1
|
Pan L, Li Y, Gao H, Lai X, Cai Y, Chen Z, Li X, Wang SY. Clinical features and management of germline CEBPA-mutated carriers. Leuk Res 2024; 138:107453. [PMID: 38442594 DOI: 10.1016/j.leukres.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Familial acute myeloid leukemia (AML) pedigrees with germline CCAAT/enhancer-binding protein-α (CEBPA) mutation have been rarely reported due to insufficient knowledge of their clinical features. Here, we report two Chinese families with multiple AML cases carrying germline CEBPA mutations, one of which had 11 cases spanning four consecutive generations. Additionally, we collected clinical data of 57 AML patients from 22 families with germline CEBPA mutations, with 58.3% of them harboring double CEBPA mutations. The first mutation frequently occurred at the N-terminal of CEBP/α (78.6%), resulting in an exclusive expression of p30 of CEBPA (CEBPAp30). The second mutation was mostly found at the C-terminal of CEBP/α (CEBPAothers). Germline CEBPAp30 carriers had higher incidences of AML (80.36% vs. 42.86%) and earlier onset of AML (18 vs. 38.5 years old) compared to germline CEBPAothers carriers. Despite the high rates of relapse, most familial AML cases exhibited favorable overall survival (OS), with germline CEBPAp30 carriers having better survival outcomes (>25 years vs. 11 years for CEBPAothers carriers). Among the 27 healthy germline CEBPA-mutated carriers, we detected a pre-leukemia clone harboring a pathogenic IDH2 variant (R140Q)in one individual. These findings should aid in the genetic counseling and management of AML patients and healthy carriers with germline CEBPA mutations.
Collapse
Affiliation(s)
- Lili Pan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China; Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China.
| | - Yining Li
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China
| | - Huiying Gao
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China
| | - Xiaolin Lai
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China
| | - Yuanhua Cai
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China
| | - Zhixiang Chen
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China
| | - Xiaofan Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China; Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China
| | - Shao-Yuan Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, PR China; Union Clinical Medical Colleges, Fujian Medical University, Fuzhou 350001, PR China.
| |
Collapse
|
2
|
Yuan J, He R, Alkhateeb HB. Sporadic and Familial Acute Myeloid Leukemia with CEBPA Mutations. Curr Hematol Malig Rep 2023; 18:121-129. [PMID: 37261703 PMCID: PMC10484814 DOI: 10.1007/s11899-023-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE OF REVIEW CCAAT enhancer binding protein A (CEBPA) gene mutation is one of the common genetic alterations in acute myeloid leukemia (AML), which can be associated with sporadic and familial AML. RECENT FINDINGS Due to the recent advances in molecular testing and the prognostic role of CEBPA mutation in AML, the definition for AML with CEBPA mutation (AML-CEBPA) has significantly changed. This review provides the rationale for the updates on classifications, and the impacts on laboratory evaluation and clinical management for sporadic and familial AML-CEBPA patients. In addition, minimal residual disease assessment post therapy to stratify disease risk and stem cell transplant in selected AML-CEBPA patients are discussed. Taken together, the recent progresses have shifted the definition, identification, and management of patients with AML-CEBPA.
Collapse
Affiliation(s)
- Ji Yuan
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN USA
| | | |
Collapse
|
3
|
Coiteux V, Fenwarth L, Duployez N, Ainaoui M, Borel C, Polomeni A, Yakoub-Agha I, Chalandon Y. [Management of genetic predisposition to hematologic malignancies in patients undergoing allogeneic hematopoietic cell transplantation (HCT): Guidelines from the SFGM-TC]. Bull Cancer 2023; 110:S13-S29. [PMID: 36307324 DOI: 10.1016/j.bulcan.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The advent of new technologies has made it possible to identify genetic predispositions to myelodysplastic syndromes (MDS) and acute leukemias (AL) more frequently. The most frequent and best characterized at present are mutations in CEBPA, RUNX1, GATA2, ETV6 and DDX41 and, either in the presence of one of these mutations with a high allelic frequency, or in the case of a personal or family history suggestive of blood abnormalities such as non-immune thrombocytopenia, it is recommended to look for the possibility of a hereditary hematological malignancy (HHM). Indeed, early recognition of these HHMs allows better adaptation of the management of patients and their relatives, as allogeneic hematopoietic stem cell transplantation (HSCT) is very often proposed for these pathologies. According to current data, with the exception of the GATA2 mutation, the constitutional or somatic nature of the mutations does not seem to influence the prognosis of hematological diseases. Therefore, the indication for an allograft will be determined according to the usual criteria. However, when searching for a family donor, it is important to ensure that there is no hereditary disease in the donor. In order to guarantee the possibility of performing the HSC allograft within a short period of time, it may be necessary to initiate a parallel procedure to find an unrelated donor. Given the limited information on the modalities of HSC transplantation in this setting, it is important to assess the benefit/risk of the disease and the procedure to decide on the type of conditioning (myeloablative or reduced intensity). In view of the limited experience with the risk of secondary cancers in the medium and long-term, it may be appropriate to recommend reduced intensity conditioning, as in the case of better characterized syndromic hematological diseases such as Fanconi anemia or telomere diseases. In summary, it seems important to evoke HHM more frequently, particularly in the presence of a family history, certain mutations or persistent blood abnormalities, in order to discuss the specific modalities of HSC allografting, particularly with regard to the search for a donor and the evaluation of certain modalities of the procedure, such as conditioning. It should be noted that the discovery of HHM, especially if the indication of an allogeneic HSC transplant is retained, will raise ethical and psychological considerations not only for the patient, but also for his family. A multidisciplinary approach involving molecular biologists, geneticists, hematologists and psychologists is essential.
