1
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Micheva ID, Atanasova SA. MicroRNA dysregulation in myelodysplastic syndromes: implications for diagnosis, prognosis, and therapeutic response. Front Oncol 2024; 14:1410656. [PMID: 39156702 PMCID: PMC11327013 DOI: 10.3389/fonc.2024.1410656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological disorders with heterogeneous clinical course and risk of transformation to acute myeloid leukemia. Genetic and epigenetic dysregulation, including alterations in microRNA (miRNA) expression, plays a pivotal role in MDS pathogenesis influencing disease development and progression. MiRNAs, known for their regulatory roles in gene expression, have emerged as promising biomarkers in various malignant diseases. This review aims to explore the diagnostic and prognostic roles of miRNAs in MDS. We discuss research efforts aimed at understanding the clinical utility of miRNAs in MDS management. MiRNA dysregulation is linked to specific chromosomal abnormalities in MDS, providing insights into the molecular landscape of the disease. Circulating miRNAs in plasma offer a less invasive avenue for diagnostic and prognostic assessment, with distinct miRNA profiles identified in MDS patients. Additionally, we discuss investigations concerning the role of miRNAs as markers for treatment response to hypomethylating and immunomodulating agents, which could lead to improved treatment decision-making and monitoring. Despite significant progress, further research in larger patient cohorts is needed to fully elucidate the role of miRNAs in MDS pathogenesis and refine personalized approaches to patient care.
Collapse
Affiliation(s)
- Ilina Dimitrova Micheva
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Svilena Angelova Atanasova
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
3
|
Georgoulis V, Koumpis E, Hatzimichael E. The Role of Non-Coding RNAs in Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:4810. [PMID: 37835504 PMCID: PMC10571949 DOI: 10.3390/cancers15194810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia, and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis and have been implicated in carcinogenesis. This review presents a comprehensive summary of the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19 107, USA
| |
Collapse
|
4
|
Extracellular Vesicles and MicroRNA in Myelodysplastic Syndromes. Cells 2023; 12:cells12040658. [PMID: 36831325 PMCID: PMC9955013 DOI: 10.3390/cells12040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The bone marrow niche plays an increasing role in the pathophysiogenesis of myelodysplastic syndromes. More specifically, mesenchymal stromal cells, which can secrete extracellular vesicles and their miRNA contents, modulate the fate of hematopoietic stem cells leading to leukemogenesis. Extracellular vesicles can mediate their miRNA and protein contents between nearby cells but also in the plasma of the patients, being potent tools for diagnosis and prognostic markers in MDS. They can be targeted by antisense miRNA or by modulators of the secretion of extracellular vesicles and could lead to future therapeutic directions in MDS.
Collapse
|
5
|
Liang X, Shi Z, Huang X, Wan C, Zhu S, Wu M, Li Z, Tang Z, Li J, Zhao W, Luo J, Liu Z. MiR-181a-2-3p as a potential diagnostic and prognostic marker for myelodysplastic syndrome. Hematology 2022; 27:1246-1252. [DOI: 10.1080/16078454.2022.2149971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaolin Liang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zeyan Shi
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoke Huang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Chengyao Wan
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shanhu Zhu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Meiqing Wu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongqing Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongyuan Tang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jing Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Weihua Zhao
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jun Luo
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhenfang Liu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
6
|
Cao M, Peng B, Chen H, Yang M, Chen P, Ye L, Wang H, Ren L, Xie J, Zhu J, Xu X, Xu W, Geng L, Gong S. miR-34a induces neutrophil apoptosis by regulating Cdc42-WASP-Arp2/3 pathway-mediated F-actin remodeling and ROS production. Redox Rep 2022; 27:167-175. [PMID: 35938579 PMCID: PMC9364709 DOI: 10.1080/13510002.2022.2102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The number of neutrophils is significantly reduced in myelodysplastic syndrome (MDS), but the molecular basis remains unclear. We recently found that miR-34a was significantly increased in MDS neutrophils. Therefore, this study aims to clarify the effects of aberrant miR-34a expression on neutrophil counts. Methods miR-34a mimics/inhibitor transfection were performed in neutrophil-like differentiated HL60 (dHL60) cells, and a FACSCalibur flow cytometer was used to measure ROS production and apoptosis. In addition, the Cdc42-WASP-Arp2/3 pathway inhibitor (ML141) and activator (CN02) treated the dHL60 cells, and then ROS production, apoptosis and related proteins expression were detected. And, luciferase reporter assay to verify the relationship of miR-34a and the Cdc42-WASP-Arp2/3 pathway. Results overexpression of miR-34a could induce ROS production and apoptosis, decrease the expression levels of DOCK8, p-WASP, WASP, Arp2, Arp3, and increase F-actin’s expression. Meanwhile, knockdown of miR-34a could decrease ROS production and apoptosis, increase the expression of DOCK8, p-WASP, WASP, Arp2, Arp3, and decrease F-actin’s expression. Immunofluorescence staining showed aberrant miR-34a and Cdc42-WASP-Arp2/3 pathway could induce F-actin membrane transfer. Luciferase reporter assay indicated that DOCK8 was a direct target gene of miR-34a. Conclusion These data indicates miR-34a may induce neutrophil apoptosis by regulating Cdc42-WASP-Arp2/3 pathway-mediated F-actin remodeling and ROS production.
Collapse
Affiliation(s)
- Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baoling Peng
- Center for child health and mental health, Shenzhen Childen’s Hospital, Shenzhen, People’s Republic of China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingnan Zhu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiangye Xu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Yao C, Lin C, Chen C, Hsu C, Tsai C, Hou H, Chou W, Tien H. Higher RUNX1 expression levels are associated with worse overall and leukaemia-free survival in myelodysplastic syndrome patients. EJHAEM 2022; 3:1209-1219. [PMID: 36467848 PMCID: PMC9713038 DOI: 10.1002/jha2.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
RUNX1 mutations are frequently detected in various myeloid neoplasms and implicate unfavourable clinical outcomes in patients with myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). On the other hand, high expression of RUNX1 is also correlated with poor prognosis in AML patients. However, the clinical relevancy of RUNX1 expression in MDS patients remains elusive. This study aimed to investigate the prognostic and biologic impacts of RUNX1 expression in MDS patients. We recruited 341 MDS patients who had sufficient bone marrow samples for next-generation sequencing. Higher RUNX1 expression occurred more frequently in the patients with Revised International Prognostic Scoring System (IPSS-R) higher-risk MDS than the lower-risk group. It was closely associated with poor-risk cytogenetics and mutations in ASXL1, NPM1, RUNX1, SRSF2, STAG2, TET2 and TP53. Furthermore, patients with higher RUNX1 expression had significantly shorter leukaemia-free survival (LFS) and overall survival (OS) than those with lower expression. Subgroups analysis revealed that higher-RUNX1 group consistently had shorter LFS and OS than the lower-RUNX1 group, no matter RUNX1 was mutated or not. The same findings were observed in IPSS-R subgroups. In multivariable analysis, higher RUNX1 expression appeared as an independent adverse risk factor for survival. The prognostic significance of RUNX1 expression was validated in two external public cohorts, GSE 114922 and GSE15061. In summary, we present the characteristics and prognosis of MDS patients with various RUNX1 expressions and propose that RUNX1 expression complement RUNX1 mutation in MDS prognostication, wherein patients with wild RUNX1 but high expression may need more proactive treatment.
