1
|
Xie W, Jiang S, Donat A, Knapstein PR, Albertsen LC, Kokot JL, Erdmann C, Rolvien T, Frosch KH, Baranowsky A, Keller J. Tranexamic Acid Attenuates the Progression of Posttraumatic Osteoarthritis in Mice. Am J Sports Med 2024; 52:766-778. [PMID: 38305280 PMCID: PMC10905980 DOI: 10.1177/03635465231220855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Posttraumatic osteoarthritis (OA) is a common disorder associated with a high socioeconomic burden, particularly in young, physically active, and working patients. Tranexamic acid (TXA) is commonly used in orthopaedic trauma surgery as an antifibrinolytic agent to control excessive bleeding. Previous studies have reported that TXA modulates inflammation and bone cell function, both of which are dysregulated during posttraumatic OA disease progression. PURPOSE To evaluate the therapeutic effects of systemic and topical TXA treatment on the progression of posttraumatic OA in the knee of mice. STUDY DESIGN Controlled laboratory study. METHODS OA was induced via anterior cruciate ligament (ACL) transection on the right knee of female mice. Mice were treated with TXA or vehicle intraperitoneally daily or intra-articularly weekly for 4 weeks, starting on the day of surgery. Articular cartilage degeneration, synovitis, bone erosion, and osteophyte formation were scored histologically. Micro-computed tomography evaluation was conducted to measure the subchondral bone microstructure and osteophyte volume. Cartilage thickness and bone remodeling were assessed histomorphometrically. RESULTS Both systemic and topical TXA treatment significantly reduced cartilage degeneration, synovitis, and bone erosion scores and increased the ratio of hyaline to calcified cartilage thickness in posttraumatic OA. Systemic TXA reversed ACL transection-induced subchondral bone loss and osteophyte formation, whereas topical treatment had no effect. Systemic TXA decreased the number and surface area of osteoclasts, whereas those of osteoblasts were not affected. No effect of topical TXA on osteoblast or osteoclast parameters was observed. CONCLUSION Both systemic and topical TXA exerted protective effects on the progression of posttraumatic OA. Drug repurposing of TXA may, therefore, be useful for the prevention or treatment of posttraumatic OA, particularly after ACL surgery. CLINICAL RELEVANCE TXA might be beneficial in patients with posttraumatic OA of the knee.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilly-Charlotte Albertsen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Judith Luisa Kokot
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
4
|
Ng CW, Chan BCL, Ko CH, Tam IYS, Sam SW, Lau CBS, Leung PC, Lau HYA. Human mast cells induce osteoclastogenesis through cell surface RANKL. Inflamm Res 2022; 71:1261-1270. [PMID: 35916930 DOI: 10.1007/s00011-022-01608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES We employed the co-culture of CD34+ stem cell-derived human mast cells (HMC) and human monocyte-derived osteoclast precursors to evaluate if mast cells contribute to the pathogenesis of osteoporosis through regulation of osteoclast proliferation and activation. METHODS Mature HMC and osteoclast precursors were cultured from monocytes isolated from human buffy coat. The osteoclast precursors were incubated with HMC or receptor activator of nuclear factor kappa-B ligand (RANKL) for a week prior to determination of osteoclast maturation through characterization by their morphology and tartrate resistant acid phosphatase (TRAP) expression. The bone absorption activity was determined by pit formation on osteo-assay plate. RESULTS Mature osteoclasts were identified following co-culture of osteoclast precursors with HMC for one week in the absence of RANKL and they were capable of bone resorption. These actions of HMC on osteoclasts were not affected by mast cell activators such anti-IgE or substance P but could be reversed by osteoprotegerin (OPG) in the co-culture system suggesting the involvement of RANKL. The expression of RANKL on the cell surface of HMC was confirmed by flow cytometry and the density was not affected by activation of HMC. CONCLUSION Our study provided direct evidence confirming the initiation of osteoclast proliferation and activation by mast cells through cell surface RANKL suggesting that mast cells may contribute to bone destruction in pathological conditions such as osteoporosis.
Collapse
Affiliation(s)
- Chun Wai Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ben Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chun Hay Ko
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Issan Yee San Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sze Wing Sam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
5
|
Martin V, Garcia M, Montemor MDF, Fernandes JCS, Gomes PS, Fernandes MH. Simulating In Vitro the Bone Healing Potential of a Degradable and Tailored Multifunctional Mg-Based Alloy Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060255. [PMID: 35735498 PMCID: PMC9219794 DOI: 10.3390/bioengineering9060255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
This work intended to elucidate, in an in vitro approach, the cellular and molecular mechanisms occurring during the bone healing process, upon implantation of a tailored degradable multifunctional Mg-based alloy. This was prepared by a conjoining anodization of the bare alloy (AZ31) followed by the deposition of a polymeric coating functionalized with hydroxyapatite. Human endothelial cells and osteoblastic and osteoclastic differentiating cells were exposed to the extracts from the multifunctional platform (having a low degradation rate), as well as the underlying anodized and original AZ31 alloy (with higher degradation rates). Extracts from the multifunctional coated alloy did not affect cellular behavior, although a small inductive effect was observed in the proliferation and gene expression of endothelial and osteoblastic cells. Extracts from the higher degradable anodized and original alloys induced the expression of some endothelial genes and, also, ALP and TRAP activities, further increasing the expression of some early differentiation osteoblastic and osteoclastic genes. The integration of these results in a translational approach suggests that, following the implantation of a tailored degradable Mg-based material, the absence of initial deleterious effects would favor the early stages of bone repair and, subsequently, the on-going degradation of the coating and the subjacent alloy would increase bone metabolism dynamics favoring a faster bone formation and remodeling process and enhancing bone healing.
