1
|
Bazan-Socha S, Jakiela B, Zuk J, Zarychta J, Soja J, Okon K, Dziedzina S, Zareba L, Dropinski J, Wojcik K, Padjas A, Marcinkiewicz C, Bazan JG. Interactions via α 2β 1 Cell Integrin May Protect against the Progression of Airway Structural Changes in Asthma. Int J Mol Sci 2021; 22:ijms22126315. [PMID: 34204767 PMCID: PMC8231566 DOI: 10.3390/ijms22126315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Increased airway wall thickness and remodeling of bronchial mucosa are characteristic of asthma and may arise from altered integrin signaling on airway cells. Here, we analyzed the expression of β1-subfamily integrins on blood and airway cells (flow cytometry), inflammatory biomarkers in serum and bronchoalveolar lavage, reticular basement membrane (RBM) thickness and collagen deposits in the mucosa (histology), and airway geometry (CT-imaging) in 92 asthma patients (persistent airflow limitation subtype: n = 47) and 36 controls. Persistent airflow limitation was associated with type-2 inflammation, elevated soluble α2 integrin chain, and changes in the bronchial wall geometry. Both subtypes of asthma showed thicker RBM than control, but collagen deposition and epithelial α1 and α2 integrins staining were similar. Type-I collagen accumulation and RBM thickness were inversely related to the epithelial expression of the α2 integrin chain. Expression of α2β1 integrin on T-cells and eosinophils was not altered in asthma. Collagen I deposits were, however, more abundant in patients with lower α2β1 integrin on blood and airway CD8+ T-cells. Thicker airway walls in CT were associated with lower α2 integrin chain on blood CD4+ T-cells and airway eosinophils. Our data suggest that α2β1 integrin on inflammatory and epithelial cells may protect against airway remodeling advancement in asthma.
Collapse
Affiliation(s)
- Stanislawa Bazan-Socha
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
- Correspondence: ; Tel.: +48-12-4248023; Fax: +48-12-4248041
| | - Bogdan Jakiela
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Joanna Zuk
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Jacek Zarychta
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
- Pulmonary Hospital, 34-500 Zakopane, Poland
| | - Jerzy Soja
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Krzysztof Okon
- Faculty of Medicine, Department of Pathology, Jagiellonian University Medical College, 31-531 Krakow, Poland;
| | - Sylwia Dziedzina
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszów, 35-310 Rzeszów, Poland; (L.Z.); (J.G.B.)
| | - Jerzy Dropinski
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Krzysztof Wojcik
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Agnieszka Padjas
- Faculty of Medicine, Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.J.); (J.Z.); (J.Z.); (J.S.); (S.D.); (J.D.); (K.W.); (A.P.)
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszów, 35-310 Rzeszów, Poland; (L.Z.); (J.G.B.)
| |
Collapse
|
2
|
Abstract
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodelling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or 'primed', or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins, have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAbs) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Affiliation(s)
- M. W. Johansson
- Department of Biomolecular Chemistry; University of Wisconsin; Madison WI USA
| |
Collapse
|
4
|
Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int J Biochem Cell Biol 2013; 45:1974-86. [PMID: 23811033 DOI: 10.1016/j.biocel.2013.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023]
Abstract
Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology.
Collapse
|
5
|
Walsh EM, Marcinkiewicz C. Non-RGD-containing snake venom disintegrins, functional and structural relations. Toxicon 2011; 58:355-62. [PMID: 21801741 DOI: 10.1016/j.toxicon.2011.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/25/2011] [Accepted: 07/12/2011] [Indexed: 01/16/2023]
Abstract
Snake venom disintegrins are present in a variety of species and are functionally divided into three families: RGD, MLD and R/KTS. The RGD family of disintegrins, which bind and inhibit the physiological functions of RGD-dependent integrins, constitute the largest and most investigated family. This review will be focused on characterization of two relatively new families of snake venom disintegrins, expressing in their active site MLD and R/KTS motifs. The MLD motif, present only in heterodimeric disintegrins, mediates binding of these disintegrins to α4β1, α4β7 and α9β1 integrins, whereas the presence of a KTS or RTS sequence in the active site selectively directs activity of disintegrins to the collagen receptor α1β1 integrin. Structurally, KTS-disintegrins are short, monomeric molecules containing 41 amino acids in its polypeptide chain. Biological activities of MLD and KTS-disintegrins were investigated in many systems in vitro and in vivo. Purified disintegrins are non-toxic in therapeutic doses in rodent and avian models. Their modulatory properties were observed in investigations of cancer angiogenesis and metastasis, immunosuppression of IDDM (insulin-dependent diabetes mellitus) and asthma, as well as in neurodegenerative assays and cell apoptosis.