Collapse
Affiliation(s)
- Yu‐Hung Wang
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
- Stem Cell and Leukaemia Proteomics LaboratoryUniversity of ManchesterManchesterUK
| | - Chi‐Yuan Yao
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Clinical MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Chien‐Chin Lin
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Chi‐Ling Chen
- Graduate Institute of Clinical MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Chia‐Lang Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Cheng‐Hong Tsai
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Hsin‐An Hou
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Wen‐Chien Chou
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Hwei‐Fang Tien
- Division of HematologyDepartment of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
8
|
Wang W, Chen R, Droll S, Barber E, Saleh L, Corrigan-Cummins M, Trick M, Anastas V, Hawk NV, Zhao Z, Vinh DC, Hsu A, Hickstein DD, Holland SM, Calvo KR. miR-181c regulates MCL1 and cell survival in GATA2 deficient cells. J Leukoc Biol 2022; 111:805-816. [PMID: 34270823 PMCID: PMC10506419 DOI: 10.1002/jlb.2a1220-824r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GATA2 is a transcription factor critical for hematopoiesis. Germline mutations in GATA binding protein 2 (GATA2) led to haploinsufficiency, severe cytopenias of multiple cell lineages, susceptibility to infections and strong propensity to develop myelodysplastic syndrome, and acute myeloid leukemia. Mechanisms of progressive cytopenias remain unclear. MicroRNA (miRNA) represents a unique mechanism of post-transcriptional gene regulation. In this study, miRNA profiles were evaluated and eight miRNAs were found to be differentially expressed (≥2-fold, P ≤ 0.05) in patient-derived cell lines (N = 13) in comparison to controls (N = 10). miR-9, miR-181a-2-3p, miR-181c, miR-181c-3p, miR-486-3p, and miR-582 showed increased expression, whereas miR-223 and miR-424-3p showed decreased expression. Cell death assays indicated that miR-181c potently induces cell death in lymphoid (Ly-8 and SP-53) and myeloid (HL-60) cell lines. miR-181c was predicted to target myeloid cell leukemia (MCL)1, which was confirmed by transfection assays, resulting in significantly reduced MCL1 mRNA and decreased live cell numbers. Bone marrow analysis of 34 GATA2 patients showed significantly decreased cellularity, CD34-positive cells, monocytes, dendritic cells, NK cells, B cells, and B cell precursors in comparison to healthy controls (N = 29; P < 0.001 for each), which was accompanied by decreased levels of MCL1 (P < 0.05). GATA2 expression led to significant repression of miR-181c expression in transfection experiments. Conversely, knockdown of GATA2 led to increased miR-181c expression. These findings indicate that miR-181c expression is increased and MCL1 levels decreased in GATA2 deficiency cells, and that GATA2 represses miR-181c transcription. Increased miR-181c may contribute to elevated cell death and cytopenia in GATA2 deficiency potentially through down-regulation of MCL1.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Rui Chen
- Department of Laboratory Medicine, Beijing Tong-Ren Hospital, Capital Medical University, Beijing, China
| | - Stephenie Droll
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Emily Barber
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Layla Saleh
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
- Hematology Section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Meghan Corrigan-Cummins
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Megan Trick
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Vollter Anastas
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Nga Voong Hawk
- Experimental Transplantation and Immunology Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zhen Zhao
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Donald C. Vinh
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
- Division of Infectious Diseases, McGill University Health Centre, Montreal, Canada
| | - Amy Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dennis D. Hickstein
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Votavova H, Belickova M. Hypoplastic myelodysplastic syndrome and acquired aplastic anemia: Immune‑mediated bone marrow failure syndromes (Review). Int J Oncol 2021; 60:7. [PMID: 34958107 PMCID: PMC8727136 DOI: 10.3892/ijo.2021.5297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022] Open
Abstract
Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon-γ and tumor necrosis factor-α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next-generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| |
Collapse
|
10
|
Wang D, Lin M, Utz B, Bosompem A, Guo Y, Daneshbod Y, Alford CE, Nettles SA, Scher J, Gagne EY, O'Neill M, Barrow L, Wojciechowska N, Keegan J, Mosse CA, Lederer JA, Kim AS. miR-378-3p Knockdown Recapitulates Many of the Features of Myelodysplastic Syndromes. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2009-2022. [PMID: 34364880 PMCID: PMC8579243 DOI: 10.1016/j.ajpath.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal neoplasms of the hematopoietic stem cell that result in aberrant differentiation of hematopoietic lineages caused by a wide range of underlying genetic, epigenetic, and other causes. Despite the myriad origins, a recognizable MDS phenotype has been associated with miRNA aberrant expression. A model of aberrant myeloid maturation that mimics MDS was generated using a stable knockdown of miR-378-3p. This model exhibited a transcriptional profile indicating aberrant maturation and function, immunophenotypic and morphologic dysplasia, and aberrant growth that characterizes MDS. Moreover, aberrant signal transduction in response to stimulation specific to the stage of myeloid maturation as indicated by CyTOF mass cytometry was similar to that found in samples from patients with MDS. The aberrant signaling, immunophenotypic changes, cellular growth, and colony formation ability seen in this myeloid model could be reversed with azacytidine, albeit without significant improvement of neutrophil function.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miao Lin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Begum Utz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amma Bosompem
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yahya Daneshbod
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine E Alford
- Department of Pathology, Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee
| | - Sabin A Nettles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan Scher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emma Y Gagne
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria O'Neill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lia Barrow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natalia Wojciechowska
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua Keegan
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claudio A Mosse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
11
|
Schwind S, Jentzsch M, Kubasch AS, Metzeler KH, Platzbecker U. Myelodysplastic syndromes: Biological and therapeutic consequences of the evolving molecular aberrations landscape. Neoplasia 2021; 23:1101-1109. [PMID: 34601234 PMCID: PMC8495032 DOI: 10.1016/j.neo.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders with heterogeneous presentation, ranging from indolent disease courses to aggressive diseases similar to acute myeloid leukemia (AML). Approximately 90% of MDS patients harbor recurrent mutations , which – with the exception of mutated SF3B1 –have not (yet) been included into the diagnostic criteria or risk stratification for MDS. Accumulating evidence suggests their utility for diagnostic workup, treatment indication and prognosis. Subsequently, in patients with unexplained cytopenia or dysplasia identification of these mutations may lead to earlier diagnosis. The acquisition and expansion of additional driver mutations usually antecedes further disease progression to higher risk MDS or secondary AML and thus, can be clinically helpful to detect individuals that may benefit from aggressive treatment approaches. Here, we review our current understanding of somatic gene mutations, gene expression patterns and flow cytometry regarding their relevance for disease evolution from pre-neoplastic states to MDS and potentially AML.
Collapse
Affiliation(s)
- Sebastian Schwind
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Anne Sophie Kubasch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Klaus H Metzeler
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; German MDS Study Group (G-MDS), Leipzig, Germany; European Myelodysplastic Syndromes Cooperative Group, Leipzig, Germany.
| |
Collapse
|
12
|
Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI, Zhimulev IF. MicroRNAs in the Myelodysplastic Syndrome. Acta Naturae 2021; 13:4-15. [PMID: 34377552 PMCID: PMC8327150 DOI: 10.32607/actanaturae.11209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The myelodysplastic syndrome (MDS) holds a special place among blood cancers, as it represents a whole spectrum of hematological disorders with impaired differentiation of hematopoietic precursors, bone marrow dysplasia, genetic instability and is noted for an increased risk of acute myeloid leukemia. Both genetic and epigenetic factors, including microRNAs (miRNAs), are involved in MDS development. MicroRNAs are short non-coding RNAs that are important regulators of normal hematopoiesis, and abnormal changes in their expression levels can contribute to hematological tumor development. To assess the prognosis of the disease, an international assessment system taking into account a karyotype, the number of blast cells, and the degree of deficiency of different blood cell types is used. However, the overall survival and effectiveness of the therapy offered are not always consistent with predictions. The search for new biomarkers, followed by their integration into the existing prognostic system, will allow for personalized treatment to be performed with more precision. Additionally, this paper explains how miRNA expression levels correlate with the prognosis of overall survival and response to the therapy offered.
Collapse
Affiliation(s)
- Y. A. Veryaskina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
| | - S. E. Titov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
- Vector-Best, Novosibirsk, 630117 Russia
| | - I. B. Kovynev
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - S. S. Fedorova
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - T. I. Pospelova
- Novosibirsk State Medical University, Novosibirsk, 630091 Russia
| | - I. F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090 Russia
| |
Collapse
|
13
|
Mariani M, Mattiucci D, Rossi E, Mari V, Masala E, Giuliani A, Santini V, Olivieri F, Marinelli Busilacchi E, Mancini S, Olivieri A, Poloni A. Serum Inflamma-miR Signature: A Biomarker of Myelodysplastic Syndrome? Front Oncol 2020; 10:595838. [PMID: 33330086 PMCID: PMC7713643 DOI: 10.3389/fonc.2020.595838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marianna Mariani
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Rossi
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Mari
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Erico Masala
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Mancini
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Poloni
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
14
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
15
|
The miRNA Profile in Non-Hodgkin's Lymphoma Patients with Secondary Myelodysplasia. Cells 2020; 9:cells9102318. [PMID: 33086588 PMCID: PMC7656297 DOI: 10.3390/cells9102318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes are a group of clonal diseases of hematopoietic stem cells and are characterized by multilineage dysplasia, ineffective hematopoiesis, peripheral blood cytopenias, genetic instability and a risk of transformation to acute myeloid leukemia. Some patients with non-Hodgkin lymphomas (NHLs) may have developed secondary myelodysplasia before therapy. Bone marrow (BM) hematopoiesis is regulated by a spectrum of epigenetic factors, among which microRNAs (miRNAs) are special. The aim of this work is to profile miRNA expression in BM cells in untreated NHL patients with secondary myelodysplasia. A comparative analysis of miRNA expression levels between the NHL and non-cancer blood disorders samples revealed that let-7a-5p was upregulated, and miR-26a-5p, miR-199b-5p, miR-145-5p and miR-150-5p were downregulated in NHL with myelodysplasia (p < 0.05). We for the first time developed a profile of miRNA expression in BM samples in untreated NHL patients with secondary myelodysplasia. It can be assumed that the differential diagnosis for blood cancers and secondary BM conditions based on miRNA expression profiles will improve the accuracy and relevance of the early diagnosis of cancerous and precancerous lesions in BM.
