1
|
Praetzel R, Motaghed M, Fereydouni M, Ahani E, Kepley C. Description and Characterization of Three-Dimensional Human Mast Cell Progenitor Spheroids In Vitro. Cureus 2024; 16:e53708. [PMID: 38455803 PMCID: PMC10919245 DOI: 10.7759/cureus.53708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Human mast cells (MC) are an essential component of the immune system as they uniquely store and release a wide range of soluble mediators through IgE and non-IgE mechanisms. Several tissue sources can be used to differentiate functional MC for in vitro and in vivo studies. Here we describe an improved method for obtaining large numbers of human MC from adipose tissue with advantages over current methods. We analyzed donor parameters (e.g. age, race) on MC-isolation following adipose and skin tissue digestion from healthy donors. Adipose and skin-derived MC were morphologically and immunophenotypically similar in all donors regardless of age. However, donor-dependent variations in MC numbers were observed following tissue digestion. In addition, we identified and characterized three-dimensional structures from which mature MC emerged in vitro using peripheral blood and human tissue sources. MC progenitor spheroids (MCPS) appeared approximately one week following progenitor isolation and were consistently observed to have mature MC attached, emerging, or nearby when cultured in a stem cell factor-containing medium. The overall characteristics of the MCPS were similar from each tissue source. We propose that these MCPS serve as the common source of human MC in vitro.
Collapse
Affiliation(s)
- Rebecca Praetzel
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Mona Motaghed
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, USA
| | - Mohammad Fereydouni
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, USA
| | - Elnaz Ahani
- Department of Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, USA
| | - Chris Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| |
Collapse
|
2
|
Wang J, Li T, Cai H, Jin L, Li R, Shan L, Cai W, Jiang J. Protective effects of total flavonoids from Qu Zhi Qiao (fruit of Citrus paradisi cv. Changshanhuyou) on OVA-induced allergic airway inflammation and remodeling through MAPKs and Smad2/3 signaling pathway. Biomed Pharmacother 2021; 138:111421. [PMID: 33752061 DOI: 10.1016/j.biopha.2021.111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is one of the inflammatory diseases, which has become a major public health problem. Qu zhi qiao (QZQ), a dry and immature fruit of Citrus paradisi cv. Changshanhuyou, has various flavonoids with pharmacological properties. However, there is a knowledge gap on the pharmacological properties of QZQ on allergic asthma. Therefore, here, we explored the efficacy and mechanism of total flavonoids from QZQ (TFCH) on allergic asthma. We extracted and purified TFCH and conducted animal experiments using an Ovalbumin (OVA)-induced mice model. Bronchoalveolar lavage fluid and Swiss-Giemsa staining were used to count different inflammatory cells in allergic asthma mice. We conducted histopathology and immunohistochemistry to evaluate the changes in the lungs of allergic asthma mice. Moreover, we used ELISA assays to analyze chemokines and inflammatory cytokines. Furthermore, western blot analyses were conducted to elucidate the mechanism of TFCH on allergic asthma. We established that TFCH has anti-inflammatory effects and inhibits airway remodeling, providing a potential therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- Jianping Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China; Songyang County People's Hospital, Lishui 323400, China
| | - Ting Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haiying Cai
- Shaoxing people's Hospital, Shaoxing 312000, China
| | - Liangyan Jin
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Run Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Letian Shan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| | - Wei Cai
- Department of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Jianping Jiang
- Zhejiang You-du Biotech Limited Company, Quzhou 324200, China; Department of Pharmacy, School of Medicine, Zhejiang University City College, 310015 China.