Collapse
Affiliation(s)
- Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Mónica Garcia
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
| | - Maria de Fátima Montemor
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - João Carlos Salvador Fernandes
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Establishment and validation of an in vitro co-culture model for oral cell lines using human PBMC-derived osteoclasts, osteoblasts, fibroblasts and keratinocytes. Sci Rep 2020; 10:16861. [PMID: 33033302 PMCID: PMC7544897 DOI: 10.1038/s41598-020-73941-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Indirect co-culture models with osteoclasts including oral cell lines may be influenced by M-CSF and RANKL in the common cell medium. Therefore, we investigated the viability and proliferation of osteoblasts (OB), fibroblasts (FB) and oral keratinocytes (OK) under stratified medium modification and assessed the differentiation of osteoclasts in each co-culture. The impact of M-CSF and RANKL in the common OC co-culture was assessed for OB, FB and OK via MTT assay via DAPI control. The multinuclearity and function of OC were evaluated by light microscopy, DAPI staining, resorption assay and FACS analysis. The PBMC showed the highest differentiation into OC after an incubation period of 7 days. Furthermore, co-culture with OB enhanced the number of differentiated multinucleated OC in comparison with monoculture, whereas co-culture with OK decreased PBMC multinuclearity and OC differentiation. FB did not influence the number of differentiated OC in a co-culture. RANKL and M-CSF reduction had no impact on OC differentiation in co-culture with FB or OB, whereas this medium modification for OK attenuated PBMC multinuclearity and OC differentiation in all approaches. Supplementation of RANKL and M-CSF can be modified for a co-culture of PBMC with FB or OB without disturbing OC differentiation. Thus, pathogenic processes of bone remodelling involving OB, OC, FB and OK in the oral cavity can be investigated thoroughly.
Collapse
|
7
|
Vitamin D status influences transcriptional levels of RANKL and inflammatory biomarkers which are associated with activation of PBMC. Clin Chim Acta 2020; 507:219-223. [PMID: 32371216 DOI: 10.1016/j.cca.2020.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Vitamin D status is involved in the risk of many chronic diseases including cancer, inflammatory and autoimmune disease. The RANK/RANKL/OPG system is also implicated in the orchestration of immune functions. We aimed to investigate the expression of RANKL, OPG and markers of inflammation and immune activation in peripheral blood mononuclear cells (PBMC) from healthy subjects with different 25(OH)D3 plasma levels. The 25(OH)D3 plasma concentrations were assessed by HPLC. The gene expression was evaluated by qRT-PCR. The expression of CYP27B1 was lower in subjects with 25(OH)D3 levels below 50 nmol/L (deficiency) than subjects with both insufficient and sufficient levels of 25(OH)D3. In subjects with deficiency, we observed the up-regulation of RANKL, TNF-α, IFN-γ, ICAM and LFA-1, and a reduction of the anti-inflammatory cytokines IL-13 and IL-4 in comparison to other subjects. Finally, we found a negative correlation between RANKL mRNA levels and 25(OH)D3 and between 25(OH)D3 and ICAM mRNA levels. A positive correlation between ICAM and RANKL was observed. Our results give evidence of the modulatory effects of circulating 25(OH)D3 levels on gene expression of biomarkers of immune activation in PBMC, suggesting the possible use of PBMC as ex-vivo model to characterize molecular mechanisms of immune/inflammatory response in hypovitaminosis conditions.
Collapse
|
8
|
Kylmäoja E, Nakamura M, Turunen S, Patlaka C, Andersson G, Lehenkari P, Tuukkanen J. Peripheral blood monocytes show increased osteoclast differentiation potential compared to bone marrow monocytes. Heliyon 2018; 4:e00780. [PMID: 30225379 PMCID: PMC6138956 DOI: 10.1016/j.heliyon.2018.e00780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022] Open
Abstract
Bone marrow (BM) and peripheral blood (PB) derived mononuclear cells are precursors of in vitro osteoclast differentiation. However, few studies have compared the phenotypic and functional properties of osteoclasts generated from these sources and the effects of different growth factors on osteoclastogenesis. Both cell types differentiated into functional osteoclasts, but culturing the cells with or without transforming growth factor beta (TGF-β) and dexamethasone revealed differences in their osteoclastogenic capacity. When receptor activator for nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were used for differentiation, we did not observe differences in bone resorption activity or expression of osteoclastogenic genes calcitonin receptor (CR) and nuclear factor of activated T-cells (NFATc1) between the osteoclasts formed from the two sources. Addition of TGF-β and dexamethasone led to higher number of nuclei in multinuclear cells and increased expression of tartrate resistant acid phosphatase (TRACP) 5a and 5b, CR and NFATc1 in PB- derived osteoclasts depicting the higher osteoclastogenic potential and responsiveness to TGF-β and dexamethasone in PB monocytes. These results conclude that the choice of the osteoclast precursor source as well as the choice of osteoclastogenic growth factors are essential matters in determining the phenotypic characteristics of heterogeneous osteoclast populations.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Miho Nakamura
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan
| | - Sanna Turunen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Christina Patlaka
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Petri Lehenkari
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Juha Tuukkanen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| |
Collapse
|
9
|
Kylmäoja E, Nakamura M, Kokkonen-Puuperä H, Ronkainen VP, Lehenkari P, Tuukkanen J. Gap junctional communication is involved in differentiation of osteoclasts from bone marrow and peripheral blood monocytes. Heliyon 2018; 4:e00621. [PMID: 29756076 PMCID: PMC5944415 DOI: 10.1016/j.heliyon.2018.e00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/05/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Aims The aim of the study was to compare the influence of gap junctional communication (GJC) in osteoclastogenesis from bone marrow (BM) and peripheral blood (PB) monocytes. These widely used sources differ in purity, since BM cultures contain a significant number of stromal cells. We studied whether stimulation of GJC in BM monocyte/stromal cell cultures differs from the effect in pure PB monocyte cultures. We compared the differentiation also in acidosis, which is a known inducer of bone resorption. Main methods Human BM and PB monocytes were isolated from BM aspirates or whole blood samples. The cells were cultured on human bone slices with osteoclastogenic growth factors and a GJC modulator, antiarrhythmic peptide AAP10, at physiological and acidic pH. Key findings Both BM and PB monocytes differentiated into osteoclasts. Acidosis increased resorption in both cultures but stimulated cell fusion only in BM cultures, which demonstrates the role of stromal cells in osteoclastogenesis. At physiological pH, AAP10 increased the number of multinuclear cells and bone resorption in both BM and PB cultures indicating that GJC is involved in differentiation in both of these osteoclastogenesis assays. Interestingly, in PB cultures at pH 6.5 the stimulation of GJC with AAP10 inhibited both osteoclastogenesis and bone resorption suggesting a different role of GJC in BM and PB monocytes at stressed environment. Significance The study is conducted with primary human tissue samples and adds new knowledge on factors affecting osteoclastogenesis from different monocyte sources.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, P.O. Box 5000, 90014, University of Oulu, Finland
- Corresponding author.