Collapse
Affiliation(s)
- Erin M Walsh
- Temple University, College of Science and Technology, Department of Biology, Philadelphia, PA 19122, United States
| | | |
Collapse
|
6
|
Hiwatashi Y, Tadokoro H, Henmi K, Arai M, Kaise T, Tanaka S, Hirano T. Antiproliferative and anti-invasive effects of inorganic and organic arsenic compounds on human and murine melanoma cells in vitro. J Pharm Pharmacol 2011; 63:1202-10. [PMID: 21827493 DOI: 10.1111/j.2042-7158.2011.01330.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES For patients with advanced melanoma, no treatment options are available at present that provide either sufficient response rates or a significant prolongation of overall survival. The present study examines the effects of two inorganic and six organic arsenic compounds on cell proliferation and cell invasion of melanoma cells in vitro. METHODS The effects of arsenic compounds on proliferation of human melanoma A375 cells and murine melanoma B16F10 cells were examined by MTT assay and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, and the effects of the compounds on cell invasion were examined by the Boyden chamber invasion assay. The amounts of active matrix metalloproteinase (MMP)-2 and pro-MMP-2 in the culture supernatant of A375 cells were determined by an MMP-2 activity assay system. KEY FINDINGS Arsenate and arsenic trioxide (As(2) O(3) ) inhibited the proliferation of A375 and B16F10 cells significantly at concentration ranges of 0.1-20µg/ml (P<0.001), while the organic compounds arsenobetaine, arsenocholine, dimethylarsinic acid, methylarsonic acid, tetramethylarsonium and trimethylarsine oxide did not show any inhibitory effects even at 20µg/ml. Cell invasion of A375 and B16F10 cells through a layer of collagen IV was significantly inhibited by 0.1-20 µg/ml of arsenate or As(2) O(3) (P<0.05), while the organic compounds did not inhibit cell invasion. Arsenate or As(2) O(3) at 0.2-10µg/ml significantly inhibited the amount of active MMP-2 and pro-MMP-2 secreted into the A375 cell culture supernatant (P<0.05). CONCLUSIONS Our findings show that the inorganic arsenic compounds arsenate and As(2) O(3) inhibit cell proliferation and prevent the invasive properties of melanoma cells, possibly by decreasing MMP-2 production from the cells.
Collapse
Affiliation(s)
- Yoko Hiwatashi
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Potent in vivo suppression of inflammation by selectively targeting the high affinity conformation of integrin α4β1. Biochem Biophys Res Commun 2010; 400:619-24. [PMID: 20807504 DOI: 10.1016/j.bbrc.2010.08.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 01/06/2023]
Abstract
The development of antagonists to the α4 integrin family of cell adhesion molecules has been an active area of pharmaceutical research to treat inflammatory and autoimmune diseases. Presently being tested in human clinical trials are compounds selective for α4β1 (VLA-4) as well as several dual antagonists that inhibit both α4β1 and α4β7. The value of a dual versus a selective small molecule antagonist as well as the consequences of inhibiting different affinity states of the α4 integrins have been debated in the literature. Here, we characterize TBC3486, a N,N-disubstituted amide, which represents a unique structural class of non-peptidic, small molecule VLA-4 antagonists. Using a variety of adhesion assay formats as well as flow cytometry experiments using mAbs specific for certain activation-dependent integrin epitopes we demonstrate that TBC3486 preferentially targets the high affinity conformation of α4β1 and behaves as a ligand mimetic. The antagonist is capable of blocking integrin-dependent T-cell co-activation in vitro as well as proves to be efficacious in vivo at low doses in two animal models of allergic inflammation. These data suggest that a small molecule α4 integrin antagonist selective for α4β1 over α4β7 and, specifically, selective for the high affinity conformation of α4β1 may prove to be an effective therapy for multiple inflammatory diseases in humans.
