1
|
Kim HY, Yoon HS, Lee Y, Kim YH, Cho KA, Woo SY, Kim HS, Ryu KH, Park JW. Matrix Metalloproteinase 1 as a Marker of Tonsil-Derived Mesenchymal Stem Cells to Assess Bone Marrow Cell Migration. Tissue Eng Regen Med 2023; 20:271-284. [PMID: 36462090 PMCID: PMC10070559 DOI: 10.1007/s13770-022-00501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Younghay Lee
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Han Su Kim
- Department of Otolaryngology, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
2
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
3
|
Hu B, Toda K, Wang X, Antczak MI, Smith J, Geboers S, Nishikawa G, Li H, Dawson D, Fink S, Desai AB, Williams NS, Markowitz SD, Ready JM. Orally Bioavailable Quinoxaline Inhibitors of 15-Prostaglandin Dehydrogenase (15-PGDH) Promote Tissue Repair and Regeneration. J Med Chem 2022; 65:15327-15343. [PMID: 36322935 PMCID: PMC9885488 DOI: 10.1021/acs.jmedchem.2c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
15-Prostaglandin dehydrogenase (15-PGDH) regulates the concentration of prostaglandin E2 in vivo. Inhibitors of 15-PGDH elevate PGE2 levels and promote tissue repair and regeneration. Here, we describe a novel class of quinoxaline amides that show potent inhibition of 15-PGDH, good oral bioavailability, and protective activity in mouse models of ulcerative colitis and recovery from bone marrow transplantation.
Collapse
Affiliation(s)
- Bin Hu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Kosuke Toda
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Xiaoyu Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Monika I Antczak
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Julianne Smith
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Sophie Geboers
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Gen Nishikawa
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Hongyun Li
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Dawn Dawson
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Stephen Fink
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Amar B Desai
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio44106, United States
- Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, Ohio44106, United States
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| |
Collapse
|
4
|
Patterson AM, Zhang S, Liu L, Li H, Singh P, Liu Y, Farag SS, Pelus LM. Meloxicam with Filgrastim may Reduce Oxidative Stress in Hematopoietic Progenitor Cells during Mobilization of Autologous Peripheral Blood Stem Cells in Patients with Multiple Myeloma. Stem Cell Rev Rep 2021; 17:2124-2138. [PMID: 34510361 DOI: 10.1007/s12015-021-10259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Autologous stem cell transplantation (ASCT) is a potentially curative therapy but requires collection of sufficient blood stem cells (PBSC). Up to 40 % of patients with multiple myeloma (MM) fail to collect an optimum number of PBSC using filgrastim only and often require costly plerixafor rescue. The nonsteroidal anti-inflammatory drug meloxicam mobilizes PBSC in mice, nonhuman primates and normal volunteers, and has the potential to attenuate mobilization-induced oxidative stress on stem cells. In a single-center study, we evaluated whether a meloxicam regimen prior to filgrastim increases collection and/or homeostasis of CD34+ cells in MM patients undergoing ASCT. Mobilization was not significantly different with meloxicam in this study; a median of 2.4 × 106 CD34+ cells/kg were collected in the first apheresis and 9.2 × 106 CD34+ cells/kg were collected overall for patients mobilized with meloxicam-filgrastim, versus 4.1 × 106 in first apheresis and 7.2 × 106/kg overall for patients mobilized with filgrastim alone. CXCR4 expression was reduced on CD34+ cells and a higher CD4+/CD8+ T-cell ratio was observed after mobilization with meloxicam-filgrastim. All patients treated with meloxicam-filgrastim underwent ASCT, with neutrophil and platelet engraftment similar to filgrastim alone. RNA sequencing of purified CD34+ cells from 22 MM patients mobilized with meloxicam-filgrastim and 10 patients mobilized with filgrastim only identified > 4,800 differentially expressed genes (FDR < 0.05). Enrichment analysis indicated significant attenuation of oxidative phosphorylation and translational activity, possibly mediated by SIRT1, suggesting meloxicam may counteract oxidative stress during PBSC collection. Our results indicate that meloxicam was a safe, low-cost supplement to filgrastim mobilization, which appeared to mitigate HSPC oxidative stress, and may represent a simple means to lessen stem cell exhaustion and enhance graft quality.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Shuhong Zhang