Collapse
|
16
|
Bauer M, Vaxevanis C, Heimer N, Al-Ali HK, Jaekel N, Bachmann M, Wickenhauser C, Seliger B. Expression, Regulation and Function of microRNA as Important Players in the Transition of MDS to Secondary AML and Their Cross Talk to RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21197140. [PMID: 32992663 PMCID: PMC7582632 DOI: 10.3390/ijms21197140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS), heterogeneous diseases of hematopoietic stem cells, exhibit a significant risk of progression to secondary acute myeloid leukemia (sAML) that are typically accompanied by MDS-related changes and therefore significantly differ to de novo acute myeloid leukemia (AML). Within these disorders, the spectrum of cytogenetic alterations and oncogenic mutations, the extent of a predisposing defective osteohematopoietic niche, and the irregularity of the tumor microenvironment is highly diverse. However, the exact underlying pathophysiological mechanisms resulting in hematopoietic failure in patients with MDS and sAML remain elusive. There is recent evidence that the post-transcriptional control of gene expression mediated by microRNAs (miRNAs), long noncoding RNAs, and/or RNA-binding proteins (RBPs) are key components in the pathogenic events of both diseases. In addition, an interplay between RBPs and miRNAs has been postulated in MDS and sAML. Although a plethora of miRNAs is aberrantly expressed in MDS and sAML, their expression pattern significantly depends on the cell type and on the molecular make-up of the sample, including chromosomal alterations and single nucleotide polymorphisms, which also reflects their role in disease progression and prediction. Decreased expression levels of miRNAs or RBPs preventing the maturation or inhibiting translation of genes involved in pathogenesis of both diseases were found. Therefore, this review will summarize the current knowledge regarding the heterogeneity of expression, function, and clinical relevance of miRNAs, its link to molecular abnormalities in MDS and sAML with specific focus on the interplay with RBPs, and the current treatment options. This information might improve the use of miRNAs and/or RBPs as prognostic markers and therapeutic targets for both malignancies.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Christoforos Vaxevanis
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Haifa Kathrin Al-Ali
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Nadja Jaekel
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-345-557-4054
| |
Collapse
|
17
|
Downregulation of microRNA-144 inhibits proliferation and promotes the apoptosis of myelodysplastic syndrome cells through the activation of the AKAP12-dependent ERK1/2 signaling pathway. Cell Signal 2019; 68:109493. [PMID: 31809872 DOI: 10.1016/j.cellsig.2019.109493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) represent a family of hematopoietic stem cell disorders characterized by ineffective hematopoiesis. While the functions of many microRNAs have been identified in MDS, microRNA-144 (miR-144) remains poorly understood. Thus, the aim of the present study was to determine the effects of miR-144 on cell proliferation and apoptosis in MDS cells and mechanism thereof. METHODS MDS-related microarrays were used for screening differentially expressed genes in MDS. The relationship between miR-144 and A-kinase anchoring protein 12 (AKAP12) was determined by a dual luciferase reporter gene assay. Subsequently, gain- and loss-function approaches were used to assess the effects of miR-144 and AKAP12 on cell proliferation, cell cycle and cell apoptosis by MTT assay and flow cytometry. Following the induction of a mouse model with MDS, the tumor tissues were extract for evaluation of apoptosis and the expression of miR-144, AKAP12, and the relevant genes associated with extracellular-regulated protein kinases 1/2 (ERK1/2) signaling pathway and apoptosis. RESULTS We observed significantly diminished expression of AKAP12 in MDS samples. miR-144 directly bound to AKAP12 3'UTR and reduced its expression in hematopoietic cells. Downregulation of miR-144 or upregulation of AKAP12 was observed to prolong cell cycle, inhibit cell proliferation, and induce apoptosis, accompanied by increased expression of AKAP12, p-ERK1/2, caspase-3, caspase-9, Bax, and p53, as well as decreased expression of Bcl-2. The transplanted tumors in mice with down-regulated miR-144 exhibited a lower mean tumor diameter and weight, and increased apoptosis index and expression of AKAP12 and ERK1/2. CONCLUSION Taken together, these studies demonstrate the stimulative role of miR-144 in MDS progression by regulating AKAP12-dependent ERK1/2 signaling pathway.
Collapse
|
18
|
Choi Y, Hur EH, Moon JH, Goo BK, Choi DR, Lee JH. Expression and prognostic significance of microRNAs in Korean patients with myelodysplastic syndrome. Korean J Intern Med 2019; 34:390-400. [PMID: 29132200 PMCID: PMC6406090 DOI: 10.3904/kjim.2016.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 06/17/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS Various alterations of microRNA (miRNA) expression have been reported in myelodysplastic syndrome (MDS). We aimed to investigate the unique patterns and prognostic significance of miRNA expression in Korean patients with MDS. METHODS Bone marrow mononuclear cells were collected from eight healthy controls and 26 patients with MDS, and miRNAs were isolated and assessed via quantitative real-time polymerase chain reaction for selected miRNAs, including miR-21, miR-124a, miR-126, miR-146b-5p, miR-155, miR-182, miR-200c, miR-342-5p, miR-708, and Let-7a. RESULTS MiR-124a, miR-155, miR-182, miR-200c, miR-342-5p, and Let-7a were significantly underexpressed in patients with MDS, compared to healthy controls. MiR-21, miR-126, 146b-5p, and miR-155 transcript levels were significantly lower in international prognostic scoring system lower (low and intermediate-1) risk MDS than in higher (intermediate-2 and high) risk MDS. Higher expression levels of miR-126 and miR-155 correlated with significantly shorter overall survival and leukemia-free survival. Higher miR-124a expression also tended to be related to shorter survivals. CONCLUSION Although our study was limited by the relatively small number of patients included, we identified several miRNAs associated with pathogenesis, leukemic transformation, and prognosis in MDS.
Collapse
Affiliation(s)
- Yunsuk Choi
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Hyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kwan Goo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Ro Choi
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence to Je-Hwan Lee, M.D. Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-3218 Fax: +82-2-3010-6885 E-mail:
| |
Collapse
|
19
|
Krejcik Z, Belickova M, Hrustincova A, Votavova H, Jonasova A, Cermak J, Dyr JE, Merkerova MD. MicroRNA profiles as predictive markers of response to azacitidine therapy in myelodysplastic syndromes and acute myeloid leukemia. Cancer Biomark 2018; 22:101-110. [PMID: 29630523 DOI: 10.3233/cbm-171029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Azacitidine (AZA) is a nucleoside analog used for treatment of myelodysplasia and the prediction of AZA responsiveness is important for the therapy management. METHODS Using microarrays and reverse-transcription quantitative-PCR, we analyzed microRNA (miRNA) expression in bone marrow CD34+ cells of 27 patients with higher-risk myelodysplastic syndromes or acute myeloid leukemia with myelodysplasia-related changes before and during AZA treatment. RESULTS At baseline, we found that future overall response rate was significantly higher in patients with upregulated miR-17-3p and downregulated miR-100-5p and miR-133b. Importantly, the high level of miR-100-5p at baseline was associated with shorter overall survival (HR = 4.066, P= 0.008). After AZA treatment, we observed deregulation of 30 miRNAs in responders (including downregulation of miR-10b-5p, miR-15a-5p/b-5p, miR-24-3p, and miR-148b-3p), while their levels remained unchanged in non-responders. CONCLUSIONS Our study demonstrates that responders and non-responders have distinct miRNA patterns and that the level of specific miRNAs before therapy may predict the efficacy of AZA treatment.
