1
|
Gupte A, Al-Antary ET, Edwards H, Ravindranath Y, Ge Y, Taub JW. The Paradox of Myeloid Leukemia Associated with Down Syndrome. Biochem Pharmacol 2022; 201:115046. [PMID: 35483417 DOI: 10.1016/j.bcp.2022.115046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Abstract
Children with Down syndrome constitute a distinct genetic population who has a greater risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) compared to their non-Down syndrome counterparts. The risk for developing solid tumors is also distinct from the non-Down syndrome population. In the case of myeloid leukemias, the process of leukemogenesis in Trisomy 21 begins in early fetal life where genetic drivers including GATA1 mutations lead to the development of the preleukemic condition, transient abnormal myelopoiesis (TAM). Various other mutations in genes encoding cohesin, epigenetic regulators and RAS pathway can result in subsequent progression to Myeloid Leukemia associated with Down Syndrome (ML-DS). The striking paradoxical feature in the Down syndrome population is that even though there is a higher predisposition to developing AML, they are also very sensitive to chemotherapy agents, particularly cytarabine, thus accounting for the very high cure rates for ML-DS compared to AML in children without Down syndrome. Current clinical trials for ML-DS attempt to balance effective curative therapies while trying to reduce treatment-associated toxicities including infections by de-intensifying chemotherapy doses, if possible. The small proportion of patients with relapsed ML-DS have an extremely poor prognosis and require the development of new therapies.
Collapse
Affiliation(s)
- Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Discipline of Pediatrics, Central Michigan University, Saginaw, Michigan, USA.
| |
Collapse
|
2
|
Abstract
Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.
Collapse
|
3
|
Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 2020; 34:1984-1999. [PMID: 32433508 PMCID: PMC7387246 DOI: 10.1038/s41375-020-0854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Structural and numerical alterations of chromosome 21 are extremely common in hematological malignancies. While the functional impact of chimeric transcripts from fused chromosome 21 genes such as TEL-AML1, AML1-ETO, or FUS-ERG have been extensively studied, the role of gain of chromosome 21 remains largely unknown. Gain of chromosome 21 is a frequently occurring aberration in several types of acute leukemia and can be found in up to 35% of cases. Children with Down syndrome (DS), who harbor constitutive trisomy 21, highlight the link between gain of chromosome 21 and leukemogenesis, with an increased risk of developing acute leukemia compared with other children. Clinical outcomes for DS-associated leukemia have improved over the years through the development of uniform treatment protocols facilitated by international cooperative groups. The genetic landscape has also recently been characterized, providing an insight into the molecular pathogenesis underlying DS-associated leukemia. These studies emphasize the key role of trisomy 21 in priming a developmental stage and cellular context susceptible to transformation, and have unveiled its cooperative function with additional genetic events that occur during leukemia progression. Here, using DS-leukemia as a paradigm, we aim to integrate our current understanding of the role of trisomy 21, of critical dosage-sensitive chromosome 21 genes, and of associated mechanisms underlying the development of hematological malignancies. This review will pave the way for future investigations on the broad impact of gain of chromosome 21 in hematological cancer, with a view to discovering new vulnerabilities and develop novel targeted therapies to improve long term outcomes for DS and non-DS patients.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
- Université Paris Diderot, Paris, France
| | - Rishi S Kotecha
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
GATA1 mutation negative acute megakaryoblastic leukemia with acquired trisomy 21 presenting with extensive bone marrow necrosis in an adult: A case report and review of the literature. HUMAN PATHOLOGY: CASE REPORTS 2016. [DOI: 10.1016/j.ehpc.2015.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Genomic landscape of megakaryopoiesis and platelet function defects. Blood 2016; 127:1249-59. [PMID: 26787733 DOI: 10.1182/blood-2015-07-607952] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022] Open
Abstract
Megakaryopoiesis is a complex, stepwise process that takes place largely in the bone marrow. At the apex of the hierarchy, hematopoietic stem cells undergo a number of lineage commitment decisions that ultimately lead to the production of polyploid megakaryocytes. On average, megakaryocytes release 10(11) platelets per day into the blood that repair vascular injuries and prevent excessive bleeding. This differentiation process is tightly controlled by exogenous and endogenous factors, which have been the topics of intense research in the hematopoietic field. Indeed, a skewing of megakaryocyte commitment and differentiation may entail the onset of myeloproliferative neoplasms and other preleukemic disorders together with acute megakaryoblastic leukemia, whereas quantitative or qualitative defects in platelet production can lead to inherited platelet disorders. The recent advent of next-generation sequencing has prompted mapping of the genomic landscape of these conditions to provide an accurate view of the underlying lesions. The aims of this review are to introduce the physiological pathways of megakaryopoiesis and to present landmark studies on acquired and inherited disorders that target them. These studies have not only introduced a new era in the fields of molecular medicine and targeted therapies but may also provide us with a better understanding of the mechanisms underlying normal megakaryopoiesis and thrombopoiesis that can inform efforts to create alternative sources of megakaryocytes and platelets.
