1
|
Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, Loroch S, Oliverio M, Underbayev C, Vaughn L, Thomalla D, Hülsemann MF, Tausch E, Fischer K, Fink AM, Eichhorst B, Sickmann A, Wendtner CM, Stilgenbauer S, Hallek M, Wiestner A, Zahedi RP, Frenzel LP. MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood 2021; 138:544-556. [PMID: 33735912 PMCID: PMC8377477 DOI: 10.1182/blood.2020009165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/18/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022] Open
Abstract
Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.
Collapse
Affiliation(s)
- Laura Beckmann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valeska Berg
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olaf Merkel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Sandra Robrecht
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Julia Claasen
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Matteo Oliverio
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lauren Vaughn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Daniel Thomalla
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte F Hülsemann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Anna Maria Fink
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clemens M Wendtner
- Department I of Internal Medicine and
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute and
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, QC, Canada; and
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lukas P Frenzel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Surapally S, Jayaprakasam M, Verma RS. Curcumin augments therapeutic efficacy of TRAIL-based immunotoxins in leukemia. Pharmacol Rep 2020; 72:1032-1046. [PMID: 32141025 DOI: 10.1007/s43440-020-00073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been perceived as a promising anti-cancer agent because of its unique ability to kill cancer cells while sparing normal cells. However, translation of TRAIL to clinical studies was less successful as a large number of cancer cells acquire resistance to TRAIL-based monotherapies. An ideal strategy to overcome TRAIL resistance is to combine it with potential sensitizing agents. OBJECTIVE To investigate the TRAIL-sensitizing effect of curcumin in leukemia. METHODS The mechanism underlying TRAIL sensitization by curcumin was studied by flow cytometric analysis of TRAIL receptors in leukemic cell lines and patient samples, and immunoblot detection of TRAIL-apoptosis signaling proteins. RESULTS Curcumin augments TRAIL-apoptotic signaling in leukemic cells by upregulating the expression of DR4 and DR5 along with suppression of cFLIP and anti-apoptotic proteins Mcl-1, Bcl-xl, and XIAP. Curcumin pre-treatment significantly (p < 0.01) enhanced the sensitivity of leukemic cell lines to TRAIL recombinant proteins. IL2-TRAIL peptide in the presence of curcumin induced potent apoptosis (p < 0.001) as compared to TRAIL and IL2-TRAIL protein in leukemic cell lines with IC50 < 0.1 μΜ. Additionally, the combination of IL2-TRAIL peptide and curcumin showed significant cytotoxicity in patient peripheral blood mononuclear cells (PBMCs) with an efficacy of 90% in acute myeloid leukemia (AML), but 100% in acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelomonocytic leukemia (CMML). CONCLUSION Overall, our results suggest that curcumin potentiates TRAIL-induced apoptosis through modulation of death receptors and anti-apoptotic proteins which significantly enhances the therapeutic efficacy.
Collapse
Affiliation(s)
- Sridevi Surapally
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Madhumathi Jayaprakasam
- Division of Epidemiology and Communicable Diseases, Indian Council for Medical Research (ICMR), New Delhi, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
4
|
The role of XIAP in resistance to TNF-related apoptosis-inducing ligand (TRAIL) in Leukemia. Biomed Pharmacother 2018; 107:1010-1019. [PMID: 30257312 DOI: 10.1016/j.biopha.2018.08.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
The treatment for leukemic malignancies remains a challenge despite the wide use of conventional chemotherapies. Therefore, new therapeutic approaches are highly demanded. TNF-related apoptosis-inducing ligand (TRAIL) represents a targeted therapy against cancer because it induces apoptosis only in tumor cells. TRAIL is currently under investigation for the treatment of leukemia. Preclinical studies evaluated the potential therapeutic efficacy of TRAIL on cell lines and clinical samples and showed promising results. However, like most anti-cancer drugs, resistance to TRAIL-induced apoptosis may limit its clinical efficacy. It is critical to understand the molecular mechanisms of TRAIL. Therefore, rational therapeutic drug combinations for clinical trials of TRAIL-based therapies might be achieved. In a variety of leukemic cells, overexpression of X-linked inhibitor of apoptosis protein (XIAP), a negative regulator of apoptosis pathway, has been discovered. Implication of XIAP in the ineffective induction of cell death by TRAIL in leukemia has been explored in several resistant cell lines. XIAP inhibitors restored TRAIL sensitivity in resistant cells and primary leukemic blasts. Moreover, TRAIL resistance in leukemic cells could be overcome by the effects of several anti-leukemic agents via the mechanisms of XIAP downregulation. Here, we discuss targeting XIAP, a strategy to restore TRAIL sensitivity in leukemia to acquire more insights into the mechanisms of TRAIL resistance. The concluding remarks may lead to identify putative ways to resensitize tumors.