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA
| | - Liqiong Liu
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Hongge Li
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Pratibha Singh
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| | - Louis M Pelus
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA. .,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Cunningham KT, Mills KHG. Trained Innate Immunity in Hematopoietic Stem Cell and Solid Organ Transplantation. Transplantation 2021; 105:1666-1676. [PMID: 33982911 DOI: 10.1097/tp.0000000000003673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although significant progress has been made to improve short-term survival of transplant patients, long-term acceptance of allografts in solid organ and hematopoietic stem cell (HSC) transplantation is still a significant challenge. Current therapeutics for preventing or treating allograft rejection rely on potent immunosuppressive drugs that primarily target T cells of the adaptive immune response. Promising advances in transplant immunology have highlighted the importance of innate immune responses in allograft acceptance and rejection. Recent studies have demonstrated that innate immune cells are capable of mediating memory-like responses during inflammation, a term known as trained innate immunity. In this process, innate immune cells, such as macrophages and monocytes, undergo metabolic and epigenetic changes in response to a primary stimulus with a pathogen or their products that result in faster and more robust responses to a secondary stimulus. There is also some evidence to suggest that innate immune cells or their progenitors may be more anti-inflammatory after initial stimulation with appropriate agents, such as helminth products. Although this phenomenon has primarily been studied in the context of infection, there is emerging evidence to suggest that it could play a vital role in transplantation rejection and tolerance. Mechanisms of training innate immune cells and their progenitors in the bone marrow are therefore attractive targets for mediating long-term solid organ and HSC transplant tolerance. In this review, we highlight the potential role of proinflammatory and anti-inflammatory mechanisms of trained innate immunity in solid organ and HSC transplantation.
Collapse
Affiliation(s)
- Kyle T Cunningham
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
6
|
Prostaglandin E 2 Enhances Aged Hematopoietic Stem Cell Function. Stem Cell Rev Rep 2021; 17:1840-1854. [PMID: 33974233 DOI: 10.1007/s12015-021-10177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Aging of hematopoiesis is associated with increased frequency and clonality of hematopoietic stem cells (HSCs), along with functional compromise and myeloid bias, with donor age being a significant variable in survival after HSC transplantation. No clinical methods currently exist to enhance aged HSC function, and little is known regarding how aging affects molecular responses of HSCs to biological stimuli. Exposure of HSCs from young fish, mice, nonhuman primates, and humans to 16,16-dimethyl prostaglandin E2 (dmPGE2) enhances transplantation, but the effect of dmPGE2 on aged HSCs is unknown. Here we show that ex vivo pulse of bone marrow cells from young adult (3 mo) and aged (25 mo) mice with dmPGE2 prior to serial competitive transplantation significantly enhanced long-term repopulation from aged grafts in primary and secondary transplantation (27 % increase in chimerism) to a similar degree as young grafts (21 % increase in chimerism; both p < 0.05). RNA sequencing of phenotypically-isolated HSCs indicated that the molecular responses to dmPGE2 are similar in young and old, including CREB1 activation and increased cell survival and homeostasis. Common genes within these pathways identified likely key mediators of HSC enhancement by dmPGE2 and age-related signaling differences. HSC expression of the PGE2 receptor EP4, implicated in HSC function, increased with age in both mRNA and surface protein. This work suggests that aging does not alter the major dmPGE2 response pathways in HSCs which mediate enhancement of both young and old HSC function, with significant implications for expanding the therapeutic potential of elderly HSC transplantation.
