1
|
Daga S, Rosenberger A, Kashofer K, Heitzer E, Quehenberger F, Halbwedl I, Graf R, Krisper N, Prietl B, Höfler G, Reinisch A, Zebisch A, Sill H, Wölfler A. Sensitive and broadly applicable residual disease detection in acute myeloid leukemia using flow cytometry-based leukemic cell enrichment followed by mutational profiling. Am J Hematol 2020; 95:1148-1157. [PMID: 32602117 PMCID: PMC7540028 DOI: 10.1002/ajh.25918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
Persistent measurable residual disease (MRD) is an increasingly important prognostic marker in acute myeloid leukemia (AML). Currently, MRD is determined by multi-parameter flow cytometry (MFC) or PCR-based methods detecting leukemia-specific fusion transcripts and mutations. However, while MFC is highly operator-dependent and difficult to standardize, PCR-based methods are only available for a minority of AML patients. Here we describe a novel, highly sensitive and broadly applicable method for MRD detection by combining MFC-based leukemic cell enrichment using an optimized combinatorial antibody panel targeting CLL-1, TIM-3, CD123 and CD117, followed by mutational analysis of recurrently mutated genes in AML. In dilution experiments this method showed a sensitivity of 10-4 to 10-5 for residual disease detection. In prospectively collected remission samples this marker combination allowed for a median 67-fold cell enrichment with sufficient DNA quality for mutational analysis using next generation sequencing (NGS) or digital PCR in 39 out of 41 patients. Twenty-one samples (53.8%) tested MRD positive, whereas 18 (46.2%) were negative. With a median follow-up of 559 days, 71.4% of MRD positive (15/21) and 27.8% (5/18) of MRD negative patients relapsed (P = .007). The cumulative incidence of relapse (CIR) was higher for MRD positive patients (5-year CIR: 90.5% vs 28%, P < .001). In multivariate analysis, MRD positivity was a prominent factor for CIR. Thus, MFC-based leukemic cell enrichment using antibodies against CLL-1, TIM-3, CD123 and CD117 followed by mutational analysis allows high sensitive MRD detection and is informative on relapse risk in the majority of AML patients.
Collapse
Affiliation(s)
- Shruti Daga
- Division of HematologyMedical University of GrazGrazAustria
- CBmed Center of Biomarker Research in MedicineGrazAustria
| | | | - Karl Kashofer
- Division of PathologyMedical University of GrazGrazAustria
| | - Ellen Heitzer
- Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Franz Quehenberger
- Institute of Medical InformaticsStatistics and Documentation, Medical University of GrazGrazAustria
| | - Iris Halbwedl
- Division of PathologyMedical University of GrazGrazAustria
| | - Ricarda Graf
- Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Nina Krisper
- CBmed Center of Biomarker Research in MedicineGrazAustria
| | - Barbara Prietl
- CBmed Center of Biomarker Research in MedicineGrazAustria
| | - Gerald Höfler
- Division of PathologyMedical University of GrazGrazAustria
| | | | - Armin Zebisch
- Division of HematologyMedical University of GrazGrazAustria
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of PharmacologyMedical University of GrazGrazAustria
| | - Heinz Sill
- Division of HematologyMedical University of GrazGrazAustria
| | - Albert Wölfler
- Division of HematologyMedical University of GrazGrazAustria
- CBmed Center of Biomarker Research in MedicineGrazAustria
| |
Collapse
|
2
|
Engvall M, Cahill N, Jonsson BI, Höglund M, Hallböök H, Cavelier L. Detection of leukemia gene fusions by targeted RNA-sequencing in routine diagnostics. BMC Med Genomics 2020; 13:106. [PMID: 32727569 PMCID: PMC7388219 DOI: 10.1186/s12920-020-00739-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We have evaluated an NGS-based method to detect recurrent gene fusions of diagnostic and prognostic importance in hematological malignancies. Our goal was to achieve a highly specific assay with a simple workflow, short turnaround time and low cost. METHOD The assay uses a commercially available anchored multiplex PCR panel for target enrichment and library preparation, followed by sequencing using a MiSeq instrument. The panel includes all recurrent gene fusions in AML and ALL and is designed to detect gene-specific fusions without prior knowledge of the partner sequence or specific break points. Diagnostic RNA samples from 27 cases with hematological malignancies encompassing 23 different transcript variants were analyzed. In addition, 12 cases from a validation cohort were assessed. RESULT All known fusion transcripts were identified with a high degree of confidence, with a large number of reads covering the breakpoints. Importantly, we could identify gene fusions where conventional methods had failed due to cryptic rearrangements or rare fusion partners. The newly-identified fusion partners were verified by RT-PCR and transcript-specific qPCR was designed for patient-specific follow-up. In addition, 12 cases were correctly assessed in a blind test, without prior knowledge of molecular cytogenetics or diagnosis. CONCLUSION In summary, our results demonstrate that targeted RNA sequencing using anchored multiplex PCR can be implemented in a clinical laboratory for the detection of recurrent and rare gene fusions in hematological diagnostic samples.