| | - Miho Nakamura
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, P.O. Box 5000, 90014, University of Oulu, Finland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan
| | - Hanna Kokkonen-Puuperä
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, P.O. Box 5000, 90014, University of Oulu, Finland
| | - Veli-Pekka Ronkainen
- Biocenter Oulu, Light Microscopy Core Facility, P.O. Box 5000, 90014, University of Oulu, Finland
| | - Petri Lehenkari
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, P.O. Box 5000, 90014, University of Oulu, Finland
| | - Juha Tuukkanen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, P.O. Box 5000, 90014, University of Oulu, Finland
| |
Collapse
|
10
|
Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem 2018; 57:26-34. [PMID: 29655028 DOI: 10.1016/j.jnutbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/20/2018] [Accepted: 03/01/2018] [Indexed: 01/21/2023]
Abstract
Lycopene is a lipid-soluble pigment that is mainly found in tomato. It is the carotenoid that presents the highest antioxidant potential, and due to that, it has been implicated in a decrease of the risk of several oxidative-stress-related disorders, such as cancer, inflammatory diseases and osteoporosis. Nevertheless, at the present, there is no detailed information about how lycopene affects bone metabolism. The aim of the present work was to characterize the cellular and molecular effects of lycopene on human osteoclast and osteoblast differentiation and function. It was observed that lycopene, at levels found in plasma after the ingestion of lycopene-containing products, decreased osteoclast differentiation but did not affect cell density/survival; calcium-phosphate resorbing ability was also decreased. On the other hand, osteoblast proliferation (via a decrease on apoptosis) and differentiation were increased in the presence of lycopene. The observed effects in both cell types appeared to be related to significant changes in MEK signaling pathway, but also in protein kinase C pathway in osteoclasts and NFkB signaling in osteoblasts. In conclusion, lycopene appears to promote an anabolic state of bone metabolism, stimulating osteoblastogenesis and inhibiting osteoclastogenesis, which may contribute to the promotion of a proper health status of bone tissue. This information might be relevant for the prevention and delay in the progression of osteolytic bone conditions.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; ESS-Escola Superior de Saúde, P. Porto, Portugal; Faculdade de Medicina Dentária, U. Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Portugal.
| | | | - Olívia Pinho
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; REQUIMTE/LAQV-U. Porto, Portugal
| | | |
Collapse
|
11
|
Chen IP, Luxmi R, Kanaujiya J, Hao Z, Reichenberger EJ. Craniometaphyseal Dysplasia Mutations in ANKH Negatively Affect Human Induced Pluripotent Stem Cell Differentiation into Osteoclasts. Stem Cell Reports 2017; 9:1369-1376. [PMID: 29056330 PMCID: PMC5830990 DOI: 10.1016/j.stemcr.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023] Open
Abstract
We identified osteoclast defects in craniometaphyseal dysplasia (CMD) using an easy-to-use protocol for differentiating osteoclasts from human induced pluripotent stem cells (hiPSCs). CMD is a rare genetic bone disorder, characterized by life-long progressive thickening of craniofacial bones and abnormal shape of long bones. hiPSCs from CMD patients with an in-frame deletion of Phe377 or Ser375 in ANKH are more refractory to in vitro osteoclast differentiation than control hiPSCs. To exclude differentiation effects due to genetic variability, we generated isogenic hiPSCs, which have identical genetic background except for the ANKH mutation. Isogenic hiPSCs with ANKH mutations formed fewer osteoclasts, resorbed less bone, expressed lower levels of osteoclast marker genes, and showed decreased protein levels of ANKH and vacuolar proton pump v-ATP6v0d2. This proof-of-concept study demonstrates that efficient and reproducible differentiation of isogenic hiPSCs into osteoclasts is possible and a promising tool for investigating mechanisms of CMD or other osteoclast-related disorders.