Collapse
|
7
|
Giam M, Rancati G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div 2015; 10:3. [PMID: 26015801 PMCID: PMC4443636 DOI: 10.1186/s13008-015-0009-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Genomic instability (GIN) is a hallmark of cancer cells that facilitates the acquisition of mutations conferring aggressive or drug-resistant phenotypes during cancer evolution. Chromosomal instability (CIN) is a form of GIN that involves frequent cytogenetic changes leading to changes in chromosome copy number (aneuploidy). While both CIN and aneuploidy are common characteristics of cancer cells, their roles in tumor initiation and progression are unclear. On the one hand, CIN and aneuploidy are known to provide genetic variation to allow cells to adapt in changing environments such as nutrient fluctuations and hypoxia. Patients with constitutive aneuploidies are more susceptible to certain types of cancers, suggesting that changes in chromosome copy number could positively contribute to cancer evolution. On the other hand, chromosomal imbalances have been observed to have detrimental effects on cellular fitness and might trigger cell cycle arrest or apoptosis. Furthermore, mouse models for CIN have led to conflicting results. Taken together these findings suggest that the relationship between CIN, aneuploidy and cancer is more complex than what was previously anticipated. Here we review what is known about this complex ménage à trois, discuss recent evidence suggesting that aneuploidy, CIN and GIN together promote a vicious cycle of genome chaos. Lastly, we propose a working hypothesis to reconcile the conflicting observations regarding the role of aneuploidy and CIN in tumorigenesis.
Collapse
Affiliation(s)
- Maybelline Giam
- Institute for Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, 138648 Singapore
| | - Giulia Rancati
- Institute for Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, 138648 Singapore ; School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Singapore, 117597 Singapore
| |
Collapse
|
8
|
Ng AP, Hu Y, Metcalf D, Hyland CD, Ierino H, Phipson B, Wu D, Baldwin TM, Kauppi M, Kiu H, Di Rago L, Hilton DJ, Smyth GK, Alexander WS. Early lineage priming by trisomy of Erg leads to myeloproliferation in a Down syndrome model. PLoS Genet 2015; 11:e1005211. [PMID: 25973911 PMCID: PMC4431731 DOI: 10.1371/journal.pgen.1005211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS), with trisomy of chromosome 21 (HSA21), is the commonest human aneuploidy. Pre-leukemic myeloproliferative changes in DS foetal livers precede the acquisition of GATA1 mutations, transient myeloproliferative disorder (DS-TMD) and acute megakaryocytic leukemia (DS-AMKL). Trisomy of the Erg gene is required for myeloproliferation in the Ts(1716)65Dn DS mouse model. We demonstrate here that genetic changes specifically attributable to trisomy of Erg lead to lineage priming of primitive and early multipotential progenitor cells in Ts(1716)65Dn mice, excess megakaryocyte-erythroid progenitors, and malignant myeloproliferation. Gene expression changes dependent on trisomy of Erg in Ts(1716)65Dn multilineage progenitor cells were correlated with those associated with trisomy of HSA21 in human DS hematopoietic stem and primitive progenitor cells. These data suggest a role for ERG as a regulator of hematopoietic lineage potential, and that trisomy of ERG in the context of DS foetal liver hemopoiesis drives the pre-leukemic changes that predispose to subsequent DS-TMD and DS-AMKL. An excess number of genes in trisomy on human chromosome 21 leads to the development of specific diseases in human Down syndrome. An excess copy of the gene, ERG, an ETS family transcription factor, has been implicated in abnormal blood system development in Down syndrome. In this study we show how trisomy of Erg in a murine Down syndrome model perturbs hematopoietic progenitor