| |
Collapse
|
3
|
Yamashita T, Ahmad S, Wright KN, Roberts DJ, VonCannon JL, Wang H, Groban L, Dell’Italia LJ, Ferrario CM. Noncanonical Mechanisms for Direct Bone Marrow Generating Ang II (Angiotensin II) Predominate in CD68 Positive Myeloid Lineage Cells. Hypertension 2020; 75:500-509. [PMID: 31813348 PMCID: PMC6949383 DOI: 10.1161/hypertensionaha.119.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Bone marrow (BM) Ang II (angiotensin II) is a major participant in the regulation of hematopoiesis and immunity. The novel tissue substrate Ang-(1-12) [angiotensin-(1-12)] and its cleaving enzyme chymase are an essential source of Ang II production in cardiac tissue. We hypothesized this noncanonical chymase-mediated Ang II-producing mechanism exists in the BM tissue. Immunohistostaining and flow cytometry confirmed the presence of Ang-(1-12) immunoreaction in the BM of SD (Sprague Dawley) rats. Chymase-mediated Ang II-producing activity in BM was ≈1000-fold higher than ACE (angiotensin-converting enzyme)-mediated Ang II-producing activity (4531±137 and 4.2±0.3 fmol/min per mg, respectively; n=6; P<0.001) and 280-fold higher than chymase activity in the left ventricle of 16.3±1.7 fmol/min per mg (P<0.001). Adding a selective chymase inhibitor, TEI-F00806, eliminated almost all 125I-Ang II production. Flow cytometry demonstrated that delta median fluorescence intensity of chymase in cluster of differentiation 68 positive cells was significantly higher than that in cluster of differentiation 68 negative cells (1546±157 and 222±48 arbitrary units, respectively; P=0.0021). Cluster of differentiation 68 positive and side scatter low subsets, considered to be myeloid progenitors, express the highest chymase fluorescence intensity in rat BM. Chymase activity and cellular expression was similar in both male and female rats. In conclusion, myeloid lineage cells, especially myeloid progenitors, have an extraordinary Ang II-producing activity by chymase in the BM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Wang
- Department of Anesthesiology
- Department of Internal Medicine-Molecular Medicine
| | - Leanne Groban
- Department of Anesthesiology
- Department of Internal Medicine-Molecular Medicine
| | - Louis J. Dell’Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB), Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, AL
| | - Carlos M. Ferrario
- Department of Surgery
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
4
|
Identification and Immunophenotypic Characterization of Normal and Pathological Mast Cells. Methods Mol Biol 2020; 2163:331-353. [PMID: 32766988 DOI: 10.1007/978-1-0716-0696-4_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 106 unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to studying MCs from other tissues and species.
Collapse
|
5
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Mast cells are present at a low frequency in bone marrow, rendering high-sensitivity multiparametric flow cytometric analysis an ideal method to assess antigen expression on mast cells. This article discusses the normal antigen expression profile of mast cells, established criteria to identify neoplastic mast cells, and new immunophenotypic markers and approaches to identify the presence of neoplastic mast cells in cases of mastocytosis.
Collapse
Affiliation(s)
- Jacqueline M Cortazar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Henriques ÁCG, Freitas RDA, Pires BC, Gurgel CA, Santos JND. Histochemical and immunohistochemical differences between solitary oral fibroma and fibrous papule of the face. An Bras Dermatol 2017; 91:589-594. [PMID: 27828630 PMCID: PMC5087215 DOI: 10.1590/abd1806-4841.20165077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022] Open
Abstract
Background The morphological similarities between fibrous papules of the face and
multiple sporadic oral fibromas were mentioned long ago and a relationship
between them has been reported in the literature. Objective The aim of this study was to evaluate the participation of mast cells,
elastin and collagen in a series of oral fibromas and fibrous papules of the
face in order to better understand the possible role of these factors in
fibrosis and the formation of these lesions. Methods Thirty cases of oral fibroma involving the buccal mucosa and 30 cases of
fibrous papules of the face were selected. Tissue samples were submitted to
picrosirius red staining and immunohistochemistry using anti-elastin and
anti-tryptase antibodies. Results The percentage of tryptase-positive mast cells and expression of elastin were
higher in cases of fibrous papules of the face (p < 0.05). In contrast, a
higher intensity of collagen deposition was observed in oral fibromas. The
results showed mast cell accumulation and higher elastin synthesis in
fibrous papules of the face, and mast cell accumulation with higher collagen
fiber synthesis in oral fibromas. Conclusion These findings support the hypothesis that mast cells influence the
development and growth of these lesions through different mechanisms.
Collapse
|
8
|
Zhang R, Zhang CJ, Feng G, Hu F, Wang J, Liu B. Specific Light-Up Probe with Aggregation-Induced Emission for Facile Detection of Chymase. Anal Chem 2016; 88:9111-7. [PMID: 27541711 DOI: 10.1021/acs.analchem.6b02073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human chymases are important proteases abundant in mast cell granules. The elevated level of chymases and other serine proteases is closely related to inflammatory and immunoregulatory functions. Monitoring of the chymase level is very important, however, the existing methods remain limited and insufficient. In this work, a light-up probe of TPETH-2(CFTERD3) (where CFTERD is Cys-Phe-Thr-Glu-Arg-Asp) was developed for chymase detection. The probe has low fluorescent signal in aqueous media, but its solubility can be changed after hydrolysis by chymase, giving significant fluorescence turn-on with a high signal-to-noise (S/N) ratio. The probe has excellent selectivity to chymase compared to other proteins and can effectively differentiate chymase from other enzymes (e.g., chymotrypsin and trypsin) in the same family (E.C. 3.4.21). The detection limit is calculated to be 0.1 ng/mL in PBS buffer with a linear range of 0-9.0 ng/mL. A comparison study using TPETH-2(CFTERD2) as the probe reveals the importance of molecular design in realizing the high S/N ratio. TPETH-2(CFTERD3) thus represents a simple turn-on probe for chymase detection, with real-time and direct readout and also excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jigang Wang
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART) , Singapore 138602, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
9
|
Murine and human mast cell progenitors. Eur J Pharmacol 2015; 778:2-10. [PMID: 26164789 DOI: 10.1016/j.ejphar.2015.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
The development of mature mast cells (MCs) from hematopoietic progenitor cells as well as the identification and characterization of committed progenitor cells are a current focus of mast cell research. Most published reports in this area are on the origin and differentiation of MCs in mice. Evidence for the human system, i.e. derived from primary human MCs, is widely lacking. Based on the published data, MCs develop either from a committed progenitor or from a common basophil/mast cell precursor. This review summarizes the current knowledge on MC development and MC differentiation.