Collapse
Affiliation(s)
- Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jan E Dyr
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | |
Collapse
|
20
|
Chronic immune response dysregulation in MDS pathogenesis. Blood 2018; 132:1553-1560. [PMID: 30104218 DOI: 10.1182/blood-2018-03-784116] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic innate immune signaling in hematopoietic cells is widely described in myelodysplastic syndromes (MDS), and innate immune pathway activation, predominantly via pattern recognition receptors, increases the risk of developing MDS. An inflammatory component to MDS has been reported for many years, but only recently has evidence supported a more direct role of chronic innate immune signaling and associated inflammatory pathways in the pathogenesis of MDS. Here we review recent findings and discuss relevant questions related to chronic immune response dysregulation in MDS.
Collapse
|
21
|
Setijono SR, Kwon HY, Song SJ. MicroRNA, an Antisense RNA, in Sensing Myeloid Malignancies. Front Oncol 2018; 7:331. [PMID: 29441324 PMCID: PMC5797589 DOI: 10.3389/fonc.2017.00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/26/2017] [Indexed: 01/22/2023] Open
Abstract
Myeloid malignancies, including myelodysplastic syndromes and acute myeloid leukemia, are clonal diseases arising in hematopoietic stem or progenitor cells. In recent years, microRNA (miRNA) expression profiling studies have revealed close associations of miRNAs with cytogenetic and molecular subtypes of myeloid malignancies, as well as outcome and prognosis of patients. However, the roles of miRNA deregulation in the pathogenesis of myeloid malignancies and how they cooperate with protein-coding gene variants in pathological mechanisms leading to the diseases have not yet been fully understood. In this review, we focus on recent insights into the role of miRNAs in the development and progression of myeloid malignant diseases and discuss the prospect that miRNAs may serve as a potential therapeutic target for leukemia.
Collapse
Affiliation(s)
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, South Korea
| |
Collapse
|
22
|
de Melo Campos P, Machado-Neto JA, Lorand-Metze I, Costa FF, Olalla Saad ST, Traina F. IRAK1 expression in bone marrow cells does not impact patient outcomes in myelodysplastic syndromes. Hematol Transfus Cell Ther 2018; 40:92-95. [PMID: 29519376 PMCID: PMC6003099 DOI: 10.1016/j.bjhh.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/07/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Paula de Melo Campos
- Instituto Nacional de Ciência e Tecnologia do Sangue da Universidade Estadual de Campinas (Hemocentro/Unicamp), Campinas, SP, Brazil
| | | | - Irene Lorand-Metze
- Instituto Nacional de Ciência e Tecnologia do Sangue da Universidade Estadual de Campinas (Hemocentro/Unicamp), Campinas, SP, Brazil
| | - Fernando Ferreira Costa
- Instituto Nacional de Ciência e Tecnologia do Sangue da Universidade Estadual de Campinas (Hemocentro/Unicamp), Campinas, SP, Brazil
| | - Sara Teresinha Olalla Saad
- Instituto Nacional de Ciência e Tecnologia do Sangue da Universidade Estadual de Campinas (Hemocentro/Unicamp), Campinas, SP, Brazil
| | - Fabiola Traina
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP/USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:99-175. [PMID: 28838543 DOI: 10.1016/bs.ircmb.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (MiRNAs) are a class of endogenously encoded ~22 nucleotide, noncoding, single-stranded RNAs that contribute to development, body planning, stem cell differentiation, and tissue identity through posttranscriptional regulation and degradation of transcripts. Given their importance, it is predictable that dysregulation of MiRNAs, which target a wide variety of transcripts, can result in malignant transformation. In this review, we explore the discovery of MiRNAs, their mechanism of action, and the tools that aid in their discovery and study. Strikingly, many of the studies that have expanded our understanding of the contributions of MiRNAs to normal physiology and in the development of diseases have come from studies in the hematopoietic system and hematologic malignancies, with some of the earliest identified functions for mammalian MiRNAs coming from observations made in leukemias. So, with a special focus on the hematologic system, we will discuss how MiRNAs contribute to differentiation of stem cells and how dysregulation of MiRNAs contributes to the development of malignancy, by providing examples of specific MiRNAs that function as oncogenes or tumor suppressors, as well as of defects in MiRNA processing. Finally, we will discuss the promise of MiRNA-based therapeutics and challenges for the future study of disease-causing MiRNAs.
Collapse
|
24
|
MicroRNAs as prognostic biomarker and relapse indicator in leukemia. Clin Transl Oncol 2017; 19:951-960. [PMID: 28271337 DOI: 10.1007/s12094-017-1638-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Despite significant progress in the treatment of different types of leukemia, relapse remains a challenging clinical problem that is observed in a number of patients who are often resistant to chemotherapy and exhibit multi-drug resistance. Identification of new functional biomarkers, including microRNAs, is essential to determine prognosis and relapse at the time of diagnosis. The aim of this study was to detect the specific microRNAs involved in predicting relapse or progression in acute and chronic leukemias, as well as their relationship with overall survival (OS) and relapse-free survival (RFS). The relevant literature was identified through a PubMed and Scholar search (2008-2016) of English-language papers using the terms Leukemia, microRNAs, survival and relapse. Different leukemia types and subtypes show specific microRNA expression profile and different changes, which can be useful in the differentiation between leukemias and evaluation of relapse at the time of diagnosis. Altered microRNA expression profiles can turn these molecules into oncogenes or tumor suppressors, which affect the expression of relapse-related genes. Therefore, monitoring of specific microRNA expression profiles from diagnosis and during follow-up of patients can contribute to the assessment of outcome and determination of relapse and prognosis of leukemic patients.
Collapse
|
25
|
Over-expression of miR-196b-5p is significantly associated with the progression of myelodysplastic syndrome. Int J Hematol 2017; 105:777-783. [PMID: 28224273 DOI: 10.1007/s12185-017-2201-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal stem cell disorder characterized by ineffective hematopoiesis with a high risk of transformation to acute myeloid leukemia (AML). miRNAs function as tumor suppressors and oncogenes in various cancers and regulate the differentiation potential of hematopoietic stem and progenitor cells (HSPCs). It has been suggested that miRNAs may play an important role in progression of MDS. We analyzed bone marrow samples collected from MDS patients according to different risk stratification indicated by the International Prognostic Scoring System (IPSS). We demonstrated that miR-196b-5p was up-regulated in intermediate II and higher groups, and in secondary AML (s-AML) patients in particular (P < 0.01) compared with healthy controls, suggesting that the higher expression levels are associated with increased risk of the development of MDS. We observed changes in proliferation and apoptosis in MDS-L cells following transfection with miR-196-5p mimics or inhibitors. After up-regulating the expression of miR-196b-5p, proliferation of MDS-L cells was up-regulated, whereas apoptosis was down-regulated (P < 0.05). In contrast, down-regulation of miR-196b-5p expression decreased cell proliferation and increased apoptosis (P < 0.05). We concluded that over-expression of miR-196b-5p may be closely associated with the risk of transformation to leukemia in MDS patients.
Collapse
|
26
|
Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 2017; 129:1586-1594. [PMID: 28159737 DOI: 10.1182/blood-2016-10-696062] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that myelodysplastic syndromes (MDSs) arise from a small population of disease-initiating hematopoietic stem cells (HSCs) that persist and expand through conventional therapies and are major contributors to disease progression and relapse. MDS stem and progenitor cells are characterized by key founder and driver mutations and are enriched for cytogenetic alterations. Quantitative alterations in hematopoietic stem and progenitor cell (HSPC) numbers are also seen in a stage-specific manner in human MDS samples as well as in murine models of the disease. Overexpression of several markers such as interleukin-1 (IL-1) receptor accessory protein (IL1RAP), CD99, T-cell immunoglobulin mucin-3, and CD123 have begun to differentiate MDS HSPCs from healthy counterparts. Overactivation of innate immune components such as Toll-like receptors, IL-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor-6, IL8/CXCR2, and IL1RAP signaling pathways has been demonstrated in MDS HSPCs and is being targeted therapeutically in preclinical and early clinical studies. Other dysregulated pathways such as signal transducer and activator of transcription 3, tyrosine kinase with immunoglobulinlike and EGF-like domains 1/angiopoietin-1, p21-activated kinase, microRNA 21, and transforming growth factor β are also being explored as therapeutic targets against MDS HSPCs. Taken together, these studies have demonstrated that MDS stem cells are functionally critical for the initiation, transformation, and relapse of disease and need to be targeted therapeutically for future curative strategies in MDSs.