Collapse
|
5
|
Naimi A, Movassaghpour AA, Hagh MF, Talebi M, Entezari A, Jadidi-Niaragh F, Solali S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed Pharmacother 2018; 98:566-576. [DOI: 10.1016/j.biopha.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023] Open
|
6
|
Pevonedistat, a Nedd8-activating enzyme inhibitor, sensitizes neoplastic B-cells to death receptor-mediated apoptosis. Oncotarget 2017; 8:21128-21139. [PMID: 28177892 PMCID: PMC5400571 DOI: 10.18632/oncotarget.15050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
While death receptor ligands (Fas and TRAIL) kill chemoresistant tumor cell lines, related therapies have limited clinical efficacy as single agents. Death receptor signaling is modulated by nuclear factor-κB (NFκB), a family of transcription factors which are constitutively active in B-cell malignancies. We and others have shown that pevonedistat, an investigational inhibitor of the NEDD8-activating enzyme, abrogates NFκB activity in B-cell neoplasia. Here we demonstrate that diffuse large B-cell lymphoma, particularly activated B-cell type, and primary chronic lymphocytic leukemia cells are re-sensitized to extrinsic apoptosis by pevonedistat. Pevonedistat enhanced caspase-8 processing following death receptor ligation, and downmodulated cFLIP, a NFκB-regulated protease-deficient caspase homolog. However, treatment with pevonedistat did not modulate death-inducing signaling complex in neoplastic B-cells, suggesting that they were sensitized to death ligands through the mitochondrial pathway. Our data provide rationale for further development of pharmacologic agents including pevonedistat in strategies which enhance death receptor signaling in lymphoid malignancies.
Collapse
|
7
|
Sun Y, Ma GJ, Hu XJ, Yin XY, Peng YH. Clinical significance of LMO1 in gastric cancer tissue and its association with apoptosis of cancer cells. Oncol Lett 2017; 14:6511-6518. [PMID: 29344115 PMCID: PMC5754903 DOI: 10.3892/ol.2017.7102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022] Open
Abstract
It has been reported that LMO1 gene was associated with progression, metastasis and apoptosis of leukemia, colorectal cancer and lung cancer. However, the association of LMO1 and gastric cancer remains unclear. The aim of this study is to analyze the relation between LMO1 expression and apoptosis of gastric cancer cells and explore the clinical implications of LMO1 in gastric cancer tissues. The results demonstrated that expression levels of LMO1 and Bcl-2 proteins in gastric cancer tissues were higher than those in adjacent tissues, whereas the opposite was detected for Bax expression (P<0.05). LMO1 protein was associated with TNM staging and lymph node metastasis in gastric cancer (P<0.05). The survival rate of the patients with positive LMO1 gastric carcinoma was lower than that with negative LOM1 expression, and LMO1 was as an independent prognostic factor in COX survival analysis (P<0.05). LMO1-siRNA transfected MKN45 cells had a significant decrease in LMO1 expression and the cell viability, despite of an increase in the apoptotic rate (P<0.05). Following LMO1-siRNA transfection, Bcl-2 expression decreased, while the expression of Bax increased (P<0.05). It's concluded that overexpressed LMO1 in gastric cancer could be as one of new markers of poor prognosis.