Collapse
Affiliation(s)
- I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | - Raj Luxmi
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Jitendra Kanaujiya
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Zhifang Hao
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health, Farmington, CT 06030, USA
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Perpétuo IP, Caetano-Lopes J, Rodrigues AM, Campanilho-Marques R, Ponte C, Canhão H, Ainola M, Fonseca JE. Methotrexate and low-dose prednisolone downregulate osteoclast function by decreasing receptor activator of nuclear factor-κβ expression in monocytes from patients with early rheumatoid arthritis. RMD Open 2017; 3:e000365. [PMID: 28955481 PMCID: PMC5604603 DOI: 10.1136/rmdopen-2016-000365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a systemic, immune-mediated inflammatory disease that ultimately leads to bone erosions and joint destruction. Methotrexate (MTX) slows bone damage but the mechanism by which it acts is still unknown. In this study, we aimed to assess the effect of MTX and low-dose prednisolone (PDN) on circulating osteoclast (OC) precursors and OC differentiation in patients with RA. Methods Patients with RA before and at least 6 months after MTX therapy were analysed and compared with healthy donors. A blood sample was collected in order to assess receptor activator of NF-κβ (RANK) ligand surface expression on circulating leucocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers and cytokines and OC differentiation assays were performed. Results Classical activation markers of monocytes and RANK increased in patients with RA at baseline, compared with control healthy donors, and after MTX and low-dose PDN (MTX+PDN) exposure they decreased to control levels. Although the number of OC was not different between groups, the percentage of resorbed area and the resorbed area per pit reduced after treatment. Serum soluble receptor activator of nuclear factor-kappa (RANKL) levels increased at baseline compared with healthy donors and normalised after therapy. Conclusion Our results suggest that MTX+PDN play an important role in downregulating OC function, which we believe occurs through the decrease in RANK surface expression in monocytes.
Collapse
Affiliation(s)
- Inês Pedro Perpétuo
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Caetano-Lopes
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Maria Rodrigues
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Campanilho-Marques
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisboa, Portugal
| | - Cristina Ponte
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisboa, Portugal
| | - Helena Canhão
- EpiDoC Unit, CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mari Ainola
- Department of Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - João Eurico Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Rheumatology, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisboa, Portugal
| |
Collapse
|
13
|
Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690402. [PMID: 28286757 PMCID: PMC5327780 DOI: 10.1155/2017/2690402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Objective. Tumor necrosis factor (TNF) increases circulating osteoclast (OC) precursors numbers by promoting their proliferation and differentiation. The aim of this study was to assess the effect of TNF inhibitors (TNFi) on the differentiation and activity of OC in rheumatoid arthritis (RA) patients. Methods. Seventeen RA patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers, in vitro OC differentiation assays, and qRT-PCR for OC specific genes was performed. Results. After TNFi therapy, patients had reduced RANKL surface expression in B-lymphocytes and the frequency of circulating classical CD14brightCD16− monocytes was decreased. Serum levels of sRANKL, sRANKL/OPG ratio, and CTX-I were reduced in RA patients after TNFi treatment. Moreover, after exposure to TNFi, osteoclast differentiation and activity were decreased, as well as the expression of TRAF6 and cathepsin K. Conclusion. We propose that TNFi arrests bone loss and erosion, through two pathways: direct reduction of osteoclast precursor numbers and inhibition of intracellular signaling pathways acting through TRAF6.
Collapse
|
14
|
Perpétuo IP, Caetano-Lopes J, Vieira-Sousa E, Campanilho-Marques R, Ponte C, Canhão H, Ainola M, Fonseca JE. Ankylosing Spondylitis Patients Have Impaired Osteoclast Gene Expression in Circulating Osteoclast Precursors. Front Med (Lausanne) 2017; 4:5. [PMID: 28191455 PMCID: PMC5269449 DOI: 10.3389/fmed.2017.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is typically characterized by focal bone overgrowth and also by systemic bone loss. We hypothesize that the increased osteoproliferation found in AS might be partially due to reduced ability of osteoclast precursors (OCPs) to differentiate into osteoclasts (OCs). Therefore, our aim was to characterize bone remodeling and pro-osteoclastogenesis inflammatory environment, monocytes' phenotype, and in vitro osteoclast differentiation in AS patients. METHODS Patients with active AS without any ongoing therapy and age- and gender-matched healthy donors were recruited. Receptor activator of nuclear factor-κβ (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations were assessed. Quantification of serum levels of bone turnover markers and cytokines, in vitro OC differentiation assay and quantitative reverse transcription real-time PCR for OC-specific genes were performed. RESULTS Pro- and anti-inflammatory cytokine serum levels were higher in AS patients than in controls. RANKL neutrophil expression was higher in AS patients when compared to healthy donors, but CD51/CD61 expression was lower in the classical monocyte subpopulation. Concerning osteoclastogenesis, we found no differences in the in vitro osteoclast differentiating potential of these cells when compared to healthy donors. However, we observed low expression of CSF1R, RANK, and NFATc1 in AS OCPs. CONCLUSION Despite the high levels of pro-inflammatory cytokines present in AS patients, no differences in the number of OC or resorbed area were found between AS patients and healthy donors. Moreover, we observed that OCPs have low OC-specific gene expression. These findings support our hypothesis of an impaired response of OCPs to pro-osteoclastogenic stimuli in vivo in AS patients.