Collapse
Affiliation(s)
- Marie Engvall
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden.
| | - Nicola Cahill
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Martin Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helene Hallböök
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Dix C, Lo TH, Clark G, Abadir E. Measurable Residual Disease in Acute Myeloid Leukemia Using Flow Cytometry: A Review of Where We Are and Where We Are Going. J Clin Med 2020; 9:E1714. [PMID: 32503122 PMCID: PMC7357042 DOI: 10.3390/jcm9061714] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The detection of measurable residual disease (MRD) has become a key investigation that plays a role in the prognostication and management of several hematologic malignancies. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the role of MRD in AML is still emerging. Prognostic markers are complex, largely based upon genetic and cytogenetic aberrations. MRD is now being incorporated into prognostic models and is a powerful predictor of relapse. While PCR-based MRD methods are sensitive and specific, many patients do not have an identifiable molecular marker. Immunophenotypic MRD methods using multiparametric flow cytometry (MFC) are widely applicable, and are based on the identification of surface marker combinations that are present on leukemic cells but not normal hematopoietic cells. Current techniques include a "different from normal" and/or a "leukemia-associated immunophenotype" approach. Limitations of MFC-based MRD analyses include the lack of standardization, the reliance on a high-quality marrow aspirate, and variable sensitivity. Emerging techniques that look to improve the detection of leukemic cells use dimensional reduction analysis, incorporating more leukemia specific markers and identifying leukemic stem cells. This review will discuss current methods together with new and emerging techniques to determine the role of MFC MRD analysis.
Collapse
Affiliation(s)
- Caroline Dix
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Immunology, Sydpath, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Georgina Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2039, Australia
| | - Edward Abadir
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2039, Australia
| |
Collapse
|
4
|
Selim AG, Moore AS. Molecular Minimal Residual Disease Monitoring in Acute Myeloid Leukemia. J Mol Diagn 2018; 20:389-397. [DOI: 10.1016/j.jmoldx.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
|
5
|
Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget 2018; 7:71915-71921. [PMID: 27713120 PMCID: PMC5342132 DOI: 10.18632/oncotarget.12430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022] Open
Abstract
We investigated the ability of support vector machines (SVM) to analyze minimal residual disease (MRD) in flow cytometry data from patients with acute myeloid leukemia (AML) automatically, objectively and standardly. The initial disease data and MRD review data in the form of 159 flow cytometry standard 3.0 files from 36 CD7-positive AML patients in whom MRD was detected more than once were exported. SVM was used for training with setting the initial disease data to 1 as the flag and setting 15 healthy persons to set 0 as the flag. Based on the two training groups, parameters were optimized, and a predictive model was built to analyze MRD data from each patient. The automated analysis results from the SVM model were compared to those obtained through conventional analysis to determine reliability. Automated analysis results based on the model did not differ from and were correlated with results obtained through conventional analysis (correlation coefficient c = 0.986, P > 0.05). Thus the SVM model could potentially be used to analyze flow cytometry-based AML MRD data automatically, objectively, and in a standardized manner.