Collapse
|
8
|
Park YM, Bochner BS. Eosinophil survival and apoptosis in health and disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2010; 2:87-101. [PMID: 20358022 PMCID: PMC2846745 DOI: 10.4168/aair.2010.2.2.87] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 01/06/2023]
Abstract
Eosinophilia is common feature of many disorders, including allergic diseases. There are many factors that influence the production, migration, survival and death of the eosinophil. Apoptosis is the most common form of physiological cell death and a necessary process to maintain but limit cell numbers in humans and other species. It has been directly demonstrated that eosinophil apoptosis is delayed in allergic inflammatory sites, and that this mechanism contributes to the expansion of eosinophil numbers within tissues. Among the proteins known to influence hematopoiesis and survival, expression of the cytokine interleukin-5 appears to be uniquely important and specific for eosinophils. In contrast, eosinophil death can result from withdrawal of survival factors, but also by activation of pro-apoptotic pathways via death factors. Recent observations suggest a role for cell surface death receptors and mitochondria in facilitating eosinophil apoptosis, although the mechanisms that trigger each of these death pathways remain incompletely delineated. Ultimately, the control of eosinophil apoptosis may someday become another therapeutic strategy for treating allergic diseases and other eosinophil-associated disorders.
Collapse
Affiliation(s)
- Yong Mean Park
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Roth M, Black JL. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy? Br J Pharmacol 2009; 157:334-41. [PMID: 19371343 DOI: 10.1111/j.1476-5381.2009.00188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The asthma prevalence was increasing over the past two decades worldwide. Allergic asthma, caused by inhaled allergens of different origin or by food, is mediated by inflammatory mechanisms. The action of non-allergic asthma, induced by cold air, humidity, temperature or exercise, is not well understood. Asthma affects up to 15% of the population and is treated with anti-inflammatory and muscle relaxing drugs which allow symptom control. Asthma was first defined as a malfunction of the airway smooth muscle, later as an imbalanced immune response of the lung. Recent studies placed the airway smooth muscle again into the focus. Here we summarize the molecular biological basis of the deregulated function of the human airway smooth muscle cell as a cause or important contributor to the pathology of asthma. In the asthmatic human airway smooth muscle cells, there is: (i) a deregulation of cell differentiation due to low levels of maturation-regulating transcription factors such as CCAAT/enhancer binding proteins and peroxisome proliferator-activated receptors, thereby reducing the cells threshold to proliferate and to secrete pro-inflammatory cytokines under certain conditions; (ii) a higher basal energy turnover that is due to increased number and activity of mitochondria; and (iii) a modified feedback mechanism between cells and the extracellular matrix they are embedded in. All these cellular pathologies are linked to each other and to the innate immune response of the lung, but the sequence of events is unclear and needs further investigation. However, these findings may present the basis for the development of novel curative asthma drugs.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Pneumology, University Hospital Basel, Biomedicine, Lab 305, Petersgraben 4, Basel CH-4031, Switzerland.