Collapse
Affiliation(s)
- Inês P Perpétuo
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Joana Caetano-Lopes
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Elsa Vieira-Sousa
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| | - Raquel Campanilho-Marques
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| | - Cristina Ponte
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| | - Helena Canhão
- EpiDoC Unit, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa , Lisboa , Portugal
| | - Mari Ainola
- Musculoskeletal Diseases and Inflammation Research Group, Biomedicum Helsinki 1, Faculty of Medicine, Institute of Clinical Medicine, University of Helsinki , Helsinki , Finland
| | - João E Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon Academic Medical Centre, Lisboa, Portugal
| |
Collapse
|
15
|
Guo Y, Wang Y, Liu Y, Wang H, Guo C, Zhang X, Bei C. Effect of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro. Chin J Traumatol 2017; 18:150-6. [PMID: 26643241 DOI: 10.1016/j.cjtee.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To investigate the influence of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro. METHODS Primary osteoblasts, bone marrow-derived mesenchymal stem cells (BMSCs, cultured in osteoinductive medium) and RAW264.7 cells cultured in osteoclast inductive medium were all subjected to a 1000 μstrain (μs) at 1 Hz cyclic mechanical stretch for 30 min (twice a day). RESULTS After mechanical stimulation, the alkaline phosphatase (ALP) activity, osteocalcin protein level of the osteoblasts and BMSCs were all enhanced, and the mRNA levels of ALP and collagen type I increased. Additionally, extracellular-deposited calcium of both osteoblasts and BMSCs increased. At the same time, the activity of secreted tartrate-resistant acid phosphatase, the number of tartrate-resistant acid phosphatase-positive multinucleated cells, matrix metalloproteinase-9 protein levels of RAW264.7 cells and the extracellular calcium solvency all decreased. CONCLUSION The results demonstrated that 1000 μs cyclic mechanical loading enhanced osteoblasts activity, promoted osteoblastic differentiation of BMSCs and restrained osteoclastogenesis of RAW264.7 cells in vitro.
Collapse
Affiliation(s)
- Yong Guo
- College of Biotechnology, Guilin Medical University, Guilin 541004, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Dias Schalch T, Porta Santos Fernandes K, Costa-Rodrigues J, Pereira Garcia M, Agnelli Mesquita-Ferrari R, Kalil Bussadori S, Fernandes MH. Photomodulation of the osteoclastogenic potential of oral squamous carcinoma cells. JOURNAL OF BIOPHOTONICS 2016; 9:1136-1147. [PMID: 27089455 DOI: 10.1002/jbio.201500292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The treatment for oral cancer usually involves surgical excision followed by chemotherapy and/or radiotherapy. The combination of these therapies generally promotes a serious inflammation of the mucosa of the digestive tract, denominated mucositis, which compromises continuity of treatment. Photobiomodulation (PBM) therapy has been used successfully to reduce the oral mucositis, however there is still some controversy regarding the effects of this therapy on unintentionally irradiated tumor cells that may remain after cancer treatment. The aim of this study was to analyze the effect of PBM therapy (using parameters for mucositis) on the modulation of osteoclastogenic potential of a cell line derived from human lingual squamous cell carcinoma (SCC9). Previously irradiated SCC9 cells were co-cultured with human osteoclast precursors. Co-cultures performed with non-irradiated SCC9 cells served as control. After 7, 14 and 21 days the co-cultures were evaluated for the tartrate-resistant acid phosphatase (TRAP) activity, an osteoclastogenic marker. Additionally, the monocultures of SCC9 cells (non-irradiated and irradiated) were analyzed for cell viability/proliferation and for the expression of IL-11 and PTHrP. The irradiation of SCC9 cells with PBM with an energy density of 4 J/cm2 decreased the pro-osteoclastogenic potential of those cells. This may represent a potential useful side effect of PBM therapy. PBM (using recommended parameters for mucositis treatment) decreases the osteoclastogenic potential of oral squamous carcinoma cells.
Collapse
Affiliation(s)
- Tatiana Dias Schalch
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - Kristianne Porta Santos Fernandes
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - João Costa-Rodrigues
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Portugal, Dr. Manuel Pereira da Silva Street, 4200-393, Porto, Portugal
| | - Mônica Pereira Garcia
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Portugal, Dr. Manuel Pereira da Silva Street, 4200-393, Porto, Portugal
| | - Raquel Agnelli Mesquita-Ferrari
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Portugal, Dr. Manuel Pereira da Silva Street, 4200-393, Porto, Portugal
| |
Collapse
|
17
|
Costa-Rodrigues J, Carmo S, Perpétuo I, Monteiro F, Fernandes M. Osteoclastogenic differentiation of human precursor cells over micro- and nanostructured hydroxyapatite topography. Biochim Biophys Acta Gen Subj 2016; 1860:825-35. [DOI: 10.1016/j.bbagen.2016.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/27/2015] [Accepted: 01/15/2016] [Indexed: 11/28/2022]
|
18
|
Bone Anabolic Effects of Soluble Si: In Vitro Studies with Human Mesenchymal Stem Cells and CD14+ Osteoclast Precursors. Stem Cells Int 2015; 2016:5653275. [PMID: 26798359 PMCID: PMC4699026 DOI: 10.1155/2016/5653275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023] Open
Abstract
Silicon (Si) is indispensable for many cellular processes including bone tissue metabolism. In this work, the effects of Si on human osteogenesis and osteoclastogenesis were characterized. Human mesenchymal stem cells (hMSC) and CD14+ stem cells, as osteoblast and osteoclast precursors, were treated with a wide range of Si concentrations, covering the physiological plasma levels. Si promoted a dose-dependent increase in hMSC proliferation, differentiation, and function, at levels similar to the normal basal plasma levels. Additionally, a decrease in the expression of the osteoclastogenic activators M-CSF and RANKL was observed. Also, Si elicited a decrease in osteoclastogenesis, which became significant at higher concentrations, as those observed after meals. Among the intracellular mechanisms studied, an upregulation of MEK and PKC signalling pathways was observed in both cell types. In conclusion, Si appears to have a direct positive effect on human osteogenesis, at basal plasma levels. On the other hand, it also seemed to be an inhibitor of osteoclastogenesis, but at higher concentrations, though yet in the physiological range. Further, an indirect effect of Si on osteoclastogenesis may also occur, through a downregulation of M-CSF and RANKL expression by osteoblasts. Thus, Si may be an important player in bone anabolic regenerative approaches.