Collapse
|
27
|
Guo Y, Strickland SA, Mohan S, Li S, Bosompem A, Vickers KC, Zhao S, Sheng Q, Kim AS. MicroRNAs and tRNA-derived fragments predict the transformation of myelodysplastic syndromes to acute myeloid leukemia. Leuk Lymphoma 2017; 58:1-15. [PMID: 28084850 DOI: 10.1080/10428194.2016.1272680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders of the elderly that carry an increased risk of progression to acute myeloid leukemia (AML). Since small non-coding RNAs (sRNAs), including microRNA (miRNAs), act as regulators of cellular differentiation, we hypothesized that changes to sRNAs might be implicated in the progression of MDS to AML. We conducted sRNA sequencing on three sets of patients: Group A (MDS patients who never progressed to AML); Group B (MDS patients who later progressed to an AML); and Group C (AML patients with myelodysplasia-related changes, including patients with a known preceding diagnosis of MDS). We identified five miRNAs that differentiated Groups A and B, independent of bone marrow blast percentage, including three members of the miR-181 family, as well as differential patterns of miRNA isoforms (isomiRs) and tDRs. Thus, we have identified sRNA biomarkers that predict MDS cases that are likely to progress to AML.
Collapse
Affiliation(s)
- Yan Guo
- a Center for Quantitative Sciences , Vanderbilt University , Nashville , TN , USA
| | - Stephen A Strickland
- b Department of Medicine, Division of Hematology/Oncology , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Sanjay Mohan
- b Department of Medicine, Division of Hematology/Oncology , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Shaoying Li
- c Hematopathology Department , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amma Bosompem
- d Department of Pathology , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Kasey C Vickers
- e Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Shilin Zhao
- f Department of Cancer Biology , Vanderbilt University , Nashville , TN , USA
| | - Quanhu Sheng
- f Department of Cancer Biology , Vanderbilt University , Nashville , TN , USA
| | - Annette S Kim
- g Department of Pathology, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
28
|
Solly F, Koering C, Mohamed AM, Maucort-Boulch D, Robert G, Auberger P, Flandrin-Gresta P, Adès L, Fenaux P, Kosmider O, Tavernier-Tardy E, Cornillon J, Guyotat D, Campos L, Mortreux F, Wattel E. An miRNA–DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia. Clin Cancer Res 2016; 23:3025-3034. [DOI: 10.1158/1078-0432.ccr-16-2304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
|
29
|
Kuang X, Chi J, Wang L. Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. ACTA ACUST UNITED AC 2016; 21:593-602. [PMID: 27357100 DOI: 10.1080/10245332.2016.1193962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Myelodysplastic syndromes (MDS) include a heterogeneous group of clonal hematological stem cell disorders characterized by ineffective hematopoiesis, cytopenias. MicroRNAs (miRNAs) are short non-coding RNA molecules that repress gene expression at the post-transcriptional level. In this review, we summarize advanced investigations that underscore deregulated miRNA expression in MDS, and discuss the implications of miRNAs in the molecular pathogenesis of MDS. METHODS Relevant English-language literatures were searched and retrieved from PubMed using the terms MDS and miRNAs. RESULTS The majority of studies have focused on profiling miRNA expression in MDS, only a small number of studies have investigated the exact pathogenic role of miRNAs in MDS. DISCUSSION In the hematopoietic system, miRNAs are critical regulators of the differentiation of hematopoietic stem/progenitor cells. Thus, it is not surprising that dysregulation of miRNAs can lead to hematopoietic stem cell anomalies and further cause MDS. Deregulated miRNA expression has been identified in MDS, and it contributes to the pathogenesis and progression of MDS. Chromosomal aberrations, hypermethylation of miRNA promoters, and mutations of miRNA genes may lead to dysregulation of miRNA in MDS. However, the complex regulatory networks between miRNAs and their potential target genes in MDS still need to be explored in further studies. CONCLUSIONS Although the function of miRNAs is not fully understood, these small non-coding RNAs represent novel pathogenetic and clinical implications in MDS. The studies of miRNAs may guide us towards a better understanding of this disease and shed light on the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xingyi Kuang
- a Department of Hematology , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , PR China
| | - Jianxiang Chi
- b The Center for the Study of Haematological Malignancies , 2032 Nicosia , Cyprus
| | - Li Wang
- a Department of Hematology , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , PR China
| |
Collapse
|
30
|
Jang SJ, Choi IS, Park G, Moon DS, Choi JS, Nam MH, Yoon SY, Choi CH, Kang SH. MicroRNA-205-5p is upregulated in myelodysplastic syndromes and induces cell proliferation via PTEN suppression. Leuk Res 2016; 47:172-7. [PMID: 27379838 DOI: 10.1016/j.leukres.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Abstract
Micro (mi)RNA dysregulation is implicated in the development of myelodysplastic syndrome (MDS). Chromosomal abnormalities on 1q are frequently detected in Korean patients with MDS; however, how these are related to disease development is unknown. The present study compared the expression profiles of miRNAs encoded by chromosome 1q between 65 MDS patients and 11 controls. We found that miR-205-5p levels were 12.5 fold higher in the former (P=0.001). miR-205-5p level was increased in 44.7% of patients when an arbitrary 2(-ΔCt) cut-off value of 1.25 was used. miR-205-5p expression data were used to generate a receiver operating characteristic (ROC) curve for miR-205-5p, for which the area under the curve (AUC) was 0.825 (95% confidence interval: 0.710-0.941; P=0.001). Moreover, transfection with a miR-205-5p mimic induced cell proliferation by inhibiting the expression of the tumor suppressor protein phosphatase and tensin homolog (PTEN). Our findings suggest that miR-205-5p upregulation contributes to MDS by suppressing PTEN and that miR-205-5p thus acts as an oncogene in hematopoietic cells.
Collapse
Affiliation(s)
- Sook Jin Jang
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - In-Sun Choi
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Geon Park
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Dae-Soo Moon
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Ji-Seon Choi
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheol Hee Choi
- Department of Pharmacology, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Seong-Ho Kang
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea.
| |
Collapse
|
31
|
Milunović V, Mandac Rogulj I, Planinc-Peraica A, Bulycheva E, Kolonić Ostojić S. The role of microRNA in myelodysplastic syndromes: beyond DNA methylation and histone modification. Eur J Haematol 2016; 96:553-63. [PMID: 26773284 DOI: 10.1111/ejh.12735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous group of hematologic disorders of mostly elderly and based on distinct clinical phenotypes. Current paradigm of their pathogenesis relies on somatic gene mutations combined with the predisposing defective osteohematopoietic niche, but due to the breakout in epigenetic research scientific focus has steered toward two most common epigenetic modifications: methylation mechanisms and histone modification. At the same time, relatively few studies have been undertaken regarding the third epigenetic pathway - microRNAs - in MDS. The main aim of this review is to provide the basics of microRNA biology and function in oncogenesis, showing the complexity of mechanisms behind this single-stranded 22 nucleotides long RNA molecule, with further focus on its implication in MDS pathology and clinical context. By extensive literature search, we have shown enough evidence for their deregulation in MDS. However, few studies have addressed the issue on pathogenic events in MDS and its association with specific microRNAs. Preliminary research in clinical setting has shown the possible utility of microRNAs in terms of prognosis and therapy, although we are only beginning to understand various implications of microRNAs in MDS and further extensive research is warranted to answer multiple questions arising from interconnection of this epigenetic mechanism in MDS.
Collapse
Affiliation(s)
- Vibor Milunović
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, DC, USA
| | - Inga Mandac Rogulj
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia
| | - Ana Planinc-Peraica
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ekaterina Bulycheva
- Medizinische Klinic und Poliklinik I, Universitatsklinikum Carl-Gustav-Carus, Technische Universitat, Dresden, Germany
| | - Slobodanka Kolonić Ostojić
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
32
|
Ciccone M, Calin GA. MicroRNAs in Myeloid Hematological Malignancies. Curr Genomics 2015; 16:336-48. [PMID: 27047254 PMCID: PMC4763972 DOI: 10.2174/138920291605150710122815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are 19-24 nucleotides noncoding RNAs which silence modulate the expression of target genes by binding to the messenger RNAs. Myeloid malignancies include a broad spectrum of acute and chronic disorders originating from from the clonal transformation of a hematopoietic stem cell. Specific genetic abnormalities may define myeloid malignancies, such as translocation t(9;22) that represent the hallmark of chronic myeloid leukemia. Although next-generation sequencing pro-vided new insights in the genetic characterization and pathogenesis of myeloid neoplasms, the molecular mechanisms underlying myeloid neoplasms are lacking in most cases. Recently, several studies have demonstrated that the expression levels of specific miRNAs may vary among patients with myeloid malignancies compared with healthy individuals and partially unveiled how miRNAs participate in the leukemic transformation process. Finally, in vitro experiments and pre-clinical model provided preliminary data of the safety and efficacy of miRNA inhibitory molecules, opening new avenue in the treatment of myeloid hematological malignancies.