Collapse
Affiliation(s)
- Yun Sun
- Fourth Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guo-Juan Ma
- Outpatient Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiao-Jie Hu
- Fourth Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiang-Yun Yin
- Fourth Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan-Hui Peng
- Third Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
8
|
Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2017; 32:8-28. [PMID: 28802908 DOI: 10.1016/j.blre.2017.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.
Collapse
|
9
|
Frenzel LP, Reinhardt HC, Pallasch CP. Concepts of Chronic Lymphocytic Leukemia Pathogenesis: DNA Damage Response and Tumor Microenvironment. Oncol Res Treat 2016; 39:9-16. [PMID: 26889681 DOI: 10.1159/000443820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022]
Abstract
Pathogenesis of chronic lymphocytic leukemia (CLL) is characterized by specific genetic aberrations and alterations of cellular signaling pathways. In particular, a disturbed DNA damage response (DDR) and an activated B-cell receptor signaling pathway play a major role in promoting CLL cell survival. External stimuli are similarly essential for CLL cell survival and lead to activation of the PI3K/AKT and MAPK pathways. Activation of nuclear factor-kappa B (NFkB) influences the disturbed anti-apoptotic balance of CLL cells. Losses or disabling mutations in TP53 and ATM are frequent events in chemotherapy-naïve patients and are further enriched in chemotherapy-resistant patients. As these lesions define key regulatory elements of the DDR pathway, they also determine treatment response to genotoxic therapy. Novel therapeutic strategies therefore try to circumvent defective DDR signaling and to suppress the pro-survival stimuli received from the tumor microenvironment. With increasing knowledge on specific genetic alterations of CLL, we may be able to target CLL cells more efficiently even in the situation of mutated DDR pathways or protection by microenvironmental stimuli.
Collapse
Affiliation(s)
- Lukas P Frenzel
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | | | | |
Collapse
|
10
|
Opel D, Schnaiter A, Dodier D, Jovanovic M, Gerhardinger A, Idler I, Mertens D, Bullinger L, Stilgenbauer S, Fulda S. Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. Int J Cancer 2015; 137:2959-70. [PMID: 26096065 DOI: 10.1002/ijc.29650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
Inhibitor of apoptosis (IAP) proteins are highly expressed in chronic lymphocytic leukemia (CLL) cells and contribute to evasion of cell death and poor therapeutic response. Here, we report that Smac mimetic BV6 dose-dependently induces cell death in 28 of 51 (54%) investigated CLL samples, while B-cells from healthy donors are largely unaffected. Importantly, BV6 is significantly more effective in prognostic unfavorable cases with, e.g., non-mutated VH status and TP53 mutation than samples with unknown or favorable prognosis. The majority of cases with 17p deletion (10/12) and Fludarabine refractory cases respond to BV6, indicating that BV6 acts independently of p53. BV6 also triggers cell death under survival conditions mimicking the microenvironment, e.g., by adding CD40 ligand or conditioned medium. Gene expression profiling identifies cell death, NF-κB and redox signaling among the top pathways regulated by BV6 not only in CLL but also in core-binding factor (CBF) acute myeloid leukemia (AML). Consistently, BV6 stimulates production of reactive oxygen species (ROS), which are contributing to BV6-induced cell death, since antioxidants reduce cell death. While BV6 causes degradation of cellular inhibitor of apoptosis (cIAP)1 and cIAP2 and nuclear factor-kappaB (NF-κB) pathway activation in primary CLL samples, BV6 induces cell death independently of caspase activity, receptor-interacting protein (RIP)1 activity or tumor necrosis factor (TNF)α, as zVAD.fmk, necrostatin-1 or TNFα-blocking antibody Enbrel fail to inhibit cell death. Together, these novel insights into BV6-regulated cell death in CLL have important implications for developing new therapeutic strategies to overcome cell death resistance especially in poor prognostic CLL subgroups.