Collapse
|
6
|
[Expert consensus on minimal residual disease detection of acute leukemia and plasma cell neoplasms by multi-parameter flow cytometry]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:1001-1011. [PMID: 29365391 PMCID: PMC7342185 DOI: 10.3760/cma.j.issn.0253-2727.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/09/2022]
|
7
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
8
|
Percival ME, Lai C, Estey E, Hourigan CS. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood Rev 2017; 31:185-192. [PMID: 28190619 DOI: 10.1016/j.blre.2017.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022]
Abstract
The diagnosis of acute myeloid leukemia (AML) can be made based on peripheral blood or bone marrow blasts. In this review, we will discuss the role of bone marrow evaluation and peripheral blood monitoring in the diagnosis, management, and follow up of AML patients. For patients with circulating blasts, it is reasonable to perform the necessary studies needed for diagnosis and risk stratification, including multiparametric flow cytometry, cytogenetics, and molecular analysis, on a peripheral blood specimen. The day 14 marrow is used to document hypocellularity in response to induction chemotherapy, but it is unclear if that assessment is necessary as it often does not affect immediate management. Currently, response assessments performed at count recovery for evaluation of remission and measurable residual disease rely on bone marrow sampling. For monitoring of relapse, peripheral blood evaluation may be adequate, but the sensitivity of bone marrow testing is in some cases superior. While bone marrow evaluation can certainly be avoided in particular situations, this cumbersome and uncomfortable procedure currently remains the de facto standard for response assessment.
Collapse
Affiliation(s)
- Mary-Elizabeth Percival
- Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Catherine Lai
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elihu Estey
- Department of Medicine, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Mulé MP, Mannis GN, Wood BL, Radich JP, Hwang J, Ramos NR, Andreadis C, Damon L, Logan AC, Martin TG, Hourigan CS. Multigene Measurable Residual Disease Assessment Improves Acute Myeloid Leukemia Relapse Risk Stratification in Autologous Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:1974-1982. [PMID: 27544285 DOI: 10.1016/j.bbmt.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022]
Abstract
We report here the largest study to date of adult patients with acute myeloid leukemia (AML) tested for measurable residual disease (MRD) at the time of autologous hematopoietic cell transplantation (auto-HCT). Seventy-two adult patients who underwent transplantation between 2004 and 2013 at a single academic medical center (University of California San Francisco) were eligible for this retrospective study based on availability of cryopreserved granulocyte colony-stimulating factor (GCSF)-mobilized autologous peripheral blood progenitor cell (PBPC) leukapheresis specimens ("autografts"). Autograft MRD was assessed by molecular methods (real-time quantitative PCR [RQ-PCR] for Wilms tumor 1 (WT1) alone or a multigene panel) and by multiparameter flow cytometry (MPFC). WT1 RQ-PCR testing of the autograft had low sensitivity for relapse prediction (14%) and a negative predictive value of 51%. MPFC failed to identify MRD in any of 34 autografts tested. Combinations of molecular MRD assays, however, improved prediction of post-auto-HCT relapse. In multivariate analysis of clinical variables, including age, gender, race, cytogenetic risk category, and CD34+ cell dose, only autograft multigene MRD as assessed by RQ-PCR was statistically significantly associated with relapse. One year after transplantation, only 28% patients with detectable autograft MRD were relapse free, compared with 67% in the MRD-negative cohort. Multigene MRD, while an improvement on other methods tested, was however suboptimal for relapse prediction in unselected patients, with specificity of 83% and sensitivity of 46%. In patients with known chromosomal abnormalities or mutations, however, better predictive value was observed with no relapses observed in MRD-negative patients in the first year after auto-HCT compared with 83% incidence of relapse in the MRD-positive patients (hazard ratio, 12.45; P = .0016). In summary, increased personalization of MRD monitoring by use of a multigene panel improved the ability to risk stratify patients for post-auto-HCT relapse. WT1 RQ-PCR and flow cytometric assessment for AML MRD in autograft samples had limited value for predicting relapse after auto-HCT. We demonstrate that cryopreserved autograft material presents unique challenges for AML MRD testing because of the masking effects of previous GCSF exposure on gene expression and flow cytometry signatures. In the absence of information regarding diagnostic characteristics, sources other than GCSF-stimulated PBSC leukapheresis specimens should be considered as alternatives for MRD testing in AML patients undergoing auto-HCT.
Collapse
Affiliation(s)
- Matthew P Mulé
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gabriel N Mannis
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California
| | - Brent L Wood
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Jimmy Hwang
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California
| | - Nestor R Ramos
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Charalambos Andreadis
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California
| | - Lloyd Damon
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California
| | - Aaron C Logan
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California
| | - Thomas G Martin
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California
| | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
10
|
Ommen HB. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol 2016; 7:3-16. [PMID: 26834951 DOI: 10.1177/2040620715614529] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several disease-monitoring techniques are available for the physician treating acute myeloid leukaemia (AML). Besides immunohistochemistry assisted light microscopy, the past 20 years have seen the development and preclinical perfection of a number of techniques, most notably quantitative polymerase chain reaction (PCR) and multicolor flow cytometry. Late additions to the group of applicable assays include next generation sequencing and digital PCR. In this review the principles of use of these modalities at three different time points during the AML disease course are discussed, namely at the time of treatment evaluation, pretransplantation and postconsolidation. The drawbacks and pitfalls of each different technique are delineated. The evidence or lack of evidence for minimal residual disease guided treatment decisions is discussed. Lastly, future strategies in the MRD field are suggested and commented upon.
