancer cells. An antiproliferative bioassay involving neutral red-dye uptake was used to determine the anticancerous potential of plant extracts. In Vero cells, the ginger methanolic extract was least effective; whereas the lemon methanolic extract was more effective with 64 dilutions with IC50 51.42%. In MDA-MB-231 cells, the tomato and ginger methanolic, and grape water extracts were least effective, whereas lemon water extract was most effective with 32 dilutions with IC50 48.67%, by upregulating JAK1, JAK2, TYK2, IRF7 and IRF3 gene expressions of the JAK/STAT pathway. C. limon inhibited the growth of both Vero and MDA-MB 231 cells. It suggested that C. limon has anti-cancer potential by inducing the JAK/STAT pathway.
Collapse
Affiliation(s)
- Nasir Mahmood
- Department of Biochemistry; Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan, and Department of Cell and Systems Biology, University of Toronto, Canada
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Maryam Zafar
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Saman Shahid
- Department of Sciences & Humanities, National University of Computer & Emerging Sciences (NUCES)- FAST, Lahore Campus, Pakistan
| | - Sidra Ajmal
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sarah Bushra Nasir
- Department of Life Sciences, Abdul Salam School of Sciences, Nusrat Jahan College, Chiniot, Pakistan
| |
Collapse
|
2
|
Kim B, Yi EH, Jee J, Jeong AJ, Sandoval C, Park I, Baeg GH, Ye S. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. J Cell Mol Med 2020; 24:7427-7438. [PMID: 32558259 PMCID: PMC7339168 DOI: 10.1111/jcmm.15362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Gain- or loss-of-function mutations in Janus kinase 3 (JAK3) contribute to the pathogenesis of various haematopoietic malignancies and immune disorders, suggesting that aberrant JAK3 signalling is an attractive therapeutic target to treat these disorders. In this study, we performed structure-based computational database screening using the 3D structure of the JAK3 kinase domain and the National Cancer Institute diversity set and identified tubulosine as a novel JAK3 inhibitor. Tubulosine directly blocked the catalytic activity of JAK3 by selective interacting with the JAK3 kinase domain. Consistently, tubulosine potently inhibited persistently activated and interleukin-2-dependent JAK3, and JAK3-mediated downstream targets. Importantly, it did not affect the activity of other JAK family members, particularly prolactin-induced JAK2/signal transducer and activator of transcription 5 and interferon alpha-induced JAK1-TYK2/STAT1. Tubulosine specifically decreased survival and proliferation of cancer cells, in which persistently active JAK3 is expressed, by inducing apoptotic and necrotic/autophagic cell death without affecting other oncogenic signalling. Collectively, tubulosine is a potential small-molecule compound that selectively inhibits JAK3 activity, suggesting that it may serve as a promising therapeutic candidate for treating disorders caused by aberrant activation of JAK3 signalling.
Collapse
Affiliation(s)
- Byung‐Hak Kim
- Department of PediatricsNew York Medical CollegeValhallaNYUSA
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Eun Hee Yi
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jun‐Goo Jee
- Research Institute of Pharmaceutical ResearchesCollege of PharmacyKyungpook National UniversityDaeguRepublic of Korea
| | - Ae Jin Jeong
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
| | | | - In‐Chul Park
- Division of Basic Radiation BioscienceKorea Institute of Radiological and Medical SciencesSeoulKorea
| | - Gyeong Hun Baeg
- Department of PediatricsNew York Medical CollegeValhallaNYUSA
- School of Life and Health SciencesChinese University of Hong KongShenzhenChina
| | - Sang‐Kyu Ye
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Neuro‐Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
3
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
4
|
Sheikh AA, Hooda OK, Dang AK. JAK3 and PI3K mediate bovine Interferon-tau stimulated gene expression in the blood neutrophils. J Cell Physiol 2018; 233:4885-4894. [PMID: 29194593 DOI: 10.1002/jcp.26296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/29/2017] [Indexed: 12/28/2022]
Abstract