Collapse
Affiliation(s)
- Daniela Opel
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Andrea Schnaiter
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Dagmar Dodier
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Marjana Jovanovic
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Irina Idler
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, , Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Anania VG, Lill JR. Proteomic tools for the characterization of cell death mechanisms in drug discovery. Proteomics Clin Appl 2015; 9:671-83. [DOI: 10.1002/prca.201400151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 02/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Veronica G. Anania
- Department of Biomarker Development; Genentech, Inc; South San Francisco CA USA
| | - Jennie R. Lill
- Department of Protein Chemistry; Genentech, Inc. South San Francisco CA USA
| |
Collapse
|
12
|
miRs-138 and -424 control palmitoylation-dependent CD95-mediated cell death by targeting acyl protein thioesterases 1 and 2 in CLL. Blood 2015; 125:2948-57. [PMID: 25670628 DOI: 10.1182/blood-2014-07-586511] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 01/24/2015] [Indexed: 11/20/2022] Open
Abstract
Resistance toward CD95-mediated apoptosis is a hallmark of many different malignancies, as it is known from primary chronic lymphocytic leukemia (CLL) cells. Previously, we could show that miR-138 and -424 are downregulated in CLL cells. Here, we identified 2 new target genes, namely acyl protein thioesterase (APT) 1 and 2, which are under control of both miRs and thereby significantly overexpressed in CLL cells. APTs are the only enzymes known to promote depalmitoylation. Indeed, membrane proteins are significantly less palmitoylated in CLL cells compared with normal B cells. We identified APTs to directly interact with CD95 to promote depalmitoylation, thus impairing apoptosis mediated through CD95. Specific inhibition of APTs by siRNAs, treatment with miRs-138/-424, and pharmacologic approaches restore CD95-mediated apoptosis in CLL cells and other cancer cells, pointing to an important regulatory role of APTs in CD95 apoptosis. The identification of the depalmitoylation reaction of CD95 by APTs as a microRNA (miRNA) target provides a novel molecular mechanism for how malignant cells escape from CD95-mediated apoptosis. Here, we introduce palmitoylation as a novel posttranslational modification in CLL, which might impact on localization, mobility, and function of molecules, survival signaling, and migration.
Collapse
|
13
|
Zhuang J, Laing N, Oates M, Lin K, Johnson G, Pettitt AR. Selective IAP inhibition results in sensitization of unstimulated but not CD40-stimulated chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis. Pharmacol Res Perspect 2014; 2:e00081. [PMID: 25505620 PMCID: PMC4186455 DOI: 10.1002/prp2.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/30/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022] Open
Abstract
Despite recent advances in therapy, chronic lymphocytic leukaemia (CLL) remains incurable and new treatment strategies are therefore urgently required. Inhibitor of apoptosis proteins (IAPs) are over-expressed in CLL, suggesting both a role in disease pathogenesis and the potential for therapeutic targeting. To explore these questions, we evaluated the effects on primary CLL cells of AZD5582, a novel potent and selective inhibitor of IAPs. AZD5582 at nanomolar concentrations induced extensive degradation of cIAP-1 and cIAP-2, but minimally of X chromosome-linked IAP (XIAP). However, these effects of AZD5582 produced little or no direct cytotoxicity, nor did they sensitize CLL cells to p53-dependent killing by fludarabine or p53-independent killing by dexamethasone. In contrast, AZD5582 significantly enhanced apoptosis induced by the death receptor (DR) agonist tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Importantly, killing by TRAIL plus AZD5582 was independent of adverse prognostic features including TP53 deletion which is strongly associated with chemoresistance in CLL. Coculture experiments involving transfected mouse fibroblasts expressing human CD40L (CD154) to mimic the effect of T cells at sites of tissue involvement showed that CD40 stimulation almost completely prevented the killing of CLL cells by TRAIL plus AZD5582 despite up-regulating TRAIL receptors 1 and 2. In conclusion, our findings confirm the rate-limiting, upstream involvement of IAPs in the extrinsic but not intrinsic apoptotic pathway of CLL cells and suggest that drug combinations that simultaneously activate DRs and inhibit IAPs may have therapeutic potential in patients with CLL who have failed T-cell-depleting chemotherapy.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool Liverpool, United Kingdom