Collapse
Affiliation(s)
- Maria Ciccone
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Rinker EB, Dueber JC, Qualtieri J, Tedesco J, Erdogan B, Bosompem A, Kim AS. Differential expression of ribosomal proteins in myelodysplastic syndromes. J Clin Pathol 2015; 69:176-80. [DOI: 10.1136/jclinpath-2015-203093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
|
34
|
Guo Y, Bosompem A, Mohan S, Erdogan B, Ye F, Vickers KC, Sheng Q, Zhao S, Li CI, Su PF, Jagasia M, Strickland SA, Griffiths EA, Kim AS. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics 2015; 16:727. [PMID: 26400237 PMCID: PMC4581457 DOI: 10.1186/s12864-015-1929-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). Methods Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy. Results Using miRNA sequencing data generated from bone marrow aspirate samples of patients with known MDS (N = 47) and controls (N = 23), we demonstrated that transfer RNA (tRNA) fragments (specifically tRNA halves, tRHs) are one of the most common species of small RNA isolated from size selection. Using tRNA expression values extracted from miRNA sequencing data, we identified six tRNA fragments that are differentially expressed between MDS and normal samples. Using the elastic net method, we identified four tRNAs-derived small RNAs (tDRs) that together can explain 67 % of the variation in treatment response for MDS patients. Similar analysis of specifically mitochondrial tDRs (mt-tDRs) identified 13 mt-tDRs which distinguished disease status in the samples and a single mt-tDR which predited response. Finally, 14 SNVs within the tDRs were found in at least 20 % of the MDS samples and were not observed in any of the control specimens. Discussion This study highlights the prevalence of tDRs in RNA-seq studies focused on small RNAs. The potential etiologies of these species, both technical and biologic, are discussed as well as important challenges in the interpretation of tDR data. Conclusions Our analysis results suggest that tRNA fragments can be accurately detected through miRNA sequencing data and that the expression of these species may be useful in the diagnosis of MDS and the prediction of response to therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1929-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Amma Bosompem
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sanjay Mohan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Begum Erdogan
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA.
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Quanhu Sheng
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Shilin Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Chung-I Li
- Department of Applied Mathematics, National Chiayi University, Chiayi City, Taiwan.
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan City, Taiwan.
| | - Madan Jagasia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Stephen A Strickland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Annette S Kim
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Present address: Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review highlights recent insights into the roles of microRNAs (miRNAs) in pathogenesis of myeloid malignancies and tantalising prospects of miRNA therapy. RECENT FINDINGS New roles for miRNAs in biological and disease processes are constantly being discovered. Although great effort has been put into identifying and cataloguing aberrantly expressed miRNAs in leukaemia, very little is known about the functional consequences of their deregulation in myeloid malignancies. This review will discuss the significance of powerful oncogenic miRNAs such as miR-22 in self-renewal and transformation of haematopoietic stem cells, as well as their ability to induce epigenetic alterations in the pathogenesis of the stem cell disorder myelodysplastic syndromes and myeloid leukaemia. SUMMARY Improved understanding of biological roles of miRNAs in the pathogenesis of haematological malignancies will allow rational stratification of patients and provide new therapeutic entries for the treatment of myelodysplastic syndromes and leukaemia.
Collapse
|
36
|
Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol 2015; 43:587-598. [PMID: 26143580 DOI: 10.1016/j.exphem.2015.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023]
Abstract
Overexpression of immune-related genes is widely reported in myelodysplastic syndromes (MDSs), and chronic immune stimulation increases the risk for developing MDS. Aberrant innate immune activation, such as that caused by increased toll-like receptor (TLR) signaling, in MDS can contribute to systemic effects on hematopoiesis, in addition to cell-intrinsic defects on hematopoietic stem/progenitor cell (HSPC) function. This review will deconstruct aberrant function of TLR signaling mediators within MDS HSPCs that may contribute to cell-intrinsic consequences on hematopoiesis and disease pathogenesis. We will discuss the contribution of chronic TLR signaling to the pathogenesis of MDS based on evidence from patients and mouse genetic models.
Collapse
|
37
|
Choi JS, Nam MH, Yoon SY, Kang SH. MicroRNA-194-5p could serve as a diagnostic and prognostic biomarker in myelodysplastic syndromes. Leuk Res 2015; 39:763-8. [PMID: 25975751 DOI: 10.1016/j.leukres.2015.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/19/2015] [Indexed: 12/12/2022]
Abstract
Trisomy 8 and trisomy 1q are the most frequent chromosomal abnormalities in Korean patients with myelodysplastic syndrome (MDS). MicroRNA (miRNA) deregulation is involved in the development of hematological malignancies, including MDS, and cancer-associated genomic regions are known to encode miRNAs. The aim of the present study was to investigate the involvement of miRNAs encoded by chromosomes 8 and 1q in MDS. For this, the expression of nine miRNAs encoded by chromosome 8 (miR-30b-5p, miR-30d-5p, miR-101-3p, miR-124-3p, miR-151a-5p, miR-320a, miR-486-5p, miR-596, and miR-875-5p) and three miRNAs encoded by chromosome 1q (miR-29c-3p, miR-194-5p, and miR-214-3p) was compared between 65 MDS patients and 11 controls. We found a significant upregulation of miR-194-5p (5.1-fold, P=0.002) and miR-320a (2.94-fold, P=0.016) in MDS patients compared with controls. The patients with low miR-194-5p expression showed a significantly decreased overall survival (P=0.049). The areas under the miR-194-5p and miR-320a ROC curves were 0.797 (P=0.002) and 0.729 (P=0.016), respectively. Although these findings need to be validated in a larger patient population, our results indicate that miR-194-5p is a candidate diagnostic biomarker for MDS and that low miR-194-5p expression could be associated with poor overall survival for MDS patients.
Collapse
Affiliation(s)
- Ji-Seon Choi
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Ho Kang
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, South Korea.
| |
Collapse
|
38
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
39
|
Stankova M, Kubaczkova V, Sedlarikova L, Sevcikova S. Circulating microRNA as Biomarkers in Hematological Malignancies. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:123-138. [PMID: 26608201 DOI: 10.1007/978-3-0348-0955-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate differentiation, proliferation, and apoptosis of hematopoietic stem cells. Aberrant microRNA (miRNA) expression could affect normal hematopoiesis, leading to the development of hematological malignancies. Hematologic cancers, which are caused by malignant transformation of cells of the bone marrow and the lymphatic system, are usually divided into three major groups: leukemias, lymphomas, and monoclonal gammopathies. Hematologic malignancies are highly aggressive diseases with high morbidity and mortality. For these reasons, early and easily obtainable markers for diagnosis, risk stratification, and follow-up are essential for improvement of outcome and survival of these patients. Recent studies have provided new insights about the diagnostic value of expression patterns of miRNAs in serum/plasma in these diseases. While the use of circulating miRNAs is only at the experimental level, it appears to have a great potential. This chapter deals with the use of circulating miRNAs as minimally invasive biomarkers in hematologic malignancies.
Collapse
Affiliation(s)
- Monika Stankova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Kubaczkova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lenka Sedlarikova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
40
|
Jonas BA, Greenberg PL. MDS prognostic scoring systems – past, present, and future. Best Pract Res Clin Haematol 2014; 28:3-13. [PMID: 25659725 DOI: 10.1016/j.beha.2014.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous group of clonal myeloid haemopathies characterized by defective differentiation of haematopoietic cells and expansion of the abnormal clone. This leads to bone marrow failure with the resulting peripheral blood cytopenias and evolution to or toward acute myeloid leukaemia that characterize MDS clinically. The clinical heterogeneity of MDS has led several groups to analyze patient and clinical characteristics to develop prognostic scoring systems yielding estimates of overall and leukaemia-free survival to guide clinical decision-making. These models have evolved over time as our understanding of the pathogenesis, natural history, and treatment of MDS has improved. Rapid advances in flow cytometric analysis, adjuncts to standard metaphase cytogenetics, and gene mutation analysis are revolutionizing our understanding of MDS pathogenesis and prognosis. Despite the existence of multiple well-validated prognostic scoring systems, further refinements of current models with these new sources of prognostic data are needed and are described herein.
