1
|
Molina O, Ortega-Sabater C, Thampi N, Fernández-Fuentes N, Guerrero-Murillo M, Martínez-Moreno A, Vinyoles M, Velasco-Hernández T, Bueno C, Trincado JL, Granada I, Campos D, Giménez C, Boer JM, den Boer ML, Calvo GF, Camós M, Fuster JL, Velasco P, Ballerini P, Locatelli F, Mullighan CG, Spierings DCJ, Foijer F, Pérez-García VM, Menéndez P. Chromosomal instability in aneuploid acute lymphoblastic leukemia associates with disease progression. EMBO Mol Med 2024; 16:64-92. [PMID: 38177531 PMCID: PMC10897411 DOI: 10.1038/s44321-023-00006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.
Collapse
Affiliation(s)
- Oscar Molina
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Carmen Ortega-Sabater
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Namitha Thampi
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Narcís Fernández-Fuentes
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mercedes Guerrero-Murillo
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alba Martínez-Moreno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Talía Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan L Trincado
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Isabel Granada
- Hematology Service, Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Badalona, Spain
- Josep Carreras Leukemia Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | - Judith M Boer
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L den Boer
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Gabriel F Calvo
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mireia Camós
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose-Luis Fuster
- Pediatric Hematology and Oncology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Paola Ballerini
- AP-HP, Service of Pediatric Hematology, Hopital Armand Trousseau, Paris, France
| | - Franco Locatelli
- Bambino Gesù Children's Hospital, Catholic University of Sacred Heart, Rome, Italy
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Víctor M Pérez-García
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona, Spain.
- Spanish Cancer Research Network (CIBERONC), ISCIII, Barcelona, Spain.
| |
Collapse
|
2
|
Panuciak K, Nowicka E, Mastalerczyk A, Zawitkowska J, Niedźwiecki M, Lejman M. Overview on Aneuploidy in Childhood B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24108764. [PMID: 37240110 DOI: 10.3390/ijms24108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Recent years have brought significant progress in the treatment of B-cell acute lymphoblastic leukemia (ALL). This was influenced by both the improved schemes of conventionally used therapy, as well as the development of new forms of treatment. As a consequence, 5-year survival rates have increased and now exceed 90% in pediatric patients. For this reason, it would seem that everything has already been explored in the context of ALL. However, delving into its pathogenesis at the molecular level shows that there are many variations that still need to be analyzed in more detail. One of them is aneuploidy, which is among the most common genetic changes in B-cell ALL. It includes both hyperdiploidy and hypodiploidy. Knowledge of the genetic background is important already at the time of diagnosis, because the first of these forms of aneuploidy is characterized by a good prognosis, in contrast to the second, which is in favor of an unfavorable course. In our work, we will focus on summarizing the current state of knowledge on aneuploidy, along with an indication of all the consequences that may be correlated with it in the context of the treatment of patients with B-cell ALL.
Collapse
Affiliation(s)
- Kinga Panuciak
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Emilia Nowicka
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Angelika Mastalerczyk
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Haas OA, Borkhardt A. Hyperdiploidy: the longest known, most prevalent, and most enigmatic form of acute lymphoblastic leukemia in children. Leukemia 2022; 36:2769-2783. [PMID: 36266323 PMCID: PMC9712104 DOI: 10.1038/s41375-022-01720-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Hyperdiploidy is the largest genetic entity B-cell precursor acute lymphoblastic leukemia in children. The diagnostic hallmark of its two variants that will be discussed in detail herein is a chromosome count between 52 and 67, respectively. The classical HD form consists of heterozygous di-, tri-, and tetrasomies, whereas the nonclassical one (usually viewed as "duplicated hyperhaploid") contains only disomies and tetrasomies. Despite their apparently different clinical behavior, we show that these two sub-forms can in principle be produced by the same chromosomal maldistribution mechanism. Moreover, their respective array, gene expression, and mutation patterns also indicate that they are biologically more similar than hitherto appreciated. Even though in-depth analyses of the genomic intricacies of classical HD leukemias are indispensable for the elucidation of the disease process, the ensuing results play at present surprisingly little role in treatment stratification, a fact that can be attributed to the overall good prognoses and low relapse rates of the concerned patients and, consequently, their excellent treatment outcome. Irrespective of this underutilization, however, the detailed genetic characterization of HD leukemias may, especially in planned treatment reduction trials, eventually become important for further treatment stratification, patient management, and the clinical elucidation of outcome data. It should therefore become an integral part of all upcoming treatment studies.