Collapse
Affiliation(s)
- Hans Beier Ommen
- Department of Hematology, Aarhus University Hospital, Tage-Hansens gade 2, Aarhus C, 8000, Denmark
| |
Collapse
|
11
|
Goswami M, McGowan KS, Lu K, Jain N, Candia J, Hensel NF, Tang J, Calvo KR, Battiwalla M, Barrett AJ, Hourigan CS. A multigene array for measurable residual disease detection in AML patients undergoing SCT. Bone Marrow Transplant 2015; 50:642-51. [PMID: 25665046 PMCID: PMC4424111 DOI: 10.1038/bmt.2014.326] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 02/04/2023]
Abstract
AML is a diagnosis encompassing a diverse group of myeloid malignancies. Heterogeneous genetic etiology, together with the potential for oligoclonality within the individual patient, have made the identification of a single high-sensitivity marker of disease burden challenging. We developed a multiple gene measurable residual disease (MG-MRD) RQ-PCR array for the high-sensitivity detection of AML, retrospectively tested on 74 patients who underwent allo-SCT at the NHLBI in the period 1994-2012. MG-MRD testing on peripheral blood samples prior to transplantation demonstrated excellent concordance with traditional BM-based evaluation and improved risk stratification for post-transplant relapse and OS outcomes. Pre-SCT assessment by MG-MRD predicted all clinical relapses occurring in the first 100 days after allo-SCT compared with 57% sensitivity using WT1 RQ-PCR alone. Nine patients who were negative for WT1 prior to transplantation were correctly reclassified into a high-risk MG-MRD-positive group, associated with 100% post-transplant mortality. This study provides proof of principle that a multiple gene approach may be superior to the use of WT1 expression alone for AML residual disease detection.
Collapse
Affiliation(s)
- M Goswami
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - K S McGowan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - K Lu
- Stem Cell Allogenic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - N Jain
- Stem Cell Allogenic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Candia
- Department of Physics, University of Maryland, College Park, MD, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - N F Hensel
- Stem Cell Allogenic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Tang
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - K R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - M Battiwalla
- Stem Cell Allogenic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A J Barrett
- Stem Cell Allogenic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - C S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Minimal residual disease–directed therapy in acute myeloid leukemia. Blood 2015; 125:2331-5. [DOI: 10.1182/blood-2014-11-578815] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022] Open
|
13
|
Hokland P, Ommen HB, Mulé MP, Hourigan CS. Advancing the Minimal Residual Disease Concept in Acute Myeloid Leukemia. Semin Hematol 2015; 52:184-92. [PMID: 26111465 DOI: 10.1053/j.seminhematol.2015.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The criteria to evaluate response to treatment in acute myeloid leukemia (AML) have changed little in the past 60 years. It is now possible to use higher sensitivity tools to measure residual disease burden in AML. Such minimal or measurable residual disease (MRD) measurements provide a deeper understanding of current patient status and allow stratification for risk of subsequent clinical relapse. Despite these obvious advantages, and after over a decade of laboratory investigation and preclinical validation, MRD measurements are not currently routinely used for clinical decision-making or drug development in non-acute promyelocytic leukemia (non-APL) AML. We review here some potential constraints that may have delayed adoption, including a natural hesitancy of end users, economic impact concerns, misperceptions regarding the meaning of and need for assay sensitivity, the lack of one single MRD solution for all AML patients, and finally the need to involve patients in decision-making based on such correlates. It is our opinion that none of these issues represent insurmountable barriers and our hope is that by providing potential solutions we can help map a path forward to a future where our patients will be offered personalized treatment plans based on the amount of AML they have left remaining to treat.