Interferon tau, a 23 kDa trophoblast derived protein diffuses out from the uterus into the circulation and leads to the expression of IFNτ stimulated genes viz. ISG15 and OAS1 in blood neutrophils. The IFNτ pathway is species as well as tissue specific. To unsnarl the IFNτ downstream signaling pathway, the blood neutrophils were incubated simultaneously with 10 ng/ml of recombinant bovine interferon tau and the inhibitors of JAK2 (AG490), JAK3 (CP690550), p38 (SB202190), PI3K/Akt (LY294002), and MAPK/Erk (U0126) at specific doses for 4-hr duration. The IFNτ pathway was determined through real-time gene expression of ISG15 and OAS1; immunocytochemistry of ISG15; and Western blotting of ISG15, OAS1, pJAK3 and PI3K. The ISG15 and OAS1 expression decreased significantly (p < 0.001) in the presence of pJAK3 and PI3K inhibitors as compared to a positive control where only interferon tau was used. Immunocytochemistry revealed an attenuated ISG15 response while stimulating blood neutrophils with pJAK3 inhibitor (CP690550) and PI3K inhibitor (LY294002). Similarly, Western blot analysis of neutrophil protein fraction showed weak signals of ISG15, OAS1, pJAK3 and PI3K in the presence of pJAK3 and PI3K inhibitors. The expression profile, immunocytochemistry and western blot analysis revealed a JAK3 and PI3K mediated interferon-tau stimulated gene expression in blood neutrophils.
Collapse
Affiliation(s)
- Aasif Ahmad Sheikh
- Lactation and Immunophysiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Om Kanwar Hooda
- Lactation and Immunophysiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immunophysiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
5
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
6
|
Kim HS, Kim BH, Jung JE, Lee CS, Lee HG, Lee JW, Lee KH, You HJ, Chung MH, Ye SK. Potential role of 8-oxoguanine DNA glycosylase 1 as a STAT1 coactivator in endotoxin-induced inflammatory response. Free Radic Biol Med 2016; 93:12-22. [PMID: 26496208 DOI: 10.1016/j.freeradbiomed.2015.10.415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
Abstract
Human 8-oxoguanine DNA glycosylase 1 (OGG1) is the major DNA repair enzyme that plays a key role in excision of oxidative damaged DNA bases such as 8-oxoguainine (8-oxoG). Recent studies suggest another function of OGG1, namely that it may be involved in the endotoxin- or oxidative stress-induced inflammatory response. In this study, we investigated the role of OGG1 in the inflammatory response. OGG1 expression is increased in the organs of endotoxin-induced or myelin oligodendrocyte glycoprotein (MOG)-immunized mice and immune cells, resulting in induction of the expression of pro-inflammatory mediators at the transcriptional levels. Biochemical studies showed that signal transducer and activator of transcription 1 (STAT1) plays a key role in endotoxin-induced OGG1 expression and inflammatory response. STAT1 regulates the transcriptional activity of OGG1 through recruiting and binding to the gamma-interferon activation site (GAS) motif of the OGG1 promoter region, and chromatin remodeling by acetylation and dimethylation of lysine-14 and -4 residues of histone H3. In addition, OGG1 acts as a STAT1 coactivator and has transcriptional activity in the presence of endotoxin. The data presented here identifies a novel mechanism, and may provide new therapeutic strategies for the treatment of endotoxin-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hong Sook Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Eun Jung
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Rehabilitation Medicine, CHA University, Gyeonggi, Republic of Korea
| | - Chang Seok Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; AmorePacific R&D Center, Gyeonggi, Republic of Korea
| | - Hyun Gyu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Republic of Korea; Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kun Ho Lee
- National Research Center for Dementia and Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Ho Jin You
- Department of Pharmacology, School of Medicine and the Research Center for Proteineous Materials, Chosun University, Gwangju, Republic of Korea
| | - Myung-Hee Chung
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, Republic of Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Abstract
Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low-dose methotrexate. In addition, we suggest that patients with JAK/STAT-associated haematological malignancies may benefit from low-dose methotrexate treatments. While the JAK1/2 inhibitor ruxolitinib is effective, a £43,200 annual cost precludes widespread adoption. With an annual methotrexate cost of around £32, our findings represent an important development with significant future potential.