Collapse
|
7
|
Wu J, Zhang L, Shi J, He R, Yang W, Habtezion A, Niu N, Lu P, Xue J. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine 2020; 58:102920. [PMID: 32739869 PMCID: PMC7399125 DOI: 10.1016/j.ebiom.2020.102920] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Impaired or hyperactive pancreas regeneration after injury would cause exocrine insufficiency or recurrent / chronic pancreatitis and potentially carcinogenesis. Macrophages are the most abundant immune cells in the regenerative pancreas, however their phenotype and role remain poorly defined. Method Using caerulein-induced acute pancreatitis (AP) model, we examined the dynamic landscape of pancreatic macrophages throughout the acute inflammation to regeneration phases by flow cytometric and RNA-seq analyses. Liposome depletion of macrophages, Il4ra−/− mice as well as inhibitors were used to elucidate the role and regulatory mechanism of macrophages during pancreatic regeneration. Findings We found that M1 macrophages dominated in the pro-inflammatory phase of AP, while M2-like macrophages dominated during pancreas repair/regeneration. Depletion of macrophages at early or late regenerative stage dramatically blocked the acinar-ductal metaplasia (ADM) or delayed inflammation resolution, respectively. Moreover, alternative activation of macrophages was partially dependent on IL-4RA signaling, and ECM/AKT activation in pancreatic macrophages facilitated inflammation resolution during tissue regeneration. Interpretation Our findings illustrate a dynamic phenotype and function of macrophages during AP repair/regeneration, helping us better understand the mechanism of pancreatic regeneration and providing clues for novel therapeutic strategy.
Collapse
Affiliation(s)
- Jinghua Wu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruizhe He
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenjuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Isolation of a Highly Purified HSC-enriched CD34 +CD90 +CD45RA - Cell Subset for Allogeneic Transplantation in the Nonhuman Primate Large-animal Model. Transplant Direct 2020; 6:e579. [PMID: 33134503 PMCID: PMC7581184 DOI: 10.1097/txd.0000000000001029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a common treatment for patients suffering from different hematological disorders. Allo-HCT in combination with hematopoietic stem cell (HSC) gene therapy is considered a promising treatment option for millions of patients with HIV+ and acute myeloid leukemia. Most currently available HSC gene therapy approaches target CD34-enriched cell fractions, a heterogeneous mix of mostly progenitor cells and only very few HSCs with long-term multilineage engraftment potential. As a consequence, gene therapy approaches are currently limited in their HSC targeting efficiency, very expensive consuming huge quantities of modifying reagents, and can lead to unwanted side effects in nontarget cells. We have previously shown that purified CD34+CD90+CD45RA− cells are enriched for multipotent HSCs with long-term multilineage engraftment potential, which can reconstitute the entire hematopoietic system in an autologous nonhuman primate transplant model. Here, we tested the feasibility of transplantation with purified CD34+CD90+CD45RA− cells in the allogeneic setting in a nonhuman primate model.
Collapse
|
9
|
Chander V, Gangenahalli G. Emerging strategies for enhancing the homing of hematopoietic stem cells to the bone marrow after transplantation. Exp Cell Res 2020; 390:111954. [PMID: 32156602 DOI: 10.1016/j.yexcr.2020.111954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
Bone marrow failure is the primary cause of death after nuclear accidents or intentional exposure to high or low doses of ionizing radiation. Hematopoietic stem cell transplantation is the most potent treatment procedure for patients suffering from several hematopoietic malignancies arising after radiation injuries. Successful hematopoietic recovery after transplantation depends on efficient homing and subsequent engraftment of hematopoietic stem cells in specific niches within the bone marrow. It is a rapid and coordinated process in which circulating cells actively enter the bone marrow through the process known as transvascular migration, which involves the tightly regulated relay of events that finally leads to homing of cells in the bone marrow. Various adhesion molecules, chemokines, glycoproteins, integrins, present both on the surface of stem cells and sinusoidal endothelium plays a critical role in transvascular migration. But despite having an in-depth knowledge of homing and engraftment and the key events that regulate it, we are still not completely able to avoid graft failures and post-transplant mortalities. This deems it necessary to design a flawless plan for successful transplantation. Here, in this review, we will discuss the current clinical methods used to overcome graft failures and their flaws. We will also discuss, what are the new approaches developed in the past 10-12 years to selectively deliver the hematopoietic stem cells in the bone marrow by adopting proper targeting strategies that can help revolutionize the field of regenerative and translational medicine.