Collapse
Affiliation(s)
- Peter Hokland
- Department of Hematology, Aarhus University Hospital, Denmark
| | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Denmark
| | - Matthew P Mulé
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
14
|
Hourigan CS, McCarthy P, de Lima M. Reprint of: Back to the future! The evolving role of maintenance therapy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2014; 20:S8-S17. [PMID: 24485019 DOI: 10.1016/j.bbmt.2014.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
Abstract
Relapse is a devastating event for patients with hematologic cancers treated with hematopoietic stem cell transplantation. In most situations, relapse treatment options are limited. Maintenance therapy offers the possibility of delaying or avoiding disease recurrence, but its role remains unclear in most conditions that we treat with transplantation. Here, Dr. Hourigan presents an overview of minimal residual disease (MRD) measurement in hematologic malignancies and the applicability of MRD-based post-transplantation interventions. Dr. McCarthy reviews current knowledge of maintenance therapy in the autologous transplantation context, with emphasis on immunologic interventions and immune modulation strategies designed to prevent relapse. Dr. de Lima discusses current lines of investigation in disease recurrence prevention after allogeneic transplantation, focusing on acute myeloid leukemia and myelodysplastic syndrome.
Collapse
Affiliation(s)
- Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Philip McCarthy
- Blood and Marrow Transplant Program, Roswell Park Cancer Institute, Buffalo, New York
| | - Marcos de Lima
- University Hospitals Case Medical Center, Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
15
|
Wouters R, Cucchi D, Kaspers GJL, Schuurhuis GJ, Cloos J. Relevance of leukemic stem cells in acute myeloid leukemia: heterogeneity and influence on disease monitoring, prognosis and treatment design. Expert Rev Hematol 2014; 7:791-805. [PMID: 25242511 DOI: 10.1586/17474086.2014.959921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia is a bone marrow disease characterized by a block in differentiation of the myeloid lineage with a concomitant uncontrolled high proliferation rate. Development of acute myeloid leukemia from stem cells with specific founder mutations, leads to an oligoclonal disease that progresses into a very heterogeneous leukemia at diagnosis. Measurement of leukemic stem cell load and characterization of these cells are essential for prediction of relapse and target identification, respectively. Prediction of relapse by monitoring the disease during minimal residual disease detection is challenged by clonal shifts during therapy. To overcome this, characterization of the potential relapse-initiating cells is required using both flow cytometry and molecular analysis since leukemic stem cells can be targeted both on extracellular features and on stem-cell specific signal transduction pathways.
Collapse
Affiliation(s)
- Rolf Wouters
- Departments of Pediatric Oncology/Hematology and Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Roug AS, Hansen MC, Nederby L, Hokland P. Diagnosing and following adult patients with acute myeloid leukaemia in the genomic age. Br J Haematol 2014; 167:162-76. [PMID: 25130287 DOI: 10.1111/bjh.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
Abstract
The diagnosis and follow-up process of adult patients with acute myeloid leukaemia (AML) is challenging to clinicians and laboratory staff alike. While several sets of recommendations have been published over the years, the development of high throughput screening and characterization for both genetic and epigenetic events have evolved with astonishing speed. Here we attempt to provide a practical guide to diagnose and follow adult AML patients with a focus on how to balance the wealth of information on the one hand, with the restriction put on these processes in terms of time, feasibility and economy when caring for these patients, on the other.
Collapse
Affiliation(s)
- Anne S Roug
- Department of Haematology, Aarhus University Hospital, Aarhus C, Denmark
| | | | | | | |
Collapse
|
17
|
Jaso JM, Wang SA, Jorgensen JL, Lin P. Multi-color flow cytometric immunophenotyping for detection of minimal residual disease in AML: past, present and future. Bone Marrow Transplant 2014; 49:1129-38. [PMID: 24842529 DOI: 10.1038/bmt.2014.99] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/15/2014] [Accepted: 03/21/2014] [Indexed: 01/15/2023]
Abstract
Current chemotherapeutic regimens achieve CR in a large percentage of patients with AML. However, relapse after CR remains a significant problem. The presence of leukemic cells at levels too low to be detected by conventional microscopy, termed minimal residual disease (MRD), has been associated with an increased risk of relapse and shortened survival. Detection of MRD requires the use of highly sensitive ancillary techniques. Multi-color flow cytometric immunophenotyping is a sensitive method for quick and accurate detection of MRD. Use of this method in patient management may result in lower rates of relapse and improved survival, and is an effective means of assessing novel therapeutic agents. This method can be used in the vast majority of patients with AML, regardless of the immunophenotypic, cytogenetic and molecular genetic abnormalities present. Unfortunately, conflicting data regarding optimum methods of measurement and reporting, as well as the expertize required to interpret results have limited broad application of this technique. We provide a broad overview of this technique, including its advantages and limitations, and discuss the methods employed at our institution. We also review several possible areas of future investigation.