Collapse
|
19
|
Quan J, Morrison NA, Johnson NW, Gao J. MCP-1 as a Potential Target to Inhibit the Bone Invasion by Oral Squamous Cell Carcinoma. J Cell Biochem 2014; 115:1787-98. [DOI: 10.1002/jcb.24849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 05/12/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Jingjing Quan
- Guanghua School of Stomatology; Hospital of Stomatology; Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology; Guangzhou Guangdong 510055 China
- School of Medical Science; Griffith University; QLD 4222 Australia
| | | | | | - Jin Gao
- School of Dentistry and Oral Health; Griffith University; QLD 4222 Australia
| |
Collapse
|
20
|
Barros J, Costa-Rodrigues J, Lopes MA, Pina-Vaz I, Fernandes MH. Response of Human Osteoblastic and Osteoclastic Cells to AH Plus and Pulp Canal Sealer Containing Quaternary Ammonium Polyethylenimine Nanoparticles. J Endod 2014; 40:1149-55. [DOI: 10.1016/j.joen.2014.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/26/2014] [Accepted: 03/30/2014] [Indexed: 01/03/2023]
|
21
|
Bernhardt A, Schumacher M, Gelinsky M. Formation of osteoclasts on calcium phosphate bone cements and polystyrene depends on monocyte isolation conditions. Tissue Eng Part C Methods 2014; 21:160-70. [PMID: 24919531 DOI: 10.1089/ten.tec.2014.0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMC) are an attractive source for the generation of osteoclasts in vitro, which is an important prerequisite for the examination of resorption and remodeling of biomaterials. In this study, different preparation methods are used to obtain cell populations with a rising content of CD14(+) monocytes. We wanted to address the question whether there is a correlation between content of CD14(+) cells in the preparation and functionality of formed osteoclasts. MATERIALS AND METHODS PBMC obtained by density gradient centrifugation with and without further purification by plastic adherence or immunomagnetic separation of CD14(+) cells were seeded on both cell culture polystyrene and a calcium phosphate bone cement (CPC) and cultivated under stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B ligand (RANKL). Cell cultures were characterized by histological and fluorescent staining of multinucleated cells that were positive for tartrate-resistant acid phosphatase (TRAP) activity and the presence of actin rings, respectively. Furthermore, activities of osteoclast marker enzymes TRAP and carbonic anhydrase II (CA II) were quantified. For osteoclasts cultured on CPC, resorption pits were visualized using scanning electron microscopy (SEM). RESULTS Monocytes of all preparations were successfully differentiated into multinucleated osteoclasts showing TRAP and CA II activity on both cell culture plastic and CPC. Preparations involving an additional plastic adherence step exhibited only a minor increase of TRAP and CA II activity in the second week of cultivation. Furthermore, the number of resorption pits on CPC was reduced in these cultures compared with immunomagnetically enriched monocytes and preparations without additional plastic adherence steps. Optimal results with regard to yield, number of multinucleated osteoclasts, activity of TRAP and CA II, and resorption of CPC were obtained by simple density gradient centrifugation. CONCLUSION All examined monocyte preparation protocols were suitable for the generation of osteoclasts on both polystyrene and CPC. Highly purified monocytes are not mandatory to obtain functional osteoclasts for investigation of biomaterial resorption.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Dresden, Germany
| | | | | |
Collapse
|
22
|
Costa-Rodrigues J, Reis S, Teixeira S, Lopes S, Fernandes MH. Dose-dependent inhibitory effects of proton pump inhibitors on human osteoclastic and osteoblastic cell activity. FEBS J 2013; 280:5052-64. [PMID: 23937530 DOI: 10.1111/febs.12478] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/21/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
Proton pump inhibitors (PPIs), a class of molecules that are used to decrease gastric acid production, might have adverse effects on bone metabolism. The aim of this study was to characterize the concentration-dependent and time-dependent effects of three PPIs (omeprazole, esomeprazole, and lansoprazole) on human osteoclast precursor cells isolated from peripheral blood, and on human mesenchymal stem cells (osteoblast precursors). Cell cultures were characterized for total protein content, apoptosis, and several osteoclastic/osteoblastic features, and also for the involvement of some intracellular signaling pathways. PPIs caused a dose-dependent decrease in cellular density, which correlated with an increase in the apoptosis rate, effects that became statistically significant at concentrations ≥ 10(-5) m. They also inhibited phenotype-related gene expression and functional parameters. For both cell types, cellular function, i.e. osteoclastic resorption and the formation of mineralized deposits by osteoblastic cells, was more affected than proliferation-related parameters. The three PPIs showed similar qualitative and quantitative effects, but displayed some differences in the underlying intracellular signaling pathways. These results suggest that PPIs might have a direct deleterious effect on bone cells, with the possibility of decreased bone turnover.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Portugal
| | | | | | | | | |
Collapse
|
23
|
Rodrigues C, Costa-Rodrigues J, Capelas JA, Fernandes MH. Behaviour of co-cultured human osteoclastic and osteoblastic cells exposed to endodontic sealers' extracts. Clin Oral Investig 2013; 18:479-88. [PMID: 23604699 DOI: 10.1007/s00784-013-0983-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Bone tissue is constantly being moulded and shaped by the coordinated action of bone-resorbing osteoclasts and bone-synthesizing osteoblasts. This study addresses the long-term effects of endodontic sealers' extracts (AH Plus™, GuttaFlow™, Tubliseal™, Sealapex™ and RealSeal™) on co-cultures of human osteoclastic and osteoblastic cells. METHODS The sealers were mixed according to the manufacturer's instructions, freshly extracted with culture medium (1.3 cm(2)/ml; 24 h; 37 °C, 5% CO2/air) and diluted (1:20-1:2,500). Co-cultures of osteoclastic and osteoblastic cells, established from precursors present in human peripheral blood mononuclear cells and bone marrow cells, respectively, were exposed to the extracts for 21 days. Co-cultures were characterized for the osteoclastic and osteoblastic response. RESULTS The sealers caused a dose-dependent decrease on TRAP and ALP activities, respectively, an osteoclastic and an osteoblastic marker. The resorbing ability of the osteoclastic cells and the expression of osteoclastic and osteoblastic genes were also decreased; in addition, the extracts affected several intracellular signalling pathways. Inhibition was higher during the two first weeks, followed by adaptive cell responses. Osteoblastic response was more sensitive to the extracts' toxicity and showed lower adaptive ability. SIGNIFICANCE A correlation to the clinical situation cannot be predicted; however, the results suggest that the sealers' eluents might disrupt the highly regulated interaction between osteoblastic and osteoclastic cells, compromising the local bone metabolism. Also, the higher susceptibility of the osteoblastic response might be particularly relevant in the initial stages of the healing of periapical lesions, due to the significant role of the bone formation events.