Collapse
Affiliation(s)
- Valérie Coiteux
- Hôpital Huriez, CHU de Lille, service de maladies du sang, 1, place de Verdun, 59037 Lille cedex, France.
| | - Laurène Fenwarth
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Nicolas Duployez
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Malika Ainaoui
- Hôpital Huriez, hôpital Fontan, CHU de Lille, service de maladies du sang, service de psychiatrie de liaison, 1, place de Verdun, 59037 Lille cedex, France
| | - Cécile Borel
- CHU de Toulouse, institut universitaire du cancer de Toulouse Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Alice Polomeni
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | | | - Yves Chalandon
- Université de Genève, hôpitaux universitaires de Genève, faculté de médecine, service d'hématologie, 4, rue Gabrielle-Perret-Gentil, 1211 Genève, Suisse.
| |
Collapse
|
4
|
Su L, Shi YY, Liu ZY, Gao SJ. Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions. Front Oncol 2022; 12:806137. [PMID: 35178345 PMCID: PMC8844020 DOI: 10.3389/fonc.2022.806137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in CCAAT enhancer binding protein A gene (CEBPA) are one of the common genetic alterations in acute myeloid leukemia (AML). Recently, the emergence of new evidence makes it necessary to reconsider the subsets and treatment of AML patients with CEBPA mutations. This review will summarize the history of research progress of CEBPA mutations in AML, the heterogeneities of AML with CEBPA double mutations (CEBPA dm), and two special subtypes of CEBPA mutated AML. We will discuss the treatment of AML with CEBPA mutations as well, and finally propose a new algorithm for the treatment of these patients, including both familial and sporadic CEBPA mutated AML patients. This review may be beneficial for further investigation and optimizing clinical management of AML patients with CEBPA mutations.
Collapse
Affiliation(s)
- Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yuan-Yuan Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zeng-Yan Liu
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, China
| | - Su-Jun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Wafa A, Ali B, Moassass F, Kheder M, Aljapawe A, Al-Halabi B, Mrasek K, Liehr T, Al-Achkar W. Acute myeloid leukemia due to germline CEBPA mutation in a Syrian family. Mol Genet Genomic Med 2022; 10:e1854. [PMID: 35032366 PMCID: PMC8830806 DOI: 10.1002/mgg3.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Familial cases of adult acute myeloid leukemia (AML) with germline-mutated CCAAT/enhancer-binding protein-α (CEBPA) gene are a rare entity classified in World Health Organization (WHO) classification 2016. Most families reported in the literature show an autosomal dominant inheritance pattern consistent with a single-gene mutation. METHODS Here we studied a Syrian family with four individuals suffering from AML for CEBPA gene mutations by Sanger sequencing. RESULTS The father, his three affected, and one yet unaffected child had the same mutation in the N-terminal region of CEBPA (c.198dupC), resulting in termination at Tyr67Leufs*41. All affected family members had a good primary response to chemotherapy and achieved complete remission. CONCLUSION Overall, another AML family with CEBPA gene mutation is added to the literature, presenting with yet unreported FAB subtype M5 and absence of CD7 expression in some family members.