| | - Naomi Laing
- AstraZeneca R&D Boston Waltham, Massachusetts
| | - Melanie Oates
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool Liverpool, United Kingdom
| | - Ke Lin
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool Liverpool, United Kingdom ; Royal Liverpool & Broadgreen University Hospitals NHS Trust Liverpool, United Kingdom
| | - Gillian Johnson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool Liverpool, United Kingdom ; Royal Liverpool & Broadgreen University Hospitals NHS Trust Liverpool, United Kingdom
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool Liverpool, United Kingdom ; Royal Liverpool & Broadgreen University Hospitals NHS Trust Liverpool, United Kingdom
| |
Collapse
|
14
|
Cancer therapeutics: Targeting the apoptotic pathway. Crit Rev Oncol Hematol 2014; 90:200-19. [DOI: 10.1016/j.critrevonc.2013.12.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 01/20/2023] Open
|
15
|
Abstract
Inhibitor of apoptosis (IAP) proteins are overexpressed in multiple human malignancies, an event that is associated with poor prognosis and treatment resistance. Therefore, IAP proteins represent relevant targets for therapeutic intervention. Second mitochondrial activator of caspases (Smac) is a mitochondrial protein that is released into the cytosol upon the induction of programmed cell death and promotes apoptosis by neutralizing IAP proteins. On the basis of this property, a variety of small-molecule inhibitors have been developed that mimic the binding domain of the native Smac protein to IAP proteins. Evaluation of these Smac mimetics in preclinical studies revealed that they particularly synergize together with agents that trigger the death receptor pathway of apoptosis. Such combinations might therefore be of special interest for being included in the ongoing evaluation of Smac mimetics in early clinical trials.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| |
Collapse
|
16
|
Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM, Mu H, Tibes R, Yao H, Coombes KR, Jacamo RO, McQueen T, Kornblau SM, Andreeff M. Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst 2014; 106:djt440. [PMID: 24526787 DOI: 10.1093/jnci/djt440] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) therapy has limited long-term efficacy because patients frequently develop disease relapse because of the inability of standard chemotherapeutic agents to target AML stem/progenitor cells. Here, we identify deregulated apoptotic components in AML stem/progenitor cells and investigate the individual and combinatorial effects of the novel inhibitor of apoptosis (IAP) protein antagonist and second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant and demethylating epigenetic modulators. METHODS Protein expression was measured by reversed-phase protein array in AML patient (n = 511) and normal (n = 21) samples and by western blot in drug-treated cells. The antileukemic activity of birinapant and demethylating agents was assessed in vitro and in an in vivo AML mouse xenograft model (n = 10 mice per group). All statistical tests were two-sided. RESULTS Compared with bulk AML cells, CD34(+)38(-) AML stem/progenitors expressed increased cIAP1 and caspase-8 levels and decreased SMAC levels (one-way analysis of variance followed by Tukey's multiple comparison test, P < .001). Birinapant induced death receptor-/caspase-8-mediated apoptosis in AML cells, including in AML stem/progenitor cells, but not in normal CD34(+) cells. Demethylating agents modulated extrinsic apoptosis pathway components and, when combined with birinapant, were highly synergistic in vitro (combination index < 1), and also more effective in vivo (P < .001, by Student t test, for the median survival of birinapant plus 5-azacytadine vs birinapant alone or vs controls). CONCLUSIONS cIAP1, SMAC, and caspase-8 appear to play a role in AML stem cell survival, and synergistic targeting of these cells with birinapant and demethylating agents shows potential utility in leukemia therapy.