Collapse
Affiliation(s)
- Cláudia Rodrigues
- Department of Endodontics, Faculty of Dental Medicine, University of Porto (FMDUP), Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | | | | | | |
Collapse
|
24
|
Costa-Rodrigues J, Carmo SC, Silva JC, Fernandes MHR. Inhibition of human in vitro osteoclastogenesis by Equisetum arvense. Cell Prolif 2013; 45:566-76. [PMID: 23106302 DOI: 10.1111/j.1365-2184.2012.00848.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Equisetum arvense has long been used in traditional medicines to treat different disorders, including bone pathologies. In this study a hydromethanolic extract of E. arvense was assessed for its effects on human osteoclastogenesis. MATERIALS AND METHODS Osteoclast precursors were maintained in non-stimulated and stimulated (presence of M-CSF and RANKL) conditions, or in co-cultures with osteoblasts. Cell cultures were treated with 0.00016-0.5 mg/ml of a hydromethanolic E. arvense extract. RESULTS The extract did not affect spontaneous osteoclastogenesis. In osteoclast precursors committed to osteoclastogenesis (stimulated or co-cultured with osteoblasts), E. arvense caused dose-dependent inhibitory effect that became statistically significant at concentrations ≥0.004 mg/ml. This was observed using different osteoclast differentiation and activation markers. Cell response was associated with changes in relative contribution of MEK and NFkB signalling pathways, as well as PGE2 production. As there were differences in the response of osteoclast precursors maintained in the presence of inductive factors, or co-cultured with osteoblastic cells, it seems that E. arvense extract had the ability to modulate osteoclastogenesis, either by acting directly on osteoclast precursor cells, and/or via osteoblasts. CONCLUSIONS Equisetum appeared to have a negative effect on human osteoclastogenesis, which is in line with its putative beneficial role in pathophysiological conditions associated with increased osteoclastic activity, and might suggest potential utility for treatment with bone regeneration strategies.
Collapse
Affiliation(s)
- J Costa-Rodrigues
- Laboratory of Pharmacology and Cellular Biocompatibility, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
25
|
Abstract
Peripheral blood is a large accessible source of adult stem cells for both basic research and clinical applications. Peripheral blood mononuclear cells (PBMCs) have been reported to contain a multitude of distinct multipotent progenitor cell populations and possess the potential to differentiate into blood cells, endothelial cells, hepatocytes, cardiomyogenic cells, smooth muscle cells, osteoblasts, osteoclasts, epithelial cells, neural cells, or myofibroblasts under appropriate conditions. Furthermore, transplantation of these PBMC-derived cells can regenerate tissues and restore function after injury. This mini-review summarizes the multi-differentiation potential of PBMCs reported in the past years, discusses the possible mechanisms for this multi-differentiation potential, and describes recent techniques for efficient PBMC isolation and purification.
Collapse
|
26
|
Costa-Rodrigues J, Martins EG, Fernandes MH. Induced osteoclastogenesis by fluoroquinolones in unstimulated and stimulated human osteoclast precursor cells. Bone 2012; 51:17-27. [PMID: 22481084 DOI: 10.1016/j.bone.2012.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/01/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Fluoroquinolones (FQs) are a class of antibiotics with a broad spectrum of activity, known to disturb bone metabolism. The aim of this work was to characterize the cellular and molecular effects of five FQs (ofloxacin, norfloxacin, ciprofloxacin, levofloxacin and moxifloxacin) in unstimulated and stimulated human osteoclast precursors. Peripheral blood mononuclear cells (PBMC) were cultured in the absence (unstimulated) or in the presence of osteoclastogenic factors (M-CSF and RANKL, stimulated), and were treated with FQs (0.3×10(-9)-10(-3) M), for 21 days. In unstimulated PBMC cultures, FQs (excepting moxifloxacin) exhibited a high osteoclastogenic potential, as shown by a significant increase in the expression of osteoclastic genes, TRAP activity and, specially, number of TRAP-positive multinucleated cells and calcium phosphate resorbing ability, suggesting the presence of mature and functional osteoclasts. Norfloxacin and levofloxacin induced the higher effect, followed by ciprofloxacin and ofloxacin. A decrease on apoptosis and an increase on M-CSF expression might have a possible contribution in the observed cellular behavior. In stimulated PBMC cultures, FQs further increase the osteoclastogenic response induced by M-CSF and RANKL (except ofloxacin). However, the osteoclastogenic response was much lower than that observed in unstimulated PBMC cultures. Both in unstimulated and stimulated PBMC cultures, for most of the FQs, the osteoclastogenic effects were observed in a wide range of concentrations, representative of plasmatic and tissue levels attained in several clinical settings. The various FQs differed on the stimulatory concentration range, the extent of the induced osteoclastogenic response and, also, on the dose- and time-dependent profile. Nevertheless, at high concentrations all the FQs seemed to elicit an increase on apoptosis. Additionally, some differences were noted in the intracellular signaling pathways tested, namely NFkB, MEK and PGE2 production. Results suggest that, considering the inter-individual variability of the FQs pharmacokinetics, the detailed biological profile of each FQ on bone cells is of utmost importance to clarify the effects of these compounds on bone metabolism.