Collapse
|
10
|
Sánchez-Muñoz L, Teodosio C, Morgado JMT, Perbellini O, Mayado A, Alvarez-Twose I, Matito A, Jara-Acevedo M, García-Montero AC, Orfao A, Escribano L. Flow Cytometry in Mastocytosis. Immunol Allergy Clin North Am 2014; 34:297-313. [DOI: 10.1016/j.iac.2014.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Emori M, Kaya M, Mitsuhashi T, Asanuma H, Yamashita T. Desmoid tumor-associated pain is dependent on mast cell expression of cyclooxygenase-2. Diagn Pathol 2014; 9:14. [PMID: 24443892 PMCID: PMC3929151 DOI: 10.1186/1746-1596-9-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background This study aimed to investigate the expression profile of cyclooxygenase-2 (COX-2) in desmoid tumor specimens and to evaluate the correlation of intratumoral COX-2 expression with pain status. Methods Sixteen patients with histologically proven desmoid tumors who attended our institution between 2003 and 2010 were enrolled in this study. COX-2 protein expression in desmoid tumors was determined by immunohistochemistry. COX-2 - positive cells had similar morphology to that of mast cells, and therefore, immunohistochemical staining for tryptase was performed in co-localized sections. The number of COX-2 -positive cells in 10 consecutive fields was counted at 400× magnification. Patients were stratified into 2 groups according to the number of COX-2- positive cells, the COX-2 -positive group (≧10 COX-2 -positive cells) and the COX-2 -negative group (<10 COX-2 -positive cells). The prevalence of painful tumors was compared between the 2 groups. Results COX-2 was expressed in 9 patients (56%). COX-2 proteins were expressed not in tumor cells but in tryptase-positive mast cells in the stroma of desmoid tumors. 6 of 9 patients in COX-2 -positive group had painful tumors. This difference was statistically significant according to the chi-squared test (p = 0 .036), suggesting a positive correlation between COX-2 expression and tumor-associated pain. Conclusions Our results indicated that COX-2 secretion from mast cells modulates desmoid tumor-associated pain. In addition, mast cells may at least in part contribute to the pathogenesis of desmoid tumors. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1490389349103056.
Collapse
Affiliation(s)
- Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- ku, Sapporo 060-8543, Japan.
| | | | | | | | | |
Collapse
|
12
|
Morgado JM, Sánchez-Muñoz L, Teodósio C, Escribano L. Identification and immunophenotypic characterization of normal and pathological mast cells. Methods Mol Biol 2014; 1192:205-226. [PMID: 25149495 DOI: 10.1007/978-1-4939-1173-8_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 10(6) unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single-cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to study MCs from other tissues and species.
Collapse
Affiliation(s)
- José Mário Morgado
- Instituto de Estudios de Mastocitosis de Castilla La Mancha, Toledo, Spain
| | | | | | | |
Collapse
|
13
|
Mast cells as a potential prognostic marker in prostate cancer. DISEASE MARKERS 2013; 35:711-20. [PMID: 24324287 PMCID: PMC3844173 DOI: 10.1155/2013/478303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022]
Abstract
Despite years of intensive investigation that has been made in understanding prostate cancer, it remains one of the major men's health issues and the leading cause of death worldwide. It is now ascertained that prostate cancer emerges from multiple spontaneous and/or inherited alterations that induce changes in expression patterns of genes and proteins that function in complex networks controlling critical cellular events. It is now accepted that several innate and adaptive immune cells, including T- and B-lymphocytes, macrophages, natural killer cells, dendritic cells, neutrophils, eosinophils, and mast cells (MCs), infiltrate the prostate cancer. All of these cells are irregularly scattered within the tumor and loaded with an assorted array of cytokines, chemokines, and inflammatory and cytotoxic mediators. This complex framework reflects the diversity in tumor biology and tumor-host interactions. MCs are well-established effector cells in Immunoglobulin-E (Ig-E) associated immune responses and potent effector cells of the innate immune system; however, their clinical significance in prostate cancer is still debated. Here, these controversies are summarized, focusing on the implications of these findings in understanding the roles of MCs in primary prostate cancer.