Collapse
|
8
|
Warsi J, Elvira B, Bissinger R, Hosseinzadeh Z, Lang F. Regulation of Voltage-Gated K+ Channel Kv1.5 by the Janus Kinase JAK3. J Membr Biol 2015; 248:1061-70. [PMID: 26100849 DOI: 10.1007/s00232-015-9817-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/08/2015] [Indexed: 01/30/2023]
Abstract
The tyrosine kinase Janus kinase 3 (JAK3) participates in the regulation of cell proliferation and apoptosis. The kinase further influences ion channels and transport proteins. The present study explored whether JAK3 contributes to the regulation of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. To this end, cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active (A568V)JAK3, or inactive (K851A)JAK3. Voltage-gated K(+) channel activity was measured utilizing dual electrode voltage clamp, and Kv1.5 channel protein abundance in the cell membrane was quantified utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). As a result, Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type JAK3 and (A568V)JAK3, but not by (K851A)JAK3. Inhibition of Kv1.5 protein insertion into the cell membrane by brefeldin A (5 μM) resulted in a decline of the voltage-gated current, which was similar in the absence and presence of (A568V)JAK3, suggesting that (A568V)JAK3 did not accelerate Kv1.5 protein retrieval from the cell membrane. A 24 h treatment with ouabain (100 µM) significantly decreased the voltage-gated current in oocytes expressing Kv1.5 without or with (A568V)JAK3 and dissipated the difference between oocytes expressing Kv1.5 alone and oocytes expressing Kv1.5 with (A568V)JAK3. In conclusion, JAK3 contributes to the regulation of membrane Kv1.5 protein abundance and activity, an effect sensitive to ouabain and thus possibly involving Na(+)/K(+) ATPase activity.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Rosi Bissinger
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Zohreh Hosseinzadeh
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Umbach AT, Zhang B, Daniel C, Fajol A, Velic A, Hosseinzadeh Z, Bhavsar SK, Bock CT, Kandolf R, Pichler BJ, Amann KU, Föller M, Lang F. Janus kinase 3 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression, calcitriol formation, and phosphate metabolism. Kidney Int 2014; 87:728-37. [PMID: 25493954 DOI: 10.1038/ki.2014.371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 01/26/2023]
Abstract
Calcitriol, a powerful regulator of phosphate metabolism and immune response, is generated by 25-hydroxyvitamin D 1α-hydroxylase in the kidney and macrophages. Renal 1α-hydroxylase expression is suppressed by Klotho and FGF23, the expression of which is stimulated by calcitriol. Interferon γ (INFγ) regulates 1α-hydroxylase expression in macrophages through transcription factor interferon regulatory factor-1. INFγ-signaling includes Janus kinase 3 (JAK3) but a role of JAK3 in the regulation of 1α-hydroxylase expression and mineral metabolism has not been shown. Thus, the impact of JAK3 deficiency on calcitriol formation and phosphate metabolism was measured. Renal interferon regulatory factor-1 and 1α-hydroxylase transcript levels, serum calcitriol and FGF23 levels, intestinal phosphate absorption as well as absolute and fractional renal phosphate excretion were significantly higher in jak3 knockout than in wild-type mice. Coexpression of JAK3 increased the phosphate-induced current in renal sodium-phosphate cotransporter-expressing Xenopus oocytes. Thus, JAK3 is a powerful regulator of 1α-hydroxylase expression and phosphate transport. Its deficiency leads to marked derangement of phosphate metabolism.