Collapse
Affiliation(s)
- Bing Z Carter
- Affiliations of authors: Section of Molecular Hematology and Therapy, Department of Leukemia (BZC, PYM, DHM, YS, YQ, HM, ROJ, TM, SMK, MA) and Department of Bioinformatics and Computational Biology (HY, KRC), University of Texas M.D. Anderson Cancer Center, Houston, TX; Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ (JMB, RT)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Inhibitor of Apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities. Leukemia 2014; 28:1414-22. [PMID: 24487414 DOI: 10.1038/leu.2014.56] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
Inhibitor of Apoptosis (IAP) proteins exert essential functions during tumorigenesis as well as treatment resistance by simultaneously blocking cell death pathways and promoting cell survival. As IAP proteins are typically aberrantly expressed in human cancers including hematological malignancies, they represent in principle promising targets for therapeutic interventions. There are currently exciting opportunities to rationally exploit the therapeutic targeting of IAP proteins for the treatment of leukemia and lymphoma. Further insights into the signaling pathways that are under the control of IAP proteins and into the specific IAP protein-dependent vulnerabilities of hematological neoplasms are expected to pave the avenue to novel treatment strategies.
Collapse
|
18
|
Herishanu Y, Katz BZ, Lipsky A, Wiestner A. Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013; 27:173-206. [PMID: 23561469 DOI: 10.1016/j.hoc.2013.01.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature monoclonal B cells in peripheral blood, bone marrow, spleen, and lymph nodes. The trafficking, survival, and proliferation of CLL cells is tightly regulated by the surrounding tissue microenvironment and is mediated by antigenic stimulation, close interaction with various accessory cells and exposure to different cytokines, chemokines, and extracellular matrix components. In the last decade there have been major advances in the understanding of the reciprocal interactions between CLL cells and the various microenvironmental compartments. This article discusses the role of the microenvironment in the context of efforts to develop novel therapeutics that target the biology of CLL.
Collapse
Affiliation(s)
- Yair Herishanu
- Hematology Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | | | | | | |
Collapse
|
19
|
Neuroendocrine phenotype alteration and growth suppression through apoptosis by MK-2206, an allosteric inhibitor of AKT, in carcinoid cell lines in vitro. Anticancer Drugs 2013; 24:66-72. [PMID: 23147412 DOI: 10.1097/cad.0b013e3283584f75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carcinoids are neuroendocrine malignancies characterized by their overproduction of various bioactive hormones that lead to the carcinoid syndrome. We have shown previously that AKT serves as a key regulator of growth and phenotypic expression of tumor markers in carcinoids by the genetic depletion of AKT expression. However, no small-molecule inhibitor of AKT kinase activity has been developed until recently. MK-2206, a novel allosteric inhibitor of AKT, is currently undergoing clinical trials for the treatment of solid tumors. In this study, we explored the effect of MK-2206 on carcinoid cell proliferation and bioactive hormone production in vitro in two carcinoid cell lines - pancreatic carcinoid BON and bronchopulmonary H727. Treatment with MK-2206 effectively suppressed AKT phosphorylation at serine 473 and significantly reduced cell proliferation in a dose-dependent manner. Most importantly, MK-2206 treatment resulted in a significant reduction in ASCL1, CgA, and NSE expression, collectively recognized as markers of neuroendocrine tumor malignancy. Furthermore, MK-2206-treated cells showed an increase in levels of cleaved PARP and cleaved caspase-3, with a concomitant reduction in levels of Mcl-1 and XIAP, indicating that the antiproliferative effect of MK-2206 occurs through the induction of apoptosis. In conclusion, MK-2206 suppresses carcinoid tumor growth, and alters its neuroendocrine phenotype, indicating that this drug may be beneficial for patients with carcinoid syndrome. These studies merit further clinical investigation.