Collapse
|
14
|
Sánchez-Muñoz L, Teodósio C, Morgado JM, Escribano L. Immunophenotypic Characterization of Bone Marrow Mast Cells in Mastocytosis and Other Mast Cell Disorders. Methods Cell Biol 2011; 103:333-59. [DOI: 10.1016/b978-0-12-385493-3.00014-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Santos PPDA, Nonaka CFW, Pinto LP, de Souza LB. Immunohistochemical expression of mast cell tryptase in giant cell fibroma and inflammatory fibrous hyperplasia of the oral mucosa. Arch Oral Biol 2010; 56:231-7. [PMID: 21035108 DOI: 10.1016/j.archoralbio.2010.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/13/2010] [Accepted: 09/30/2010] [Indexed: 12/31/2022]
Abstract
This study analysed the immunohistochemical expression of mast cell tryptase in giant cell fibromas (GCFs). In addition, the possible interaction of mast cells with stellate giant cells, as well as their role in fibrosis and tumour progression, was investigated. For this purpose, the results were compared with cases of inflammatory fibrous hyperplasia (IFH) and normal oral mucosa. Thirty cases of GCF, 30 cases of IFH and 10 normal mucosa specimens used as control were selected. Immunoreactivity of mast cells to the anti-tryptase antibody was analysed quantitatively in the lining epithelium and in connective tissue. In the epithelial component (p=0.250) and connective tissue (p=0.001), the largest mean number of mast cells was observed in IFHs and the smallest mean number in GCFs. In connective tissue, the mean percentage of degranulated mast cells was higher in GCFs than in IFHs and normal mucosa specimens (p<0.001). Analysis of the percentage of degranulated mast cells in areas of fibrosis and at the periphery of blood vessels also showed a larger mean number in GCFs compared to IFHs and normal mucosa specimens (p<0.001). The percent interaction between mast cells and stellate giant cells in GCFs was 59.62%. In conclusion, although mast cells were less numerous in GCFs, the cells exhibited a significant interaction with stellate giant cells present in these tumours. In addition, the results suggest the involvement of mast cells in the induction of fibrosis and modulation of endothelial cell function in GCFs.
Collapse
|
16
|
Shimizu Y, Matsumoto K, Okayama Y, Sakai K, Maeno T, Suga T, Miura T, Takai S, Kurabayashi M, Saito H. Interleukin-3 does not affect the differentiation of mast cells derived from human bone marrow progenitors. Immunol Invest 2008; 37:1-17. [PMID: 18214796 PMCID: PMC2430175 DOI: 10.1080/08820130701741742] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of Respiratory Medicine, National Hospital Organization, Takasaki Hospital, Takasaki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lappalainen J, Lindstedt KA, Kovanen PT. A protocol for generating high numbers of mature and functional human mast cells from peripheral blood. Clin Exp Allergy 2007; 37:1404-14. [PMID: 17845422 DOI: 10.1111/j.1365-2222.2007.02778.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mast cells (MCs) are multi-functional effector cells with an essential role in innate immunity and host defence, and under several pathological conditions, such as allergy. Here, we aimed at defining the culture conditions that would allow efficient generation of mature and functional human MCs from their progenitor cells. METHODS Human peripheral blood-derived CD34(+) progenitor cells were cultured in vitro under serum-free conditions with human stem cell factor for 9 weeks. Growth and differentiation of the cells into MCs were optimized by selected cytokines and a combination of hypoxic and normoxic conditions. MCs were phenotypically characterized by immunocytochemistry, their preformed mediators were quantified, and their functional ability to degranulate and release histamine was tested. RESULTS On average, 20 x 10(6) mature MCs were generated from 0.5 x 10(6) progenitor cells during 9 weeks of culture, i.e. at least a 40-fold increase in cell number was achieved. The mature MCs had oval-shaped non-lobular nuclei, contained histamine, heparin, tryptase, chymase, and cathepsin G in their secretory granules, and strongly expressed c-kit (CD117) and Fc epsilon receptor I on their surface. Histamine release from the cells could be brought about by IgE-anti-IgE cross-linkage, compound 48/80, substance P, and anaphylatoxin C3a. The MCs remained functional for several weeks after their maturation. CONCLUSION This study describes an efficient protocol for generating mature MCs from human peripheral blood with a functional phenotype of connective tissue-type MCs. Use of these cultured human MCs will increase our knowledge and understanding about human MC development and biology in human disease.
Collapse
|