Collapse
Affiliation(s)
- Anja T Umbach
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Bingbing Zhang
- 1] Department of Physiology, University of Tübingen, Tübingen, Germany [2] Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Abul Fajol
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ana Velic
- Proteome Center, University of Tübingen, Tübingen, Germany
| | | | - Shefalee K Bhavsar
- 1] Department of Physiology, University of Tübingen, Tübingen, Germany [2] Novartis Oncology, Novartis International AG, Hyderabad, India
| | - C-Thomas Bock
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Kerstin U Amann
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Föller
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Warsi J, Luo D, Elvira B, Jilani K, Shumilina E, Hosseinzadeh Z, Lang F. Upregulation of excitatory amino acid transporters by coexpression of Janus kinase 3. J Membr Biol 2014; 247:713-20. [PMID: 24928228 DOI: 10.1007/s00232-014-9695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3(A572V) is found in acute megakaryoplastic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3(K855A). Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1-4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in Xenopus oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3(A568V) or inactive JAK3(K851A), and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (jak3(-/-)) and from corresponding wild-type mice (jak3(+/+)). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (Ig), which was significantly increased following coexpression of JAK3. Ig in oocytes expressing EAAT3 was further increased by JAK3(A568V) but not by JAK3(K851A). Ig in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 µM). Kinetic analysis revealed that JAK3 increased maximal Ig and significantly reduced the glutamate concentration required for half maximal Ig (Km). Intestinal electrogenic glutamate transport was significantly lower in jak3(-/-) than in jak3(+/+) mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Downregulation of chloride channel ClC-2 by Janus kinase 3. J Membr Biol 2014; 247:387-93. [PMID: 24615260 DOI: 10.1007/s00232-014-9645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/22/2014] [Indexed: 12/16/2022]
Abstract
Janus kinase-3 (JAK3) fosters proliferation and counteracts apoptosis of lymphocytes and tumor cells. The gain of function mutation (A572V)JAK3 has been discovered in acute megakaryoplastic leukemia. JAK3 is inactivated by replacement of lysine by alanine in the catalytic subunit ((K855A)JAK3). Regulation of cell proliferation and apoptosis involves altered activity of Cl(-) channels. The present study, thus, explored whether JAK3 modifies the function of the small conductance Cl(-) channel ClC-2. To this end, ClC-2 was expressed in Xenopus oocytes with or without wild-type JAK3, (A568V)JAK3 or (K851A)JAK3, and the Cl(-) channel activity determined by dual-electrode voltage clamp. Channel protein abundance in the cell membrane was determined utilizing chemiluminescence. As a result, expression of ClC-2 was followed by a marked increase of cell membrane conductance. The conductance was significantly decreased following coexpression of JAK3 or (A568V)JAK3, but not by coexpression of (K851A)JAK3. Exposure of the oocytes expressing ClC-2 together with (A568V)JAK3 to the JAK3 inhibitor WHI-P154 (4-[(3'-bromo-4'-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline, 22 μM) increased the conductance. Coexpression of (A568V)JAK3 decreased the ClC-2 protein abundance in the cell membrane of ClC-2 expressing oocytes. The decline of conductance in ClC-2 and (A568V)JAK3 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 μM) was similar in oocytes expressing ClC-2 with (A568V)JAK3 and oocytes expressing ClC-2 alone, indicating that (A568V)JAK3 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. In conclusion, JAK3 downregulates ClC-2 activity and thus counteracts Cl(-) exit-an effect possibly influencing cell proliferation and apoptosis.
Collapse
|
12
|
Umbach AT, Luo D, Bhavsar SK, Hosseinzadeh Z, Lang F. Intestinal Na+ loss and volume depletion in JAK3-deficient mice. Kidney Blood Press Res 2013; 37:514-20. [PMID: 24281140 DOI: 10.1159/000355731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The Janus kinase 3 JAK3 participates in the signaling of immune cells. Lack of JAK3 triggers inflammatory bowel disease, which in turn has been shown to affect intestinal activity of the epithelial Na(+) channel ENaC and thus colonic sodium absorption. At least in theory, inflammatory bowel disease in JAK3-deficient mice could lead to intestinal salt loss compromizing extracellular volume maintenance and blood pressure regulation. The present study thus explored whether JAK3 deficiency impacts on colonic ENaC activity, fecal Na(+) exretion, blood pressure and extracellular fluid volume regulation. METHODS Experiments were performed in gene-targeted mice lacking functional JAK3 (jak3(-/-)) and in wild type mice (jak3(+/+)). Colonic ENaC activity was estimated from amiloride-sensitive current in Ussing chamber experiments, fecal, serum and urinary Na(+) concentration by flame photometry, blood pressure by the tail cuff method and serum aldosterone levels by immunoassay. RESULTS The amiloride (50 µM)-induced deflection of the transepithelial potential difference was significantly lower and fecal Na(+) excretion significantly higher in jak3(-/-) mice than in jak3(+/+) mice. Moreover, systolic arterial blood pressure was significantly lower and serum aldosterone concentration significantly higher in jak3(-/-) mice than in jak3(+/+) mice. Both, absolute and fractional renal Na(+) excretion were significantly lower in jak3(-/-) mice than in jak3(+/+) mice. CONCLUSIONS JAK3 deficiency leads to impairment of colonic ENaC activity with intestinal Na(+) loss, decrease of blood pressure, increased aldosterone release and subsequent stimulation of renal tubular Na(+) reabsorption.