Collapse
Affiliation(s)
- Oskar A Haas
- St. Anna Children's Hospital, Pediatric Clinic, Medical University, Vienna, Austria.
- Labdia Labordiagnostik, Vienna, Austria.
| | - Arndt Borkhardt
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partnering site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Bartsch L, Schroeder MP, Hänzelmann S, Bastian L, Lázaro-Navarro J, Schlee C, Tanchez JO, Schulze V, Isaakidis K, Rieger MA, Gökbuget N, Eckert C, Serve H, Horstmann M, Schrappe M, Brüggemann M, Baldus CD, Neumann M. An alternative CYB5A transcript is expressed in aneuploid ALL and enriched in relapse. BMC Genom Data 2022; 23:30. [PMID: 35436854 PMCID: PMC9014596 DOI: 10.1186/s12863-022-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogenous malignancy with poor prognosis in relapsed adult patients. The genetic basis for relapse in aneuploid subtypes such as near haploid (NH) and high hyperdiploid (HeH) BCP-ALL is only poorly understood. Pathogenic genetic alterations remain to be identified. To this end, we investigated the dynamics of genetic alterations in a matched initial diagnosis-relapse (ID-REL) BCP-ALL cohort. Here, we firstly report the identification of the novel genetic alteration CYB5Aalt, an alternative transcript of CYB5A, in two independent cohorts. METHODS We identified CYB5alt in the RNAseq-analysis of a matched ID-REL BCP-ALL cohort with 50 patients and quantified its expression in various molecular BCP-ALL subtypes. Findings were validated in an independent cohort of 140 first diagnosis samples from adult BCP-ALL patients. Derived from patient material, the alternative open reading frame of CYB5Aalt was cloned (pCYB5Aalt) and pCYB5Aalt or the empty vector were stably overexpressed in NALM-6 cells. RNA sequencing was performed of pCYB5Aalt clones and empty vector controls followed by differential expression analysis, gene set enrichment analysis and complementing cell death and viability assays to determine functional implications of CYB5Aalt. RESULTS RNAseq data analysis revealed non-canonical exon usage of CYB5Aalt starting from a previously undescribed transcription start site. CYB5Aalt expression was increased in relapsed BCP-ALL and its occurrence was specific towards the shared gene expression cluster of NH and HeH BCP-ALL in independent cohorts. Overexpression of pCYB5Aalt in NALM-6 cells induced a distinct transcriptional program compared to empty vector controls with downregulation of pathways related to reported functions of CYB5A wildtype. Interestingly, CYB5A wildtype expression was decreased in CYB5Aalt samples in silico and in vitro. Additionally, pCYB5Aalt NALM-6 elicited a more resistant drug response. CONCLUSIONS Across all age groups, CYB5Aalt was the most frequent secondary genetic event in relapsed NH and HeH BCP-ALL. In addition to its high subgroup specificity, CYB5Aalt is a novel candidate to be potentially implicated in therapy resistance in NH and HeH BCP-ALL. This is underlined by overexpressing CYB5Aalt providing first evidence for a functional role in BCL2-mediated apoptosis.
Collapse
Affiliation(s)
- Lorenz Bartsch
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany.