cells in a manner similar to that observed in human Down syndrome by inducing gene expression changes and lineage priming in early multi-potential progenitors. We show that the gene expression signature specifically attributable to trisomy of Erg in the murine model is strongly correlated with gene expression changes in human Down syndrome hematopoietic cells. The data suggest that Erg is an important regulator of megakaryocyte-erythroid lineage specification in multipotential hematopoietic cells and that trisomy of Erg in the context of DS prediposes to a transient myeloproliferative disorder and acute megakaryocyte leukaemia in a multi-step model of leukemogenesis.
Collapse
Affiliation(s)
- Ashley P. Ng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Donald Metcalf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Craig D. Hyland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Helen Ierino
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Belinda Phipson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Di Wu
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Department of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tracey M. Baldwin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Maria Kauppi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hiu Kiu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Douglas J. Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Warren S. Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Acute megakaryoblastic leukemia with acquired trisomy 21 and GATA1 mutations in phenotypically normal children. Eur J Pediatr 2015; 174:525-31. [PMID: 25266042 DOI: 10.1007/s00431-014-2430-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED GATA1 mutations are found almost exclusively in children with myeloid proliferations related to Down syndrome (DS). Here, we report two phenotypically and cytogenetically normal children with acute megakaryoblastic leukemia (AMKL) whose blasts had both acquired trisomy 21 and GATA1 mutation. Patient 1 was diagnosed with transient abnormal myelopoiesis in the neonatal period. Following spontaneous improvement of the disease, leukemic blasts increased 7 months later. He received less intensive chemotherapy, and he is now 6 years old in complete remission. Patient 2 was diagnosed with AMKL at the age of 18 months. Although he received intensive chemotherapy and a cord blood transplantation, he died without gaining remission. In both cases, trisomy 21 and GATA1 mutation were detected only in leukemic blasts, but not in germline samples. Based on a literature review, we identified reports describing 14 non-DS AMKL with GATA1 mutation and acquired trisomy 21. Of those, 12 cases were diagnosed during the neonatal period, whereas the remaining 2 cases were diagnosed at the age of 22 and 31 months, respectively. CONCLUSION These cases suggest that GATA1 mutation may cooperate with the additional chromosome 21 in developing myeloid proliferations even in non-DS patients.
Collapse
|
10
|
The expression of embryonic liver development genes in hepatitis C induced cirrhosis and hepatocellular carcinoma. Cancers (Basel) 2013; 4:945-68. [PMID: 23667740 PMCID: PMC3650861 DOI: 10.3390/cancers4030945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC.
Collapse
|
11
|
Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, Sanada M, Park MJ, Terui K, Suzuki H, Kon A, Nagata Y, Sato Y, Wang R, Shiba N, Chiba K, Tanaka H, Hama A, Muramatsu H, Hasegawa D, Nakamura K, Kanegane H, Tsukamoto K, Adachi S, Kawakami K, Kato K, Nishimura R, Izraeli S, Hayashi Y, Miyano S, Kojima S, Ito E, Ogawa S. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013; 45:1293-9. [PMID: 24056718 DOI: 10.1038/ng.2759] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
Abstract
Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome-related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).