Collapse
Affiliation(s)
- Vikas Chander
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences, Delhi, 110054, India.
| |
Collapse
|
10
|
Hofer M, Hoferová Z, Falk M. Brief Story on Prostaglandins, Inhibitors of their Synthesis, Hematopoiesis, and Acute Radiation Syndrome. Molecules 2019; 24:molecules24224019. [PMID: 31698831 PMCID: PMC6891503 DOI: 10.3390/molecules24224019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/22/2023] Open
Abstract
Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.
Collapse
Affiliation(s)
- Michal Hofer
- Correspondence: ; Tel.: +420-541-517-171; Fax: +420-541-211-293
| | | | | |
Collapse
|
11
|
Quintana-Bustamante O, Fañanas-Baquero S, Orman I, Torres R, Duchateau P, Poirot L, Gouble A, Bueren JA, Segovia JC. Gene editing of PKLR gene in human hematopoietic progenitors through 5' and 3' UTR modified TALEN mRNA. PLoS One 2019; 14:e0223775. [PMID: 31618280 PMCID: PMC6795450 DOI: 10.1371/journal.pone.0223775] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate Kinase Deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene, which encodes the erythroid specific Pyruvate Kinase enzyme. Erythrocytes from PKD patients show an energetic imbalance and are susceptible to hemolysis. Gene editing of hematopoietic stem cells (HSCs) would provide a therapeutic benefit and improve safety of gene therapy approaches to treat PKD patients. In previous studies, we established a gene editing protocol that corrected the PKD phenotype of PKD-iPSC lines through a TALEN mediated homologous recombination strategy. With the goal of moving toward more clinically relevant stem cells, we aim at editing the PKLR gene in primary human hematopoietic progenitors and hematopoietic stem cells (HPSCs). After nucleofection of the gene editing tools and selection with puromycin, up to 96% colony forming units showed precise integration. However, a low yield of gene edited HPSCs was associated to the procedure. To reduce toxicity while increasing efficacy, we worked on i) optimizing gene editing tools and ii) defining optimal expansion and selection times. Different versions of specific nucleases (TALEN and CRISPR-Cas9) were compared. TALEN mRNAs with 5’ and 3’ added motifs to increase RNA stability were the most efficient nucleases to obtain high gene editing frequency and low toxicity. Shortening ex vivo manipulation did not reduce the efficiency of homologous recombination and preserved the hematopoietic progenitor potential of the nucleofected HPSCs. Lastly, a very low level of gene edited HPSCs were detected after engraftment in immunodeficient (NSG) mice. Overall, we showed that gene editing of the PKLR gene in HPSCs is feasible, although further improvements must to be done before the clinical use of the gene editing to correct PKD.
Collapse
Affiliation(s)
- Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
- * E-mail:
| | - Sara Fañanas-Baquero
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Israel Orman
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Raul Torres
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Instituto Josep Carreras, Barcelona, Spain
| | | | | | | | - Juan A. Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Jose C. Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
12
|
Golay H, Jurkovic Mlakar S, Mlakar V, Nava T, Ansari M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int J Mol Sci 2019; 20:E3889. [PMID: 31404983 PMCID: PMC6719093 DOI: 10.3390/ijms20163889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for several malignant and non-malignant diseases at the cost of serious treatment-related toxicities (TRTs). Recent research on extending the benefits of HSCT to more patients and indications has focused on limiting TRTs and improving immunological effects following proper mobilization and engraftment. Increasing numbers of studies report associations between HSCT outcomes and the expression or the manipulation of G protein-coupled receptors (GPCRs). This large family of cell surface receptors is involved in various human diseases. With ever-better knowledge of their crystal structures and signaling dynamics, GPCRs are already the targets for one third of the current therapeutic arsenal. The present paper assesses the current status of animal and human research on GPCRs in the context of selected HSCT outcomes via a systematized survey and analysis of the literature.