| | - Michael P Schroeder
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Sonja Hänzelmann
- Research Institute Children's Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20251, Hamburg, Germany
| | - Lorenz Bastian
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Juan Lázaro-Navarro
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, Charité, University Hospital Berlin, Campus Rudolf Virchow, 13353, Berlin, Germany
| | - Cornelia Schlee
- Core Unit Genomics, Berlin Institute of Health, 13353, Berlin, Germany
| | - Jutta Ortiz Tanchez
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Veronika Schulze
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Michael A Rieger
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590, Frankfurt/M, Germany
- Frankfurt Cancer Institute, 60590, Frankfurt/M, Germany
| | - Nicola Gökbuget
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590, Frankfurt/M, Germany
| | - Cornelia Eckert
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, Charité, University Hospital Berlin, Campus Rudolf Virchow, 13353, Berlin, Germany
| | - Hubert Serve
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590, Frankfurt/M, Germany
| | - Martin Horstmann
- Research Institute Children's Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20251, Hamburg, Germany
| | - Martin Schrappe
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Claudia D Baldus
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Martin Neumann
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| |
Collapse
|
5
|
Near-Haploidy and Low-Hypodiploidy in B-Cell Acute Lymphoblastic Leukemia: When Less Is Too Much. Cancers (Basel) 2021; 14:cancers14010032. [PMID: 35008193 PMCID: PMC8750410 DOI: 10.3390/cancers14010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Hypodiploidy with less than 40 chromosomes is a rare genetic abnormality in B-cell acute lymphoblastic leukemia (B-ALL). This condition can be classified based on modal chromosome number as low-hypodiploidy (30–39 chromosomes) and near-haploidy (24–29 chromosomes), with unique cytogenetic and mutational landscapes. Hypodiploid B-ALL with <40 chromosomes has an extremely poor outcome, with 5-year overall survival rates below 50% and 20% in childhood and adult B-ALL, respectively. Accordingly, this genetic feature represents an adverse prognostic factor in B-ALL and is associated with early relapse and therapy refractoriness. Notably, half of all patients with hypodiploid B-ALL with <40 chromosomes cases ultimately exhibit chromosome doubling of the hypodiploid clone, resulting in clones with 50–78 chromosomes. Doubled clones are often the major clones at diagnosis, leading to “masked hypodiploidy”, which is clinically challenging as patients can be erroneously classified as hyperdiploid B-ALL. Here, we summarize the main cytogenetic and molecular features of hypodiploid B-ALL subtypes, and provide a brief overview of the diagnostic methods, standard-of-care treatments and overall clinical outcome. Finally, we discuss molecular mechanisms that may underlie the origin and leukemogenic impact of hypodiploidy and may open new therapeutic avenues to improve survival rates in these patients.
Collapse
|
6
|
Impaired condensin complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL. Blood 2021; 136:313-327. [PMID: 32321174 DOI: 10.1182/blood.2019002538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (ALL; B-ALL) is the most common pediatric cancer, and high hyperdiploidy (HyperD) identifies the most common subtype of pediatric B-ALL. Despite HyperD being an initiating oncogenic event affiliated with childhood B-ALL, the mitotic and chromosomal defects associated with HyperD B-ALL (HyperD-ALL) remain poorly characterized. Here, we have used 54 primary pediatric B-ALL samples to characterize the cellular-molecular mechanisms underlying the mitotic/chromosome defects predicated to be early pathogenic contributors in HyperD-ALL. We report that HyperD-ALL blasts are low proliferative and show a delay in early mitosis at prometaphase, associated with chromosome-alignment defects at the metaphase plate leading to robust chromosome-segregation defects and nonmodal karyotypes. Mechanistically, biochemical, functional, and mass-spectrometry assays revealed that condensin complex is impaired in HyperD-ALL cells, leading to chromosome hypocondensation, loss of centromere stiffness, and mislocalization of the chromosome passenger complex proteins Aurora B kinase (AURKB) and Survivin in early mitosis. HyperD-ALL cells show chromatid cohesion defects and an impaired spindle assembly checkpoint (SAC), thus undergoing mitotic slippage due to defective AURKB and impaired SAC activity, downstream of condensin complex defects. Chromosome structure/condensation defects and hyperdiploidy were reproduced in healthy CD34+ stem/progenitor cells upon inhibition of AURKB and/or SAC. Collectively, hyperdiploid B-ALL is associated with a defective condensin complex, AURKB, and SAC.