Collapse
Affiliation(s)
- Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, UC Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA 95817, United States.
| | - Peter L Greenberg
- Department of Internal Medicine, Division of Hematology, Stanford University School of Medicine, Stanford Comprehensive Cancer Center, 875 Blake Wilbur Drive, Stanford, CA 94305, United States.
| |
Collapse
|
41
|
Karoopongse E, Yeung C, Byon J, Ramakrishnan A, Holman ZJ, Jiang PYZ, Yu Q, Deeg HJ, Marcondes AM. The KDM2B- let-7b -EZH2 axis in myelodysplastic syndromes as a target for combined epigenetic therapy. PLoS One 2014; 9:e107817. [PMID: 25225797 PMCID: PMC4166605 DOI: 10.1371/journal.pone.0107817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 12/02/2022] Open
Abstract
Both DNA and histone methylation are dysregulated in the myelodysplastic syndromes (MDS). Based on preliminary data we hypothesized that dysregulated interactions of KDM2B, let-7b and EZH2 signals lead to an aberrant epigenetic landscape. Gene expression in CD34+ cells from MDS marrows was analyzed by NanoString miR array and validated by real-time polymerase chain reaction (PCR). The functions of KDM2B, let-7b and EZH2 were characterized in myeloid cell lines and in primary MDS cells. Let-7b levels were significantly higher, and KDM2B and EZH2 expression was lower in primary CD34+ MDS marrow cells (n = 44) than in healthy controls (n = 21; p<0.013, and p<0.0001, respectively). Overexpression of let-7b reduced EZH2 and KDM2B protein levels, and decreased cells in S-phase while increasing G0/G1 cells (p = 0.0005), accompanied by decreased H3K27me3 and cyclin D1. Silencing of KDM2B increased let-7b expression. Treatment with the cyclopentanyl analog of 3-deazaadenosine, DZNep, combined with the DNA hypomethylating agent 5-azacitidine, decreased levels of EZH2, suppressed methylation of di- and tri-methylated H3K27, and increased p16 expression, associated with cell proliferation. Thus, KDM2B, via let-7b/EZH2, promotes transcriptional repression. DZNep bypassed the inhibitory KDM2B/let-7b/EZH2 axis by preventing H3K27 methylation and reducing cell proliferation. DZNep might be able to enhance the therapeutic effects of DNA hypomethylating agents such as 5-azacitidine, currently considered standard therapy for patients with MDS.
Collapse
Affiliation(s)
- Ekapun Karoopongse
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Cecilia Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Anatomic Pathology, University of Washington, Seattle, Washington, United States of America
| | - John Byon
- Department of Hematology, University of Washington, Seattle, Washington, United States of America
| | - Aravind Ramakrishnan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Zaneta J. Holman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter Y. Z. Jiang
- Medical Oncology, Providence Regional Cancer Partnership and the Everett Clinic, Everett, Washington, United States of America
| | - Qiang Yu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, China
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - A. Mario Marcondes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
42
|
Expressional changes of genes and miRNA in common megakaryocyte-erythroid progenitors from lower-risk myelodysplastic syndrome. Int J Hematol 2014; 100:361-9. [PMID: 25056847 DOI: 10.1007/s12185-014-1639-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
Myelodysplastic syndrome (MDS) is a stem cell tumor characterized by dysplastic features and ineffective hematopoiesis in the early phase and leukemic progression in the late phase. Speculating that differences in the expression of genes and microRNA (miRNA) in control and MDS-derived erythroid progenitors may cause ineffective erythropoiesis, we sorted common megakaryocyte-erythroid progenitors (MEPs) in bone marrow cells from three lower-risk MDS patients, and compared expression levels of genes and miRNA with those from controls. In apoptosis-related pathways, the expression of some pro-apoptotic genes, such as cell death-inducing DFFA-like effector A, caspase 5, and Fas ligand, was elevated in MDS-derived MEPs, while those of anti-apoptotic CD40 and tumor necrosis factor were lower. In hematopoiesis-regulating pathways, RUNX1 and ETV6 genes showed reduced expression. Expression profiling revealed that three and 35 miRNAs were significantly up- and down-regulated in MDS-derived MEPs. MIR9 exhibited robust expression in MEPs and CD71+GlyA+ erythroid cells derived from one of the three patients. Interestingly, overexpression of MIR9 inhibited the accumulation of hemoglobin in UT-7/GM cells. Some of these alterations in gene and miRNA expression may contribute to the pathogenesis of ineffective hematopoiesis in lower-risk MDS and provide molecular markers for sub-classification and making a prognosis.
Collapse
|
43
|
Zhao JL, Starczynowski DT. Role of microRNA-146a in normal and malignant hematopoietic stem cell function. Front Genet 2014; 5:219. [PMID: 25071842 PMCID: PMC4087671 DOI: 10.3389/fgene.2014.00219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 01/12/2023] Open
Abstract
Regulation of hematopoiesis is controlled by microRNAs (miRNAs). In this review, we focus on miR-146a, and its role in regulating normal and malignant hematopoiesis. miR-146a is a negative regulator of immune cell activation by repressing two targets, TRAF6 and IRAK1. Genetic deletion of miR-146a confirmed a role of miR-146a during innate immune signaling as well as for hematopoietic stem cell function. miR-146a is also implicated in the pathogenesis of human myelodysplastic syndromes (MDSs) as it is located within a commonly deleted region on chromosome 5, and miR-146a-deficient mice exhibit features of an MDS-like disease. With new insight into miR-146a through genetic and expression analyses, we highlight and discuss the recent advances in the understanding of miR-146a in physiological hematopoiesis during steady-state and inflammation, as well as in MDS.
Collapse
Affiliation(s)
- Jimmy L Zhao
- Division of Biology and Biological Engineering, California Institute of Technology Pasadena, CA, USA ; David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Department of Cancer Biology, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
44
|
Gañán-Gómez I, Wei Y, Yang H, Pierce S, Bueso-Ramos C, Calin G, Boyano-Adánez MDC, García-Manero G. Overexpression of miR-125a in myelodysplastic syndrome CD34+ cells modulates NF-κB activation and enhances erythroid differentiation arrest. PLoS One 2014; 9:e93404. [PMID: 24690917 PMCID: PMC3972113 DOI: 10.1371/journal.pone.0093404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/04/2014] [Indexed: 01/05/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are characterized by impaired proliferation and differentiation of hematopoietic stem cells. The participation of toll-like receptor (TLR)-mediated signaling in MDS is well documented. Increased TLR signaling leads to the constitutive activation of NF-κB, which mediates inflammation, cell proliferation and apoptosis. In addition, the TLR pathway induces the expression of miRNAs which participate in the fine-tuning of the inflammatory response. miRNAs also regulate other biological processes, including hematopoiesis. miR-125a and miR-125b are known modulators of hematopoiesis and are abnormally expressed in several hematologic malignancies. However, little is known about their role in MDS. NF-κB-activating ability has been described for both miRNAs. We studied the role of miR-125a/miR-125b in MDS and their relationship with TLR signaling and hematopoietic differentiation. Our results indicate that miR-125a is significantly overexpressed in MDS patients and correlates negatively with patient survival. Expression of miR-99b, which is clustered with miR-125a, is also directly correlated with prognosis of MDS. Both miR-125a and miR-99b activated NF-κB in vitro; however, we observed a negative correlation between miR-99b expression and the levels of TLR2, TLR7 and two downstream genes, suggesting that NF-κB activation by the miRNA cluster occurs in the absence of TLR signaling. We also show that TLR7 is negatively correlated with patient survival in MDS. In addition, our data suggest that miR-125a may act as an NF-κB inhibitor upon TLR stimulation. These results indicate that miR-125a is involved in the fine-tuning of NF-κB activity and that its effects may depend on the status of the TLR pathway. Furthermore, we observed that miR-125a inhibits erythroid differentiation in leukemia and MDS cell lines. Therefore, this miRNA could serve as a prognostic marker and a potential therapeutic target in MDS.