Collapse
Affiliation(s)
- J M Jaso
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S A Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Jorgensen
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Hourigan CS, McCarthy P, de Lima M. Back to the future! The evolving role of maintenance therapy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 20:154-63. [PMID: 24291784 DOI: 10.1016/j.bbmt.2013.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 12/28/2022]
Abstract
Relapse is a devastating event for patients with hematologic cancers treated with hematopoietic stem cell transplantation. In most situations, relapse treatment options are limited. Maintenance therapy offers the possibility of delaying or avoiding disease recurrence, but its role remains unclear in most conditions that we treat with transplantation. Here, Dr. Hourigan presents an overview of minimal residual disease (MRD) measurement in hematologic malignancies and the applicability of MRD-based post-transplantation interventions. Dr. McCarthy reviews current knowledge of maintenance therapy in the autologous transplantation context, with emphasis on immunologic interventions and immune modulation strategies designed to prevent relapse. Dr. de Lima discusses current lines of investigation in disease recurrence prevention after allogeneic transplantation, focusing on acute myeloid leukemia and myelodysplastic syndrome.
Collapse
Affiliation(s)
- Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Philip McCarthy
- Blood and Marrow Transplant Program, Roswell Park Cancer Institute, Buffalo, New York
| | - Marcos de Lima
- University Hospitals Case Medical Center, Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
19
|
Roug AS, Larsen HØ, Nederby L, Just T, Brown G, Nyvold CG, Ommen HB, Hokland P. hMICL and CD123 in combination with a CD45/CD34/CD117 backbone - a universal marker combination for the detection of minimal residual disease in acute myeloid leukaemia. Br J Haematol 2013; 164:212-22. [PMID: 24152218 DOI: 10.1111/bjh.12614] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Real-time quantitative polymerase chain reaction (qPCR) has been extensively validated for the detection of minimal residual disease (MRD) in acute myeloid leukaemia (AML). Meanwhile, multicolour flow cytometry (MFC) has received less attention because the so-called leukaemia-associated immunophenotypes (LAIPs) are generally of lower sensitivity and specificity, and prone to change during therapy. To improve MRD assessment by MFC, we here evaluate the combination of human Myeloid Inhibitory C-type Lectin (hMICL, also termed C-type lectin domain family 12, member A, CLEC12A) and CD 123 (also termed interleukin-3 receptor alpha, IL3RA) in combination with CD34 and CD117 (KIT), as an MRD assay in pre-clinical and clinical testing in 69 AML patients. Spiking experiments revealed that the assay could detect MRD down to 10(-4) in normal bone marrow with sensitivities equalling those of validated qPCR assays. Moreover, it provided at least one MFC MRD marker in 62/69 patients (90%). High levels of hMICL/CD123 LAIPs at the post-induction time-point were a strong prognostic marker for relapse in patients in haematological complete remission (P < 0·001). Finally, in post induction samples, hMICL/CD123 LAIPs were strongly correlated (r = 0·676, P = 0·0008) to applied qPCR targets. We conclude the hMICL/CD123-based MFC assay is a promising MRD tool in AML.
Collapse
Affiliation(s)
- Anne S Roug
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abildgaard L, Ommen HB, Lausen B, Hasle H, Nyvold CG. A novel RT-qPCR assay for quantification of the MLL-MLLT3 fusion transcript in acute myeloid leukaemia. Eur J Haematol 2013; 91:394-8. [PMID: 23772754 DOI: 10.1111/ejh.12156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Patients with acute myeloid leukaemia (AML) of the monocytic lineage often lack molecular markers for minimal residual disease (MRD) monitoring. The MLL-MLLT3 fusion transcript found in patients with AML harbouring t(9;11) is amenable to RT-qPCR quantification but because of the heterogeneity of translocation break points, the MLL-MLLT3 fusion gene is a challenging target. We hypothesised that MRD monitoring using MLL-MLLT3 as a RT-qPCR marker is feasible in the majority of patients with t(9;11)-positive AML. METHODS Using a locked nucleic acid probe, we developed a sensitive RT-qPCR assay for quantification of the most common break point region of the MLL-MLLT3 fusion gene. Five paediatric patients with t(9;11)-positive AML were monitored using the MLL-MLLT3 assay. RESULTS A total of 43 bone marrow (BM) and 52 Peripheral blood (PB) samples were collected from diagnosis until follow-up. Two patients relapsed, and both were MRD positive in BM after first induction course. A total of three relapses occurred, and they were detected by RT-qPCR 3 wks before haematological relapse was diagnosed. CONCLUSION This MLL-MLLT3 RT-qPCR assay could be useful in MRD monitoring of a group of patients with AML who often lack reliable MRD markers.