Collapse
|
20
|
Scavullo C, Servida F, Lecis D, Onida F, Drago C, Ferrante L, Seneci P, Barcellini W, Lionetti M, Todoerti K, Neri A, Delia D, Deliliers GL. Single-agent Smac-mimetic compounds induce apoptosis in B chronic lymphocytic leukaemia (B-CLL). Leuk Res 2013; 37:809-15. [PMID: 23618690 DOI: 10.1016/j.leukres.2013.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/11/2013] [Accepted: 03/24/2013] [Indexed: 11/16/2022]
Abstract
Defective apoptosis is a hallmark of the progression of B chronic lymphocytic leukaemia (B-CLL). Smac-mimetics have been shown to induce apoptosis in several tumours. We describe the in vitro pro-apoptotic activity and regulation of the molecular pathway induced by new Smac-mimetics in B-CLL. The cytotoxic effect was significantly higher in B-CLL samples than in healthy controls. No significant synergistic effect was observed in combined treatment. In conclusion one of our compounds (Smac66), used as monotherapy and not in combination, is highly active against B-CLL cells thus suggesting a promising therapeutic potential as a new class of antileukemic drugs in haematology.
Collapse
Affiliation(s)
- Cinzia Scavullo
- Fondazione Matarelli, Dipartimento di Farmacologia Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
22
|
Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11:109-24. [PMID: 22293567 DOI: 10.1038/nrd3627] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evasion of apoptosis is one of the crucial acquired capabilities used by cancer cells to fend off anticancer therapies. Inhibitor of apoptosis (IAP) proteins exert a range of biological activities that promote cancer cell survival and proliferation. X chromosome-linked IAP is a direct inhibitor of caspases - pro-apoptotic executioner proteases - whereas cellular IAP proteins block the assembly of pro-apoptotic protein signalling complexes and mediate the expression of anti-apoptotic molecules. Furthermore, mutations, amplifications and chromosomal translocations of IAP genes are associated with various malignancies. Among the therapeutic strategies that have been designed to target IAP proteins, the most widely used approach is based on mimicking the IAP-binding motif of second mitochondria-derived activator of caspase (SMAC), which functions as an endogenous IAP antagonist. Alternative strategies include transcriptional repression and the use of antisense oligonucleotides. This Review provides an update on IAP protein biology as well as current and future perspectives on targeting IAP proteins for therapeutic intervention in human malignancies.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| | | |
Collapse
|
23
|
Fulda S. Exploiting inhibitor of apoptosis proteins as therapeutic targets in hematological malignancies. Leukemia 2012; 26:1155-65. [PMID: 22230799 DOI: 10.1038/leu.2012.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resistance to apoptosis is one of the hallmarks of human cancers and contributes to the insensitivity of many cancers to commonly used treatment approaches. Inhibitor of apoptosis (IAP) proteins, a family of anti-apoptotic proteins, have an important role in evasion of apoptosis, as they can both block apoptosis-signaling pathways and promote survival. High expression of IAP proteins is observed in multiple cancers, including hematological malignancies, and has been associated with unfavorable prognosis and poor patients' outcome. Therefore, IAP proteins are currently considered as promising molecular targets for therapy. Indeed, drug-discovery approaches over the last decade aiming at neutralizing IAP proteins have resulted in the generation of small-molecule inhibitors or antisense oligonucleotides that demonstrated in vitro and in vivo antitumor activities in preclinical studies. As some of these strategies have already entered the stage of clinical evaluation, for example, in leukemia, an update on this promising molecular-targeted strategy to interfere with apoptotic pathways is of broad interest.
Collapse
Affiliation(s)
- S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
24
|
|
25
|
Zauli G, Bosco R, Secchiero P. Molecular targets for selective killing of TRAIL-resistant leukemic cells. Expert Opin Ther Targets 2011; 15:931-42. [DOI: 10.1517/14728222.2011.580278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|