Collapse
Affiliation(s)
- Anja T Umbach
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
13
|
Kim BH, Won C, Lee YH, Choi JS, Noh KH, Han S, Lee H, Lee CS, Lee DS, Ye SK, Kim MH. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs. Biochem Pharmacol 2013; 86:950-9. [DOI: 10.1016/j.bcp.2013.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023]
|
14
|
Warsi J, Hosseinzadeh Z, Dong L, Pakladok T, Umbach AT, Bhavsar SK, Shumilina E, Lang F. Effect of Janus Kinase 3 on the Peptide Transporters PEPT1 and PEPT2. J Membr Biol 2013; 246:885-92. [DOI: 10.1007/s00232-013-9582-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
15
|
Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13:172-83. [PMID: 23388617 DOI: 10.1038/nrc3461] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- IRB-Barcelona, c/Baldiri Reixac 10-12, Barcelona, Spain. gonzalez@ irbbarcelona.org
| |
Collapse
|
16
|
Gómez-Valadés AG, Llamas M, Blanch S, Perales JC, Román J, Gómez-Casajús L, Mascaró C. Specific Jak3 Downregulation in Lymphocytes Impairs γc Cytokine Signal Transduction and Alleviates Antigen-driven Inflammation In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e42. [PMID: 23344234 PMCID: PMC3464880 DOI: 10.1038/mtna.2012.37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Jak3, one of the four members comprising the Jak family of cytosolic tyrosine kinases, has emerged as a promising target for nontoxic immunotherapies. Although a number of Jak inhibitors has already demonstrated efficacy, they suffer from secondary effects apparently associated to their pan-Jak activity. However, whether selective Jak3 inhibition would afford therapeutic efficacy remains unclear. To address this question we have investigated the immunosuppressive potential of selective Jak3 intervention in lymphocytes using RNA interference (RNAi) technology in vitro and in vivo. Using synthetic small interference RNA (siRNA) sequences we achieved successful transfections into human and mouse primary T lymphocytes. We found that Jak3 knockdown was sufficient to impair not only interleukin-2 (IL-2) and T cell receptor (TCR)-mediated cell activation in vitro, but also antigen-triggereds welling, inflammatory cell infiltration, and proinflammatory cytokine raise in vivo. Furthermore, Jak1 (which mediates γc cytokine signaling in conjunction with Jak3) cosilencing did not provide higher potency to the aforementioned immunosuppressant effects. Our data provides direct evidences indicating that Jak3 protein plays an important role in γc cytokine and antigen-mediated T cell activation and modulates Th1-mediated inflammatory disorders, all in all highlighting its potential as a target in immunosuppressive therapies.
Collapse
|
17
|
Seewald L, Taub JW, Maloney KW, McCabe ERB. Acute leukemias in children with Down syndrome. Mol Genet Metab 2012; 107:25-30. [PMID: 22867885 DOI: 10.1016/j.ymgme.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022]
Abstract
Children with Down syndrome (DS) often present with hematopoietic abnormalities, and are at increased risk of developing leukemia. Specifically, 3-10% of newborns with DS are diagnosed with transient myeloproliferative disease, and children with DS are 500 times more likely to develop acute megakaryoblastic leukemia (AMKL) and 20 times more likely to develop acute lymphoblastic leukemia (ALL) than typical children. This review examines the characteristics of these leukemias and their development in the unique genetic background of trisomy 21. A discussion is also provided for areas of future research and potential therapeutic development.