| | | |
Collapse
|
10
|
Woodside DG, Vanderslice P. Cell adhesion antagonists: therapeutic potential in asthma and chronic obstructive pulmonary disease. BioDrugs 2008; 22:85-100. [PMID: 18345706 DOI: 10.2165/00063030-200822020-00002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases of the lung where a hallmark feature is excessive leukocyte infiltration that leads to tissue injury. Cell adhesion molecules (e.g. selectins and integrins) play a key role in cell trafficking, and in the lung they regulate leukocyte extravasation, migration within the interstitium, cellular activation, and tissue retention. All selectin family members (including L-selectin, P-selectin, and E-selectin) and many of the beta1 and beta2 integrins appear to be important therapeutic targets, as numerous animal studies have demonstrated essential roles for these cell adhesion molecules in lung inflammation. Not surprisingly, these families of adhesion molecules have been under intense investigation by the pharmaceutical industry for the development of novel therapeutics. Integrins are validated drug targets, as drugs that antagonize integrin alphaIIbbeta3 (e.g. abciximab), integrin alphaLbeta2 (efalizumab), and integrin alpha4beta1 (natalizumab) are currently US FDA-approved for acute coronary syndromes, psoriasis, and multiple sclerosis, respectively. However, none has been approved for indications related to asthma or COPD. Here, we provide an overview of roles played by selectins and integrins in lung inflammation. We also describe recent clinical results (both failures and successes) in developing adhesion molecule antagonists, with specific emphasis on those targets that may have potential benefit in asthma and COPD. Early clinical trials using selectin and integrin antagonists have met with limited success. However, recent positive phase II clinical trials with a small-molecule selectin antagonist (bimosiamose) and a small-molecule integrin alpha4beta1 antagonist (valategrast [R411]), have generated enthusiastic anticipation that novel strategies to treat asthma and COPD may be forthcoming.
Collapse
Affiliation(s)
- Darren G Woodside
- Department of Drug Discovery, Biological Sciences, Encysive Pharmaceuticals Inc., Houston, Texas, USA.
| | | |
Collapse
|
11
|
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008; 38:709-50. [PMID: 18384431 DOI: 10.1111/j.1365-2222.2008.02958.x] [Citation(s) in RCA: 568] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, the biology of eosinophils is summarized, focusing on transcriptional regulation of eosinophil differentiation, characterization of the growing properties of eosinophil granule proteins, surface proteins and pleiotropic mediators, and molecular mechanisms of eosinophil degranulation. New views on the role of eosinophils in homeostatic function are examined, including developmental biology and innate and adaptive immunity (as well as their interaction with mast cells and T cells) and their proposed role in disease processes including infections, asthma, and gastrointestinal disorders. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
|
12
|
Thompson EE, Pan L, Ostrovnaya I, Weiss LA, Gern JE, Lemanske RF, Nicolae DL, Ober C. Integrin beta 3 genotype influences asthma and allergy phenotypes in the first 6 years of life. J Allergy Clin Immunol 2007; 119:1423-9. [PMID: 17556058 DOI: 10.1016/j.jaci.2007.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The integrin beta3 gene (ITGB3) encodes a subunit of the platelet and monocyte-specific fibrinogen receptor and the widely expressed vitronectin receptor, which have diverse roles in cell migration, adhesion, and signaling. Previous work from our laboratory reported associations between single nucleotide polymorphisms (SNPs) in ITGB3 and asthma and allergic sensitization in 4 populations. OBJECTIVE To examine whether SNPs in ITGB3 are associated with the development of asthma and allergic phenotypes in early life. METHODS We typed 13 SNPs in 206 children participating in a birth cohort study and tested for associations with asthma and allergy phenotypes in the first 6 years of life. RESULTS Our study revealed significant associations between SNPs in ITGB3 and asthma, wheezing, and IgE levels, suggesting an early role for this gene in the development of asthma and allergy. In particular, SNPs at the 3' end of the gene were significantly associated with IgE levels beginning at 1 year of age, whereas a SNP in intron 1 showed significant interaction effects with viral respiratory illness in infancy on asthma susceptibility. CONCLUSION Our results suggest that genetic variation in ITGB3 contributes to asthma susceptibility and allergic sensitization, and that the effects of this gene begin early in life. Similar to our earlier study, different SNPs in the gene are associated with asthma and IgE. CLINICAL IMPLICATIONS ITGB3 may play an important role in the development of asthma and allergy and may represent a potential therapeutic target for the treatment of these disorders.
Collapse
Affiliation(s)
- Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill., USA.
| | | | | | | | | | | | | | | |
Collapse
|