Collapse
Affiliation(s)
- Abdulsamad Wafa
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| | - Belal Ali
- Ministry of High Education, Damascus Children University Hospital, Damascus, Syria
| | - Faten Moassass
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| | - Maged Kheder
- Ministry of High Education, Damascus Children University Hospital, Damascus, Syria
| | - Abdulmunim Aljapawe
- Mammalians Biology Division, Molecular Biology and Biotechnology Department, Flow-cytometry Laboratory, Atomic Energy Commission of Syria, Damascus, Syria
| | - Bassel Al-Halabi
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| | - Kristin Mrasek
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Walid Al-Achkar
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| |
Collapse
|
6
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
7
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
McCurdy SR, Levis MJ. Emerging molecular predictive and prognostic factors in acute myeloid leukemia. Leuk Lymphoma 2017; 59:2021-2039. [DOI: 10.1080/10428194.2017.1393669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shannon R. McCurdy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Abstract
Heterozygous familial or sporadic GATA2 mutations cause a multifaceted disorder, encompassing susceptibility to infection, pulmonary dysfunction, autoimmunity, lymphoedema and malignancy. Although often healthy in childhood, carriers of defective GATA2 alleles develop progressive loss of mononuclear cells (dendritic cells, monocytes, B and Natural Killer lymphocytes), elevated FLT3 ligand, and a 90% risk of clinical complications, including progression to myelodysplastic syndrome (MDS) by 60 years of age. Premature death may occur from childhood due to infection, pulmonary dysfunction, solid malignancy and MDS/acute myeloid leukaemia. GATA2 mutations include frameshifts, amino acid substitutions, insertions and deletions scattered throughout the gene but concentrated in the region encoding the two zinc finger domains. Mutations appear to cause haplo-insufficiency, which is known to impair haematopoietic stem cell survival in animal models. Management includes genetic counselling, prevention of infection, cancer surveillance, haematopoietic monitoring and, ultimately, stem cell transplantation upon the development of MDS or another life-threatening complication.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
10
|
Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia. Eur J Hum Genet 2014; 23:218-23. [PMID: 24755948 DOI: 10.1038/ejhg.2014.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 01/16/2014] [Accepted: 03/18/2014] [Indexed: 01/01/2023] Open
Abstract
An inherited predisposition to acute myeloid leukaemia (AML) is exceedingly rare, but the investigation of these families will aid in the delineation of the underlying mechanisms of the more common, sporadic cases. Three AML predisposition genes, RUNX1, CEBPA and GATA2, have been recognised, but the culprit genes in the majority of AML pedigrees remain obscure. We applied a combined strategy of linkage analysis and next-generation sequencing (NGS) technology in an autosomal-dominant AML Chinese family with 11 cases in four generations. A genome-wide linkage scan using a 500K SNP genotyping array was conducted to identify a previously unreported candidate region on 20p13 with a maximum multipoint heterogeneity LOD (HLOD) score of 3.56 (P=0.00005). Targeted NGS within this region and whole-exome sequencing (WES) revealed a missense mutation in TGM6 (RefSeq, NM_198994.2:c.1550T>G, p.(L517W)), which cosegregated with the phenotype in this family, and was absent in 530 healthy controls. The mutated amino acid was located in a highly conserved position, which may be deleterious and affect the activation of TGM6. Our results strongly support the candidacy of TGM6 as a novel familial AML-associated gene.
Collapse
|
11
|
Abstract
Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56(bright) NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8(+) memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making.
Collapse
|
12
|
Grossmann V, Haferlach C, Nadarajah N, Fasan A, Weissmann S, Roller A, Eder C, Stopp E, Kern W, Haferlach T, Kohlmann A, Schnittger S. CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76·8% of cases with TET2 and GATA2 alterations impacting prognosis. Br J Haematol 2013; 161:649-658. [PMID: 23521373 DOI: 10.1111/bjh.12297] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukaemia (AML) with CEBPA mutations is listed as a provisional entity in the current World Health Organization classification. A difference in clinical outcome between single- (sm) and double-mutated (dm) cases has been reported, whereupon CEBPAdm cases were shown to be associated with better overall survival (OS). The occurrence and prognostic impact of concomitant molecular mutations in addition to CEBPAdm has not been assessed until now with exception of GATA2 mutations. Here, we investigated a cohort of 95 AML CEBPAdm cases for concomitant mutations. TET2 was found to be most frequently mutated (34·0%) gene, followed by GATA2 (21·0%), WT1 (13·7%), DNMT3A (9·6%), ASXL1 (9·5%), NRAS (8·4%), KRAS (3·2%), IDH1/2 (6·3%), FLT3-internal tandem duplication (6·3%), FLT3-tyrosine kinase domain (2·1%), NPM1 (2·1%), and RUNX1 (1/94). Patients harbouring additional mutations in the TET2 gene showed significantly worse OS than TET2 wild-type cases (P = 0·035), whereas GATA2-mutated patients showed improved OS (P = 0·032). Serial analyses were performed for 39 CEBPAdm cases with concomitant mutations. Here, we observed that CEBPA mutations present the primary pathogenetic event in the majority of cases (76·9%). Further, a distinct gene expression profile (GEP) was confirmed for CEBPAdm versus CEBPAsm or CEBPA wild-type cases while no significant changes in GEP were observed related to additional mutations within the CEBPAdm AML.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elisa Stopp
- MLL Munich Leukemia Laboratory, Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, Babic M, Lin M, Carmagnac A, Lee YK, Kok CH, Gagliardi L, Friend KL, Ekert PG, Butcher CM, Brown AL, Lewis ID, To LB, Timms AE, Storek J, Moore S, Altree M, Escher R, Bardy PG, Suthers GK, D'Andrea RJ, Horwitz MS, Scott HS. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 2011; 43:1012-7. [PMID: 21892162 PMCID: PMC3184204 DOI: 10.1038/ng.913] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/29/2011] [Indexed: 12/14/2022]
Abstract
We report the discovery of the GATA2 gene as a new myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML) predisposition gene. We found the same, novel heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS/AML in three families, and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS/AML family. The mutations reside within the second zinc finger of GATA2 which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutants on transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counselling, selection of related bone marrow transplant donors, and development of therapies.
Collapse
Affiliation(s)
- Christopher N Hahn
- Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|