Collapse
|
7
|
Diaz-Flores E, Comeaux EQ, Kim KL, Melnik E, Beckman K, Davis KL, Wu K, Akutagawa J, Bridges O, Marino R, Wohlfeil M, Braun BS, Mullighan CG, Loh ML. Bcl-2 Is a Therapeutic Target for Hypodiploid B-Lineage Acute Lymphoblastic Leukemia. Cancer Res 2019; 79:2339-2351. [PMID: 30862722 DOI: 10.1158/0008-5472.can-18-0236] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. The highest rates of treatment failure occur in specific genetic subsets of ALL, including hypodiploid B-cell ALL (B-ALL), for which effective alternative therapies to current intensive chemotherapy treatments have yet to be developed. Here, we integrated biochemical and genomic profiling with functional drug assays to select effective agents with therapeutic potential against hypodiploid B-ALL. ABT-199, a selective Bcl-2 inhibitor, was effective in reducing leukemic burden in vitro and in vivo in patient-derived xenograft models of hypodiploid B-ALL. Daily oral treatment with ABT-199 significantly increased survival in xenografted mice. The unexpected efficacy of ABT-199 observed in hypodiploid leukemias lacking BIM expression (the major reported mediator of ABT-199-induced apoptosis) led us to investigate the mechanism of action of ABT-199 in the absence of BIM. Treatment with ABT-199 elicited responses in a dose-dependent manner, from cell-cycle arrest at low nanomolar concentrations to cell death at concentrations above 100 nmol/L. Collectively, these results demonstrate the efficacy of Bcl-2 inhibition and potential therapeutic strategy in hypodiploid B-ALL. SIGNIFICANCE: These results demonstrate the efficacy of ABT-199 in vivo and provide encouraging preclinical data of Bcl-2 as a potential target for the treatment of hypodiploid B-ALL.
Collapse
Affiliation(s)
- Ernesto Diaz-Flores
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.
| | - Evan Q Comeaux
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kailyn L Kim
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ella Melnik
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Kyle Beckman
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Kara L Davis
- Department of Pediatrics, Lucille Packard Children's Hospital, Stanford University, Stanford, California
| | - Kevin Wu
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jon Akutagawa
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Olga Bridges
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Roberta Marino
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Margo Wohlfeil
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Benjamin S Braun
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
8
|
Comeaux EQ, Mullighan CG. TP53 Mutations in Hypodiploid Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026286. [PMID: 28003275 DOI: 10.1101/cshperspect.a026286] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive neoplasm of B- or T-lymphoid progenitors and is the commonest childhood tumor. ALL comprises multiple subtypes characterized by distinct genetic alterations, with stereotyped patterns of aneuploidy present in many cases. Although alterations of TP53 are common in many tumors, they are infrequent in ALL, with the exception of two ALL subtypes associated with poor outcome: relapsed disease and ALL with hypodiploidy. TP53 alterations are present in almost all cases of ALL with low hypodiploidy and are associated with alterations of the lymphoid transcription factor IKZF2 and the tumor-suppressor gene loci CDKN2A and CDKN2B. Remarkably, more than half of TP53 mutations in low-hypodiploid ALL in children are present in nontumor cells, indicating that low-hypodiploid ALL is a manifestation of Li-Fraumeni syndrome. These findings have profound implications for our understanding of the genetic pathogenesis of hypodiploid ALL, suggesting that alteration of TP53 function may promote the distinctive aneuploidy characteristic of hypodiploid ALL. Moreover, the identification of hypodiploidy mandates offering testing for TP53 mutational status to patients and their relatives, with appropriate counseling and disease surveillance.
Collapse
Affiliation(s)
- Evan Q Comeaux
- Departments of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles G Mullighan
- Departments of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
9
|
Dixon ZA, Nicholson L, Zeppetzauer M, Matheson E, Sinclair P, Harrison CJ, Irving JAE. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response. Haematologica 2016; 102:736-745. [PMID: 27979926 PMCID: PMC5395114 DOI: 10.3324/haematol.2016.145177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/13/2016] [Indexed: 12/05/2022] Open
Abstract
Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP, are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors.
Collapse
Affiliation(s)
- Zach A Dixon
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | | | - Martin Zeppetzauer
- Children's Cancer Research Institute (CCRI), Leukemia Biology Group, Vienna, Austria
| | - Elizabeth Matheson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Sinclair
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Christine J Harrison
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Julie A E Irving
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Chen C, Bartenhagen C, Gombert M, Okpanyi V, Binder V, Röttgers S, Bradtke J, Teigler-Schlegel A, Harbott J, Ginzel S, Thiele R, Fischer U, Dugas M, Hu J, Borkhardt A. Next-generation-sequencing-based risk stratification and identification of new genes involved in structural and sequence variations in near haploid lymphoblastic leukemia. Genes Chromosomes Cancer 2013; 52:564-79. [DOI: 10.1002/gcc.22054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/29/2013] [Indexed: 01/10/2023] Open
|