Collapse
Affiliation(s)
- Kenichi Yoshida
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 2013; 27:2280-8. [PMID: 23531517 DOI: 10.1038/leu.2013.87] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 12/11/2022]
Abstract
Cytogenetic abnormalities and early response to treatment are the main prognostic factors in acute myeloid leukemia (AML). Recently, NUP98/NSD1 (t(5; 11)(q35; p15)), a cytogenetically cryptic fusion, was described as recurrent event in AML, characterized by dismal prognosis and HOXA/B gene overexpression. Using split-signal fluorescence in situ hybridization, other NUP98-rearranged pediatric AML cases were identified, including several acute megakaryoblastic leukemia (AMKL) cases with a cytogenetically cryptic fusion of NUP98 to JARID1A (t(11;15)(p15;q35)). In this study we screened 105 pediatric AMKL cases to analyze the frequency of NUP98/JARID1A and other recurrent genetic abnormalities. NUP98/JARID1A was identified in 11/105 patients (10.5%). Other abnormalities consisted of RBM15/MKL1 (n=16), CBFA2T3/GLIS2 (n=13) and MLL-rearrangements (n=13). Comparing NUP98/JARID1A-positive patients with other pediatric AMKL patients, no significant differences in sex, age and white blood cell count were found. NUP98/JARID1A was not an independent prognostic factor for 5-year overall (probability of overall survival (pOS)) or event-free survival (probability of event-free survival (pEFS)), although the 5-year pOS for the entire AMKL cohort was poor (42 ± 6%). Cases with RBM15/MLK1 fared significantly better in terms of pOS and pEFS, although this was not independent from other risk factors in multivariate analysis. NUP98/JARID1A cases were characterized by HOXA/B gene overexpression, which is a potential druggable pathway. In conclusion, NUP98/JARID1A is a novel recurrent genetic abnormality in pediatric AMKL.
Collapse
|
13
|
Janjetovic S, Bacher U, Haalck T, Janning M, Bokemeyer C, Fiedler W. Acute megakaryoblastic leukemia in a patient with xeroderma pigmentosum: discussion of pathophysiological, prognostic, and toxicological aspects. Acta Haematol 2012. [PMID: 23207728 DOI: 10.1159/000342897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is an autosomal recessive inherited disease characterized by extreme sensitivity to sunlight. Normal individuals harboring XPD polymorphisms are at increased risk for developing acute lymphoblastic leukemia and acute myeloid leukemia (AML). CASE REPORT A 33-year-old male XP patient was diagnosed with acute megakaryoblastic leukemia with a complex karyotype. He received standard induction chemotherapy with cytarabine and daunorubicin. After the first cycle of chemotherapy, persistence of blasts was seen and a re-induction cycle with cytarabine, fludarabine, and idarubicin was administered resulting in complete remission. Due to the high-risk profile of his AML, allogeneic stem cell transplantation (SCT) was performed. Following a conditioning regimen with busulfan and cyclophosphamide, the patient received a matched related SCT from his HLA-identical sister. Despite the existence of his DNA repair gene mutation, chemotherapy was normally tolerated by the patient. Unfortunately, he died due to severe sepsis and relapse of AML 45 days after SCT. CONCLUSION The XPD mutation in our patient may have contributed to the emergence of his high-risk AML. Despite the existence of a DNA repair gene mutation, our XP patient could be treated with full doses of AML-type chemotherapy including allogeneic SCT without encountering unusual toxicity.
Collapse
MESH Headings
- Adult
- Aneuploidy
- Cytarabine/administration & dosage
- DNA Repair/genetics
- Daunorubicin/administration & dosage
- Fatal Outcome
- Hematopoietic Stem Cell Transplantation
- Humans
- Idarubicin/administration & dosage
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Male
- Neoadjuvant Therapy
- Recurrence
- Remission Induction
- Transplantation, Homologous
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Xeroderma Pigmentosum/complications
- Xeroderma Pigmentosum/genetics
Collapse
Affiliation(s)
- Snjezana Janjetovic
- Department of Oncology and Hematology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|