Collapse
Affiliation(s)
- Laura Seewald
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| | | | | | | |
Collapse
|
18
|
Kim BH, Min YS, Choi JS, Baeg GH, Kim YS, Shin JW, Kim TY, Ye SK. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling. Exp Mol Med 2011; 43:313-21. [PMID: 21499010 DOI: 10.3858/emm.2011.43.5.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Byung Hak Kim
- Laboratory of Dermato-Immunology Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Signal transducer and activator of transcription 3 (STAT3): a promising target for anticancer therapy. Future Med Chem 2011; 3:567-97. [PMID: 21526897 DOI: 10.4155/fmc.11.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic protein whose inhibition is sought for the prevention and treatment of cancer. In this review, the validated therapeutic strategy to block aberrant activity of STAT3 in many tumor cell lines is evaluated by presenting the most promising inhibitors to date. The compounds are discussed in classes based on their different mechanisms of action, which are critically explained. In addition, their future clinical development as anticancer agents is considered. Furthermore, the efforts devoted to the comprehension of the structure-activity relationships and to the identification of the biological effects are brought to attention. The synthetic and technological approaches recently developed to overcome the difficulties in the obtainment of clinically suitable drugs are also presented.
Collapse
|
20
|
El-Hachem N, Nemer G. Identification of new GATA4-small molecule inhibitors by structure-based virtual screening. Bioorg Med Chem 2011; 19:1734-42. [PMID: 21310620 DOI: 10.1016/j.bmc.2011.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/22/2022]
Abstract
Members of the GATA family of transcription factors are zinc finger proteins that were shown to play evolutionary conserved roles in cell differentiation and proliferation in different organisms. We hypothesized that by finding new molecules that inhibit their function to be crucial in future therapeutical interventions for various diseases. By virtual high throughput screening using a version of glide (Schrodinger®) program with both crystal and NMR structure of GATA C-terminal zinc finger, we identified new small molecular weight chemicals with lead-like properties. We used in vitro cell-based assays to show that these molecules selectively and efficiently inhibit GATA4 activity by inhibiting its interaction with the DNA. In addition we showed that these molecules can block the activation of downstream target genes by GATA4. Moreover these compounds can moderately enhanced a mouse model of myoblast differentiation into myotubes. This might be partially due to decreased GATA4/DNA interaction as shown by gel retardation assays. Further investigation is needed to reach selectivity and efficacy. Our study however do show that in silico screening combined with in vitro studies are efficient tools to unravel new molecules that interact with zinc finger proteins such as GATA4.
Collapse
Affiliation(s)
- Nehmé El-Hachem
- Department of Biochemistry, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
21
|
Malemud CJ. Suppression of Autoimmune Arthritis by Small Molecule Inhibitors of the JAK/STAT Pathway. Pharmaceuticals (Basel) 2010; 3:1446-1455. [PMID: 27713312 PMCID: PMC4033991 DOI: 10.3390/ph3051446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/20/2010] [Accepted: 05/11/2010] [Indexed: 12/23/2022] Open
Abstract
A skewed ratio of pro-inflammatory to anti-inflammatory cytokines, elevated growth factor synthesis and T- and B-lymphocyte activation are 3 hallmarks of rheumatoid arthritis (RA) pathology. Interleukin-6 (IL-6), IL-7, IL-17, IL-12/IL-23 and growth factors, granulocyte macrophage-colony stimulating factor, IL-3, and erythropoietin activate the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway. Evidence showed that STAT protein phosphorylation (p-STAT) by activated JAKs is permissive for p-STAT to act as transcription factors by binding to STAT-responsive gene promoter sequences. This event is critical for perpetuating RA, in part, by up-regulating pro-inflammatory cytokine gene transcription. Activation of JAK/STAT by cytokines and growth factors can induce ‘cross-talk’ with other signaling pathways by which Stress-Activated Protein/Mitogen-Activated