Collapse
Affiliation(s)
- Hadrien Golay
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Vid Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Tiago Nava
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Marc Ansari
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| |
Collapse
|
13
|
Zarrabi M, Afzal E, Ebrahimi M. Manipulation of Hematopoietic Stem Cell Fate by Small Molecule Compounds. Stem Cells Dev 2018; 27:1175-1190. [DOI: 10.1089/scd.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Antczak MI, Zhang Y, Wang C, Doran J, Naidoo J, Voruganti S, Williams NS, Markowitz SD, Ready JM. Inhibitors of 15-Prostaglandin Dehydrogenase To Potentiate Tissue Repair. J Med Chem 2017; 60:3979-4001. [PMID: 28398755 DOI: 10.1021/acs.jmedchem.7b00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The enzyme 15-prostaglandin dehydrogenase (15-PGDH) catalyzes the first step in the degradation of prostaglandins including PGE2. It is a negative regulator of tissue repair and regeneration in multiple organs. Accordingly, inhibitors of 15-PGDH are anticipated to elevate in vivo levels of PGE2 and to promote healing and tissue regeneration. The small molecule SW033291 (1) inhibits 15-PGDH with Ki = 0.1 nM in vitro, doubles PGE2 levels in vivo, and shows efficacy in mouse models of recovery from bone marrow transplantation, ulcerative colitis, and partial hepatectomy. Here we describe optimized variants of 1 with improved solubility, druglike properties, and in vivo activity.
Collapse
Affiliation(s)
- Monika I Antczak
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Yongyou Zhang
- Department of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Changguang Wang
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Jennifer Doran
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Jacinth Naidoo
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Sukesh Voruganti
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Seidman Cancer Center, University Hospitals of Cleveland , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
15
|
Psatha N, Karponi G, Yannaki E. Optimizing autologous cell grafts to improve stem cell gene therapy. Exp Hematol 2016; 44:528-39. [PMID: 27106799 DOI: 10.1016/j.exphem.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts.
Collapse
Affiliation(s)
- Nikoletta Psatha
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, WA
| | - Garyfalia Karponi
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
16
|
Kazemi Z, Bergmayr C, Prchal-Murphy M, Javaheri T, Themanns M, Pham HTT, Strohmaier W, Sexl V, Freissmuth M, Zebedin-Brandl E. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation. Mol Pharmacol 2016; 89:630-44. [PMID: 26989084 PMCID: PMC4885501 DOI: 10.1124/mol.116.103267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [3H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg−1 8 h−1) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application.
Collapse
Affiliation(s)
- Zahra Kazemi
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Christian Bergmayr
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Michaela Prchal-Murphy
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Tahereh Javaheri
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Madeleine Themanns
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Ha T T Pham
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Wolfgang Strohmaier
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Veronika Sexl
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Michael Freissmuth
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| | - Eva Zebedin-Brandl
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (Z.K., C.B., M.T., M.F., E.Z.-B.); Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria (M.P.-M., V.S.); Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria (T.J., H.T.T.P.); SciPharm SàRL, L-2540 Luxembourg (W.S.)
| |
Collapse
|
17
|
Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, Tiwari S, Willis JE, Williams NS, Dawson DM, Wald D, Chen WD, Wang Z, Kasturi L, Larusch GA, He L, Cominelli F, Di Martino L, Djuric Z, Milne GL, Chance M, Sanabria J, Dealwis C, Mikkola D, Naidoo J, Wei S, Tai HH, Gerson SL, Ready JM, Posner B, Willson JKV, Markowitz SD. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015; 348:aaa2340. [PMID: 26068857 DOI: 10.1126/science.aaa2340] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Agents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. The same compound also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. Thus, 15-PGDH inhibition may be a valuable therapeutic strategy for tissue regeneration in diverse clinical contexts.