Collapse
Affiliation(s)
- Irene Gañán-Gómez
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
- * E-mail: (IG-G); (GG-M)
| | - Yue Wei
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - George Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | | | - Guillermo García-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (IG-G); (GG-M)
| |
Collapse
|
45
|
Liao R, Xu Y, Chen M, Chen X, Zhan X, Sun J. Molecular mechanism of microRNA involvement in genesis of myelodysplastic syndrome and its transformation to acute myeloid leukemia. Hematology 2013; 18:191-7. [PMID: 23321417 DOI: 10.1179/1607845412y.0000000053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Rongxia Liao
- Medical English DepartmentCollege of Basic Medicine, Third Military Medical University, Chongqing, PR China
| | - Yanmei Xu
- Cancer Institute of People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Min Chen
- Medical English DepartmentCollege of Basic Medicine, Third Military Medical University, Chongqing, PR China
| | - Xiewan Chen
- Medical English DepartmentCollege of Basic Medicine, Third Military Medical University, Chongqing, PR China
| | - Xiaoqing Zhan
- Medical English DepartmentCollege of Basic Medicine, Third Military Medical University, Chongqing, PR China
| | - Jianguo Sun
- Cancer Institute of People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
46
|
Basova P, Pospisil V, Savvulidi F, Burda P, Vargova K, Stanek L, Dluhosova M, Kuzmova E, Jonasova A, Steidl U, Laslo P, Stopka T. Aggressive acute myeloid leukemia in PU.1/p53 double-mutant mice. Oncogene 2013; 33:4735-45. [PMID: 24121269 DOI: 10.1038/onc.2013.414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/02/2023]
Abstract
PU.1 downregulation within hematopoietic stem and progenitor cells (HSPCs) is the primary mechanism for the development of acute myeloid leukemia (AML) in mice with homozygous deletion of the upstream regulatory element (URE) of PU.1 gene. p53 is a well-known tumor suppressor that is often mutated in human hematologic malignancies including AML and adds to their aggressiveness; however, its genetic deletion does not cause AML in mouse. Deletion of p53 in the PU.1(ure/ure) mice (PU.1(ure/ure)p53(-/-)) results in more aggressive AML with shortened overall survival. PU.1(ure/ure)p53(-/-) progenitors express significantly lower PU.1 levels. In addition to URE deletion we searched for other mechanisms that in the absence of p53 contribute to decreased PU.1 levels in PU.1(ure/ure)p53(-/-) mice. We found involvement of Myb and miR-155 in downregulation of PU.1 in aggressive murine AML. Upon inhibition of either Myb or miR-155 in vitro the AML progenitors restore PU.1 levels and lose leukemic cell growth similarly to PU.1 rescue. The MYB/miR-155/PU.1 axis is a target of p53 and is activated early after p53 loss as indicated by transient p53 knockdown. Furthermore, deregulation of both MYB and miR-155 coupled with PU.1 downregulation was observed in human AML, suggesting that MYB/miR-155/PU.1 mechanism may be involved in the pathogenesis of AML and its aggressiveness characterized by p53 mutation.
Collapse
Affiliation(s)
- P Basova
- 1] Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic [2] Department of Experimental Biomodels, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - V Pospisil
- Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - F Savvulidi
- Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - P Burda
- Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - K Vargova
- Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - L Stanek
- 1] Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic [2] Department of Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - M Dluhosova
- Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - E Kuzmova
- Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - A Jonasova
- 1] Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic [2] Department of Medicine-Haematology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - U Steidl
- Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - P Laslo
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, St James's University Hospital, University of Leeds, Leeds, UK
| | - T Stopka
- 1] Department of Pathophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic [2] Department of Medicine-Haematology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
47
|
Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, Mathews L, Ferrer M, Southall N, Guha R, Keller J, Thomas C, Beverly LJ, Cortelezzi A, Oliva EN, Cuzzola M, Maciejewski JP, Mulloy JC, Starczynowski DT. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 2013; 24:90-104. [PMID: 23845443 PMCID: PMC3711103 DOI: 10.1016/j.ccr.2013.05.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/11/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022]
Abstract
Myelodysplastic syndromes (MDSs) arise from a defective hematopoietic stem/progenitor cell. Consequently, there is an urgent need to develop targeted therapies capable of eliminating the MDS-initiating clones. We identified that IRAK1, an immune-modulating kinase, is overexpressed and hyperactivated in MDSs. MDS clones treated with a small molecule IRAK1 inhibitor (IRAK1/4-Inh) exhibited impaired expansion and increased apoptosis, which coincided with TRAF6/NF-κB inhibition. Suppression of IRAK1, either by RNAi or with IRAK1/4-Inh, is detrimental to MDS cells, while sparing normal CD34(+) cells. Based on an integrative gene expression analysis, we combined IRAK1 and BCL2 inhibitors and found that cotreatment more effectively eliminated MDS clones. In summary, these findings implicate IRAK1 as a drugable target in MDSs.
Collapse
Affiliation(s)
- Garrett W Rhyasen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schubert M, Spahn M, Kneitz S, Scholz CJ, Joniau S, Stroebel P, Riedmiller H, Kneitz B. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer. PLoS One 2013; 8:e65064. [PMID: 23798998 PMCID: PMC3683014 DOI: 10.1371/journal.pone.0065064] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background The identification of additional prognostic markers to improve risk stratification and to avoid overtreatment is one of the most urgent clinical needs in prostate cancer (PCa). MicroRNAs, being important regulators of gene expression, are promising biomarkers in various cancer entities, though the impact as prognostic predictors in PCa is poorly understood. The aim of this study was to identify specific miRNAs as potential prognostic markers in high-risk PCa and to validate their clinical impact. Methodology and Principal Findings We performed miRNA-microarray analysis in a high-risk PCa study group selected by their clinical outcome (clinical progression free survival (CPFS) vs. clinical failure (CF)). We identified seven candidate miRNAs (let-7a/b/c, miR-515-3p/5p, -181b, -146b, and -361) that showed differential expression between both groups. Further qRT-PCR analysis revealed down-regulation of members of the let-7 family in the majority of a large, well-characterized high-risk PCa cohort (n = 98). Expression of let-7a/b/and -c was correlated to clinical outcome parameters of this group. While let-7a showed no association or correlation with clinical relevant data, let-7b and let-7c were associated with CF in PCa patients and functioned partially as independent prognostic marker. Validation of the data using an independent high-risk study cohort revealed that let-7b, but not let-7c, has impact as an independent prognostic marker for BCR and CF. Furthermore, we identified HMGA1, a non-histone protein, as a new target of let-7b and found correlation of let-7b down-regulation with HMGA1 over-expression in primary PCa samples. Conclusion Our findings define a distinct miRNA expression profile in PCa cases with early CF and identified let-7b as prognostic biomarker in high-risk PCa. This study highlights the importance of let-7b as tumor suppressor miRNA in high-risk PCa and presents a basis to improve individual therapy for high-risk PCa patients.
Collapse
Affiliation(s)
- Maria Schubert
- Department of Urology and Pediatric Urology, Comprehensive Cancer Center (CCC) Mainfranken, University Hospital, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
MicroRNAs (miRNAs) are key to the pathogenesis of human malignancies and increasingly recognized as potential biomarkers and therapeutic targets. Haematological malignancies, being the earliest human malignancies linked to aberrant miRNA expression, have consistently underpinned our understanding of the role that miRNAs play in cancer development. Here, we review the expanding roles attributed to miRNAs in the pathogenesis of different types of myeloid malignancies and highlight key findings.
Collapse
Affiliation(s)
- Jane E A Gordon
- Gene & Stem Cell Therapy Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | | |
Collapse
|
50
|
Vasilatou D, Papageorgiou SG, Dimitriadis G, Pappa V. Epigenetic alterations and microRNAs: new players in the pathogenesis of myelodysplastic syndromes. Epigenetics 2013; 8:561-70. [PMID: 23760524 DOI: 10.4161/epi.24897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The term epigenetics refers to the heritable changes in gene expression that do not represent changes in DNA sequence. DNA methylation and histone modification are the best studied epigenetic mechanisms. However, microRNAs, which affect gene expression at the posttranscriptional level, should be considered as members of the epigenetic machinery too. Myelodysplastic syndromes (MDS) are clone disorders of the hematopoietic stem cell with increased risk of leukemic transformation. Over the years, increased number of studies indicates the role of epigenetic mechanisms, including microRNAs, in MDS pathogenesis and prognosis. Indeed, epigenetic therapy with demethylating agents has already been applied to MDS. In this review we summarize current knowledge on the role of epigenetic alterations in MDS pathogenesis and treatment.
Collapse
Affiliation(s)
- Diamantina Vasilatou
- Second Department of Internal Medicine and Research Institute; Hematology Unit; Athens University Medical School; "Attikon" University General Hospital; Athens, Greece
| | | | | | | |
Collapse
|