Collapse
Affiliation(s)
- Lotte Abildgaard
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
21
|
Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK, Burnett AK. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol 2013; 31:4123-31. [PMID: 24062403 DOI: 10.1200/jco.2013.49.1753] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Older patients with acute myeloid leukemia (AML) have a high relapse rate after standard chemotherapy. We investigated whether measuring chemotherapy sensitivity by multiparameter flow cytometric minimal residual disease (MFC-MRD) detection has prognostic value in patients older than age 60 years or is simply a surrogate for known age-related risk factors. PATIENT AND METHODS Eight hundred ninety-two unselected patients treated intensively in the United Kingdom National Cancer Research Institute AML16 Trial were assessed prospectively for MFC-MRD during treatment. Eight hundred thirty-three patients had leukemia-associated immunophenotypes (LAIPs) identified by pretreatment screening. Four hundred twenty-seven patients entered complete remission (CR) after one or two courses (designated C1 and C2, respectively) and were MFC-MRD assessable by LAIP detection in CR bone marrow for at least one of these time points. MRD positivity was defined as residual disease detectable by LAIP. RESULTS MFC-MRD negativity, which was achieved in 51% of patients after C1 (n = 286) and 64% of patients after C2 (n = 279), conferred significantly better 3-year survival from CR (C1: 42% v 26% in MRD-positive patients, P < .001; C2: 38% v 18%, respectively; P < .001) and reduced relapse (C1: 71% v 83% in MRD-positive patients, P < .001; C2: 79% v 91%, respectively; P < .001), with higher risk of early relapse in MRD-positive patients (median time to relapse, 8.5 v 17.1 months, respectively). In multivariable analysis, MRD status at the post-C1 time point independently predicted survival, identifying a subgroup of intermediate-risk patients with particularly poor outcome. However, survival benefit from gemtuzumab ozogamicin was not associated with MFC-MRD chemotherapy sensitivity. CONCLUSION Early assessment of treatment response using flow cytometry provides powerful independent prognostic information in older adults with AML, lending support to the incorporation of MRD detection to refine risk stratification and inform clinical trial design in this challenging group of patients.
Collapse
Affiliation(s)
- Sylvie D Freeman
- Sylvie D. Freeman, University of Birmingham and University Hospitals Birmingham National Health Service (NHS) Trust, Birmingham; Paul Virgo, North Bristol NHS Trust, Bristol; Steve Couzens, University Hospital of Wales; Robert K. Hills and Alan K. Burnett, Cardiff University, Heath Park, Cardiff; David Grimwade, King's College London School of Medicine and Guy's and St Thomas' NHS Foundation Trust, London; and Nigel Russell, Nottingham University Hospital NHS Trust, Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Technological advances in the laboratory have led to substantial improvements in clinical decision making through the introduction of pretreatment prognostic risk stratification factors in acute myeloid leukaemia (AML). Unfortunately, similar progress has not been made in treatment response criteria, with the definition of 'complete remission' in AML largely unchanged for over half a century. Several clinical trials have demonstrated that high-sensitivity measurements of residual disease burden during or after treatment can be performed, that results are predictive for clinical outcome and can be used to improve outcomes by guiding additional therapeutic intervention to patients in clinical complete remission, but at increased relapse risk. We review these recent trials, the characteristics and challenges of the modalities currently used to detect minimal residual disease (MRD), and outline opportunities to both refine detection and improve clinical use of MRD measurements. MRD measurement is already the standard of care in other myeloid malignancies, such as chronic myelogenous leukaemia and acute promyelocytic leukaemia (APL). It is our belief that response criteria for non-APL AML should be updated to include assessment for molecular complete remission and recommendations for post-consolidation surveillance should include regular monitoring for molecular relapse as standard of care.
Collapse
Affiliation(s)
- Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, 10 Centre Drive, Bethesda, MD 20892-1583, USA.
| | | |
Collapse
|