Collapse
Affiliation(s)
- Yongyou Zhang
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amar Desai
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sung Yeun Yang
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Gastroenterology, Haeundae Paik Hospital, Inje University, Busan 612896, South Korea
| | - Ki Beom Bae
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Surgery, Busan Paik Hospital, and Paik Institute of Clinical Research and Ocular Neovascular Research Center, Inje University, Busan, South Korea
| | - Monika I Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen P Fink
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shruti Tiwari
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Joseph E Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dawn M Dawson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David Wald
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Wei-Dong Chen
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lakshmi Kasturi
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gretchen A Larusch
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lucy He
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan, Ann Arbor MI 48109, USA
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark Chance
- Proteomics Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juan Sanabria
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Chris Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Debra Mikkola
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hsin-Hsiung Tai
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Stanton L Gerson
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - James K V Willson
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW A review of articles published since January 2012 on the topic of cord blood banking and cord blood stem cell transplantation was conducted for this the 25th anniversary year of the first cord blood transplant performed in a human. RECENT FINDINGS Cord blood banking is performed throughout the world. Umbilical cord blood (UCB) transplantation is recognized as an acceptable alternative stem cell source for paediatric and adults requiring a haematopoietic transplant, particularly for patients of racial and ethnic minorities. To further advance the use of UCB, methods to enhance UCB stem cell expansion, engraftment and maintenance may be required. Controversy on the most effective and economically sustainable model for banking and storing an optimal UCB product continues to persist. SUMMARY Cord blood banking and transplantation of cord blood stem cells has advanced rapidly over the initial 25 years, as more than 30 ,000 patients have benefited from the therapy. New concepts on the use of methods to expand UCB stem cells for transplantation and use for nonhaematopoietic indications may increase demand for UCB over the next few decades.
Collapse
|
19
|
Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen YB, Rezner B, Armand P, Koreth J, Glotzbecker B, Ho VT, Alyea E, Isom M, Kao G, Armant M, Silberstein L, Hu P, Soiffer RJ, Scadden DT, Ritz J, Goessling W, North TE, Mendlein J, Ballen K, Zon LI, Antin JH, Shoemaker DD. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 2013; 122:3074-81. [PMID: 23996087 PMCID: PMC3811179 DOI: 10.1182/blood-2013-05-503177] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/20/2013] [Indexed: 01/16/2023] Open
Abstract
Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality. 16,16-Dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis, and we hypothesized that brief ex vivo modulation with dmPGE2 could improve patient outcomes by increasing the "effective dose" of HSCs. Molecular profiling approaches were used to determine the optimal ex vivo modulation conditions (temperature, time, concentration, and media) for use in the clinical setting. A phase 1 trial was performed to evaluate the safety and therapeutic potential of ex vivo modulation of a single UCB unit using dmPGE2 before reduced-intensity, double UCB transplantation. Results from this study demonstrated clear safety with durable, multilineage engraftment of dmPGE2-treated UCB units. We observed encouraging trends in efficacy, with accelerated neutrophil recovery (17.5 vs 21 days, P = .045), coupled with preferential, long-term engraftment of the dmPGE2-treated UCB unit in 10 of 12 treated participants.
Collapse
|
20
|
Porter RL, Georger MA, Bromberg O, McGrath KE, Frisch BJ, Becker MW, Calvi LM. Prostaglandin E2 increases hematopoietic stem cell survival and accelerates hematopoietic recovery after radiation injury. Stem Cells 2013; 31:372-83. [PMID: 23169593 DOI: 10.1002/stem.1286] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/28/2012] [Indexed: 01/02/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs), which continuously maintain all mature blood cells, are regulated within the marrow microenvironment. We previously reported that pharmacologic treatment of naïve mice with prostaglandin E2 (PGE2) expands HSPCs. However, the cellular mechanisms mediating this expansion remain unknown. Here, we demonstrate that PGE2 treatment in naïve mice inhibits apoptosis of HSPCs without changing their proliferation rate. In a murine model of sublethal total body irradiation (TBI), in which HSPCs are rapidly lost, treatment with a long-acting PGE2 analog (dmPGE2) reversed the apoptotic program initiated by TBI. dmPGE2 treatment in vivo decreased the loss of functional HSPCs following radiation injury, as demonstrated both phenotypically and by their increased reconstitution capacity. The antiapoptotic effect of dmPGE2 on HSPCs did not impair their ability to differentiate in vivo, resulting instead in improved hematopoietic recovery after TBI. dmPGE2 also increased microenvironmental cyclooxygenase-2 expression and expanded the α-smooth muscle actin-expressing subset of marrow macrophages, thus enhancing the bone marrow microenvironmental response to TBI. Therefore, in vivo treatment with PGE2 analogs may be particularly beneficial to HSPCs in the setting of injury by targeting them both directly and also through their niche. The current data provide rationale for in vivo manipulation of the HSPC pool as a strategy to improve recovery after myelosuppression.