Protein Kinase (SAP/MAPK) and Phosphatidylinositide-3-Kinase (PI3K)-mediated signaling are also activated. JAK-specific small molecule inhibitors (SMIs) were developed to test whether JAK/STAT pathway blockade would regulate autoimmune-mediated inflammation. JAK-specific SMI blockade inhibited p-STAT induced by pro-inflammatory cytokines in vitro. Systemically administered JAK-specific SMI blockade also ameliorated biomarkers of inflammation in well-validated arthritis animal models. A few JAK-specific SMIs have made their way into RA clinical trials. In fact, the JAK3-specific SMI, CP-690,500 is the first JAK/STAT SMI to be assessed for clinical efficacy in a Phase III RA trial.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Departments of Medicine & Anatomy, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
22
|
Nagy ZS, Ross JA, Rodriguez G, Bader J, Dimmock J, Kirken RA. Uncoupling JAK3 activation induces apoptosis in human lymphoid cancer cells via regulating critical survival pathways. FEBS Lett 2010; 584:1515-20. [PMID: 20211620 DOI: 10.1016/j.febslet.2010.02.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
In the current work, we report that specific inhibition of Janus tyrosine kinase (JAK3) via NC1153 induces apoptosis of certain leukemia/lymphoma cell lines. Affymetrix microarray profiling following NC1153 treatment unveiled JAK3 dependent survival modulating pathways (p53, TGF-beta, TNFR and ER stress) in Kit225 cells. IL-2 responsive NC1153 target genes were regulated in human JAK3 positive, but not in JAK3 negative lymphoid tumor cells. Moreover, primary lymphoma samples revealed that a number of these genes were reciprocally regulated during disease progression and JAK3 inhibition suggesting that downstream targets of JAK3 could be exploited in the development of novel cancer treatment regimes.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Kim BH, Jee JG, Yin CH, Sandoval C, Jayabose S, Kitamura D, Bach EA, Baeg GH. NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3. Mol Cancer 2010; 9:36. [PMID: 20149240 PMCID: PMC2830973 DOI: 10.1186/1476-4598-9-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/11/2010] [Indexed: 01/10/2023] Open
Abstract
Background Human or animals lacking either JAK3 or the common gamma chain (γc) expression display severe combined immunodeficiency disease, indicating the crucial role of JAK3 in T-cell development and the homeostasis of the immune system. JAK3 has also been suggested to contribute to the pathogenesis of tumorigenesis. Recent studies identified activating JAK3 mutations in patients with various hematopoietic malignancies, including acute megakaryoblastic leukemia. Importantly, functional analyses of some of those JAK3 mutations have been shown to cause lethal hematopoietic malignancies in animal models. These observations make JAK3 an ideal therapeutic target for the treatment of various human diseases. To identify novel small molecule inhibitors of JAK3, we performed structure-based virtual screen using the 3D structure of JAK3 kinase domain and the NCI diversity set of compounds. Results We identified NSC114792 as a lead compound. This compound directly blocked the catalytic activity of JAK3 but not that of other JAK family members in vitro. In addition, treatment of 32D/IL-2Rβ cells with the compound led to a block in IL-2-dependent activation of JAK3/STAT5 but not IL-3-dependent activation of JAK2/STAT5. Consistent with the specificity of NSC114792 for JAK3, it selectively inhibited persistently-activated JAK3, but failed to affect the activity of other JAK family members and other oncogenic kinases in various cancer cell lines. Finally, we showed that NSC114792 decreases cell viability by inducing apoptosis through down-regulating anti-apoptotic gene expression only in cancer cells harboring persistently-active JAK3. Conclusions NSC114792 is a lead compound that selectively inhibits JAK3 activity. Therefore, our study suggests that this small molecule inhibitor of JAK3 can be used as a starting point to develop a new class of drugs targeting JAK3 activity, and may have therapeutic potential in various diseases that are caused by aberrant JAK3 activity.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pediatrics, Division of Hematology/Oncology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|