Collapse
|
27
|
Costa-Rodrigues J, Moniz KA, Teixeira MR, Fernandes MH. Variability of the paracrine-induced osteoclastogenesis by human breast cancer cell lines. J Cell Biochem 2012; 113:1069-79. [PMID: 22274920 DOI: 10.1002/jcb.23439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast cancer frequently metastasizes to the bone, often leading to the formation of osteolytic lesions. This work compares the paracrine-induced osteoclastogenesis mediated by four human breast cancer cell lines, the estrogen-receptor positive T47D and MCF-7 and the estrogen-negative SK-BR-3 and Hs-578T cell lines. Human osteoclast precursor cells were cultured in the presence of conditioned media from the breast cancer cell lines (10% and 20%), collected at different culture periods (48 h, 7 days, and 14 days). Cultures performed in the absence or the presence of M-CSF and RANKL served as negative and positive control, respectively. Results showed that the cell lines differentially expressed several osteoclastogenic genes. All cell lines exhibited a significant osteoclastogenic potential, evidenced by a high TRAP activity and number of osteoclastic cells, expression of several osteoclast-related genes, and, particularly, a high calcium phosphate resorption activity. Differences among the osteoclastogenic potential of the cell lines were noted. T47D and MCF-7 cell lines displayed the highest and the lowest osteoclastogenic response, respectively. Despite the variability observed, MEK and NF-κB signaling pathways, and, at a lesser extent, PGE2 production, seemed to have a central role on the observed osteoclastogenic response. In conclusion, the tested breast cancer cell lines exhibited a high osteoclastogenic potential, although with some variability on the cell response profile, a factor to be considered in the development of new therapeutic approaches for breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
28
|
Costa-Rodrigues J, Fernandes A, Fernandes MH. Reciprocal osteoblastic and osteoclastic modulation in co-cultured MG63 osteosarcoma cells and human osteoclast precursors. J Cell Biochem 2012; 112:3704-13. [PMID: 21815187 DOI: 10.1002/jcb.23295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is usually associated with a disturbed bone metabolism. The aim of this work was to characterize the reciprocal interactions between MG63 osteosarcoma cells and osteoclasts, in a co-culture system. Co-cultures were characterized throughout 21 days for the osteoclastogenic response and the expression of osteoblastic markers. Monocultures of MG63 cells and peripheral blood mononuclear cell (PBMC) and co-cultures of PBMC + human bone marrow cells (hBMC) were also performed. Compared to PBMC cultures, co-cultures yielded significantly increased gene expression of osteoclast-related markers, tartarate-acid resistant phosphatase (TRAP) activity, TRAP-positive multinucleated cells, cells with actin rings and vitronectin receptors (VNR) and calcitonin receptors (CTR) and calcium phosphate resorbing ability. Results showed that the development of functional osteoclasts required a very low number of MG63 cells, suggesting a high osteoclastogenic-triggering capacity of this cell line. Subjacent mechanisms involved the pathways MEK and NF-kB, although with a lower relevance than that observed on PBMC monocultures or co-cultures of hBMC + PBMC; PGE2 production also had a contribution. Compared to MG63 cell monocultures, the co-culture expressed lower levels of COL1 and ALP, and higher levels of BMP-2, suggesting that PBMC also modulated the osteoblastic behavior. While M-CSF appeared to be involved in the osteoclastogenic response on the MG63 + PBMC co-cultures, RANKL does not seem to be a key player in the process. On the other hand, sphingosine-1-phosphate production might contribute to the modulation of the osteoblastic behavior. Results suggest that the reciprocal modulation between osteosarcoma and osteoclastic cells might contribute to the disturbed bone metabolism associated with bone tumors.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
29
|
Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater 2012; 8:1137-45. [PMID: 22178652 DOI: 10.1016/j.actbio.2011.11.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 12/20/2022]
Abstract
It is recognized that the surface roughness affects osteoblastic differentiation, but little information is available regarding its effect on osteoclastogenesis. With this work, the osteoclastogenic behaviour of human peripheral blood mononuclear cells (PBMCs), cultured isolated (1.5×10(6)cellscm(-2)) or co-cultured with human bone marrow cells (hBMCs; 10(3)cellscm(-2)), was assessed on surface-abraded hydroxyapatite disks with three different surface roughnesses (R(a) 0.0437-0.582 μm). Monocultures and co-cultures were performed for 21 days in the absence or presence of recombinant M-CSF and RANKL. Results showed that PBMCs supplemented with M-CSF and RANKL or co-cultured with hBMCs displayed typical osteoclastic features, i.e. multinucleated cells with actin rings, vitronectin and calcitonin receptors, gene expression of TRAP, cathepsin K, carbonic anhydrase 2, c-myc and c-src, TRAP activity and resorbing activity. The osteoclastogenic response increased with surface roughness in PBMCs cultured with M-CSF and RANKL but decreased in PBMCs co-cultured with hBMCs. However, co-cultures supplemented with the osteoclastogenic inducers displayed high and similar levels of osteoclast differentiation in the three tested surfaces. In conclusion, modulation of osteoclast differentiation by surface roughness seemed to be dependent on the mechanisms subjacent to the osteoclastogenic stimulus, i.e. the presence of soluble factors or direct cell-to-cell contacts between osteoblastic and osteoclastic cells.
Collapse
|