Collapse
Affiliation(s)
- Rebecca L Porter
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hoggatt J, Singh P, Stilger KN, Plett PA, Sampson CH, Chua HL, Orschell CM, Pelus LM. Recovery from hematopoietic injury by modulating prostaglandin E(2) signaling post-irradiation. Blood Cells Mol Dis 2012. [PMID: 23206586 DOI: 10.1016/j.bcmd.2012.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While high dose total body irradiation (TBI) is used therapeutically, the proliferation of nuclear weapons, increasing use of nuclear power, and worldwide radical terrorism underscore the need to develop countermeasures to a radiological mass casualty event. The hematopoietic syndrome of the acute radiation syndrome (HS-ARS) results from severe compromise to the hematopoietic system, including lymphocytopenia, neutropenia, thrombocytopenia, and possible death from infection and/or hemorrhage. Given adequate time to recover, expand, and appropriately differentiate, bone marrow hematopoietic stem cells (HSC) and progenitor cells (HPC) may overcome HS-ARS and restore homeostasis of the hematopoietic system. Prostaglandin E(2) (PGE(2)) has been shown to have pleiotropic effects on hematopoiesis, acting to inhibit apoptosis and promote self-renewal of HSC, while inhibiting HPC proliferation. We assessed the radio-mitigating potential of modulating PGE(2) signaling in a mouse model of HS-ARS. Treatment with the PGE(2) analog 16,16 dimethyl PGE(2) (dmPGE(2)) 6h post-irradiation or inhibition of PGE(2) synthesis via delayed administration of the non-steroidal anti-inflammatory drug (NSAID) Meloxicam resulted in increased survival of lethally irradiated mice. Both early dmPGE(2) and delayed Meloxicam treatment were associated with increased HPC activity 35days following irradiation, demonstrating enhanced recovery of hematopoiesis. Our results define two different treatment modalities that are highly effective and safe to administer, and can be readily available.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Smith AN, Muffley LA, Bell AN, Numhom S, Hocking AM. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators. J Cell Physiol 2012; 227:3225-33. [PMID: 22105830 DOI: 10.1002/jcp.24013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) represent emerging cell-based therapies for diabetes and associated complications. Ongoing clinical trials are using exogenous MSC to treat type 1 and 2 diabetes, cardiovascular disease and non-healing wounds due to diabetes. The majority of these trials are aimed at exploiting the ability of these multipotent mesenchymal stromal cells to release soluble mediators that reduce inflammation and promote both angiogenesis and cell survival at sites of tissue damage. Growing evidence suggests that MSC secretion of soluble factors is dependent on tissue microenvironment. Despite the contribution of fatty acids to the metabolic environment of type 2 diabetes, almost nothing is known about their effects on MSC secretion of growth factors and cytokines. In this study, human bone marrow-derived MSC were exposed to linoleic acid, an omega-6 polyunsaturated fatty acid, or oleic acid, a monounsaturated fatty acid, for seven days in the presence of 5.38 mM glucose. Outcomes measured included MSC proliferation, gene expression, protein secretion and chemotaxis. Linoleic and oleic acids inhibited MSC proliferation and altered MSC expression and secretion of known mediators of angiogenesis. Both unsaturated fatty acids induced MSC to increase secretion of interleukin-6, VEGF and nitric oxide. In addition, linoleic acid but not oleic acid induced MSC to increase production of interleukin-8. Collectively these data suggest that exposure to fatty acids may have functional consequences for MSC therapy. Fatty acids may affect MSC engraftment to injured tissue and MSC secretion of cytokines and growth factors that regulate local cellular responses to injury.
Collapse
Affiliation(s)
- Andria N Smith
- Department of Surgery, University of Washington, Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
23
|
Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A, Kucia M, Ratajczak J, Ratajczak MZ. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 2011; 26:106-16. [PMID: 21769103 PMCID: PMC3197954 DOI: 10.1038/leu.2011.185] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have observed that conditioning for hematopoietic transplantation by lethal irradiation induces a proteolytic microenvironment in the bone marrow (BM) that activates the complement cascade (CC). As a result, BM is enriched for proteolytic enzymes and the soluble form of the terminal product of CC activation, the membrane attack complex C5b-C9 (MAC). At the same time, proteolytic enzymes induced in irradiated BM impair the chemotactic activity of α-chemokine stromal-derived factor-1 (SDF-1). As SDF-1 is considered a crucial BM chemoattractant for transplanted hematopoietic stem/progenitor cells (HSPCs), we sought to determine whether other factors that are resistant to proteolytic enzymes have a role in this process, focusing on proteolysis-resistant bioactive lipids. We found that the concentrations of sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) increase in the BM after conditioning for transplantation and that both S1P and, as we show here for the first time, C1P are potent chemoattractants for HSPCs. Next, we observed that C5-deficient mice that do not generate MAC show impaired engraftment of HSPCs. In support of a role for MAC in homing and engraftment, we found that soluble MAC enhances in a CR3 (CD11b/CD18)-dependent manner the adhesion of HSPCs to BM stromal cells and increases the secretion of SDF-1 by BM stroma. We conclude that an increase in BM levels of proteolytic enzyme-resistant S1P and C1P and activation of CC, which leads to the generation of MAC, has an important and previously underappreciated role in the homing of transplanted HSPCs.
Collapse
Affiliation(s)
- C H Kim
- Department of Medicine, Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pelus LM, Hoggatt J. Pleiotropic effects of prostaglandin E2 in hematopoiesis; prostaglandin E2 and other eicosanoids regulate hematopoietic stem and progenitor cell function. Prostaglandins Other Lipid Mediat 2011; 96:3-9. [PMID: 21722751 DOI: 10.1016/j.prostaglandins.2011.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/26/2022]
Abstract
Eicosanoids have been implicated in the physiological regulation of hematopoiesis with pleiotropic effects on hematopoietic stem cells and various classes of lineage restricted progenitor cells. Herein we review the effects of eicosanoids on hematopoiesis, focusing on new findings implicating prostaglandin E(2) in enhancing hematopoietic stem cell engraftment by enhancing stem cell homing, survival and self-renewal. We also describe a role for cannabinoids in hematopoiesis. Lastly, we discuss the yin and yang of various eicosanoids in modulating hematopoietic stem and progenitor cell functions and summarize potential strategies to take advantage of these effects for therapeutic benefit for hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
25
|
Abstract
Successful clinical outcomes from transplantation of hematopoietic stem cells (HSCs) depend upon efficient HSC homing to bone marrow (BM), subsequent engraftment, and, finally, BM repopulation. Homing of intravenously administered HSCs from peripheral blood (PB) through the circulation to the BM stem cell niches, which is the first critical step that precedes their engraftment, is enforced by chemotactic factors released in the BM microenvironment that chemoattract HSCs. These chemotactic factors include α-chemokine stromal-derived factor 1 (SDF-1), the bioactive phosphosphingolipids sphingosine-1-phosphate (S1P) and ceramid-1-phosphate (C1P), and the extracellular nucleotides ATP and UTP. Stem cells may also respond to a Ca2+ or H+ gradient by employing calcium- or proton-sensing receptors, respectively. In this review, we will present emerging strategies based on ex vivo manipulation of graft HSCs that are aimed at enhancing the responsiveness of HSCs to BM-secreted chemoattractants and/or promoting HSC adhesion and seeding efficiency in the BM microenvironment.
Collapse
|