1
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024:1-15. [PMID: 38885626 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Hata K, Tsubouchi K, Suzuki K, Eto D, Ando H, Yanagihara T, Kan-O K, Okamoto I. Surfactant protein D prevents mucin overproduction in airway goblet cells via SIRPα. Sci Rep 2024; 14:1799. [PMID: 38245585 PMCID: PMC10799941 DOI: 10.1038/s41598-024-52328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.
Collapse
Affiliation(s)
- Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Eto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Kan-O
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Lee Y, Kim C, Lee E, Lee HY, Woo SD, You SC, Park RW, Park HS. Long-term clinical outcomes of aspirin-exacerbated respiratory disease: Real-world data from an adult asthma cohort. Clin Exp Allergy 2023; 53:941-950. [PMID: 37332228 DOI: 10.1111/cea.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is a phenotype of severe asthma, but its disease course has not been well documented compared with that of aspirin-tolerant asthma (ATA). OBJECTIVES This study aimed to investigate the long-term clinical outcomes between AERD and ATA. METHODS AERD patients were identified by the diagnostic code and positive bronchoprovocation test in a real-world database. Longitudinal changes in lung function, blood eosinophil/neutrophil counts, and annual numbers of severe asthma exacerbations (AEx) were compared between the AERD and the ATA groups. Within a year after baseline, two or more severe AEx events indicated severe AERD, whereas less than two AEx events indicated nonsevere AERD. RESULTS Among asthmatics, 353 had AERD in which 166 and 187 patients had severe and nonsevere AERD, respectively, and 717 had ATA. AERD patients had significantly lower FEV1%, higher blood neutrophil counts, and higher sputum eosinophils (%) (all p < .05) as well as higher levels of urinary LTE4 and serum periostin, and lower levels of serum myeloperoxidase and surfactant protein D (all p < .01) than those with ATA. In a 10-year follow-up, the severe AERD group maintained lower FEV1% with more severe AEs than the nonsevere AERD group. CONCLUSION AND CLINICAL RELEVANCE We demonstrated that AERD patients presented poorer long-term clinical outcomes than ATA patients in real-world data analyses.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Hyun Young Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, South Korea
| | - Seong-Dae Woo
- Division of Pulmonology and Allergy, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seng Chan You
- Department of Biomedicine System Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
4
|
Takeuchi N, Arai T, Sasaki Y, Akira M, Matsuda Y, Tachibana K, Kasai T, Inoue Y. Predictive factors for relapse in corticosteroid-treated patients with chronic eosinophilic pneumonia. J Thorac Dis 2022; 14:4352-4360. [PMID: 36524087 PMCID: PMC9745510 DOI: 10.21037/jtd-22-511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/09/2022] [Indexed: 09/09/2024]
Abstract
BACKGROUND Chronic eosinophilic pneumonia (CEP) is an idiopathic disorder characterised by an abnormal and marked accumulation of eosinophils in the interstitium and alveolar spaces of the lungs. Systemic corticosteroid (CS) therapy leads to marked improvement. However, relapse is common in the clinical course, and the predictive factors for relapse of CEP are not well known. This study aimed to investigate predictive factors for relapse in CS-treated cases of CEP. METHODS We identified consecutive patients with CEP at our institution between 1999 and 2019. We retrospectively reviewed 36 CS-treated patients with CEP who underwent bronchoalveolar lavage (BAL) and high-resolution computed tomography (CT) at diagnosis. We examined relapse at least 1 year after the initiation of CS treatment. Statistical analysis included univariate and multivariate Cox proportional hazard regression analyses; P<0.05 was considered statistically significant. RESULTS The median (interquartile range) age at diagnosis was 59.5 years (47.8-70.0 years). This study included 13 men and 23 women. Twenty-five patients (69.4%) were never smokers and 15 (41.7%) had asthma. The peripheral blood eosinophil percentage was 35.0% (15.6-55.8%), and the BAL eosinophil percentage was 40.8% (10.7-68.5%). The median serum surfactant protein-D (SP-D) level was 135 ng/mL (82.2-176.7 ng/mL). High-resolution CT revealed centrilobular opacities in 23 patients (63.9%). Relapse of CEP was observed in 20 patients (55.6%). Higher serum SP-D levels and the presence of centrilobular opacities on high-resolution CT were significant predictors of relapse in multivariate Cox proportional hazard regression analysis (P=0.017 and P=0.028, respectively). Additionally, we devised a relapse prediction model for CS-treated CEP using two categorical parameters: the presence of centrilobular opacities and serum levels of SP-D (>135/≤135 ng/mL). Based on these parameters, cases were scored 2, 1, or 0. Patients with a score of 2 experienced relapses earlier than those with scores of 1 and 0 (log-rank test; P=0.006, P=0.003, respectively). CONCLUSIONS Centrilobular opacities on high-resolution CT and higher serum SP-D levels at diagnosis may be predictive factors for relapse in CS-treated patients with CEP.
Collapse
Affiliation(s)
- Naoko Takeuchi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Yumiko Sasaki
- Department of Respiratory Medicine, Gifu Prefectural Tajimi Hospital, Tajimi City, Gifu, Japan
| | - Masanori Akira
- Department of Radiology, Katano Hospital, Katano City, Osaka, Japan
| | - Yoshinobu Matsuda
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Kazunobu Tachibana
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Takahiko Kasai
- Department of Pathology, Japanese Red Cross Tokushima Hospital, Komatsushima City, Tokushima, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| |
Collapse
|
5
|
Hou X, Zhang X, Zhang Z. Role of surfactant protein-D in ocular bacterial infection. Int Ophthalmol 2022; 42:3611-3623. [PMID: 35639299 PMCID: PMC9151998 DOI: 10.1007/s10792-022-02354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Purpose Our review explains the role of surfactant protein D (SP-D) in different kinds of bacterial infection based on its presence in different ocular surface tissues. We discuss the potential role of SP-D against invasion by pathogens, with the aim of identifying new prospects for the possible mechanism of SP-D-mediated immune processes, and the diagnosis, prognosis, or treatment of ocular bacterial infection. Methods We reviewed articles about the role of SP-D in various ocular bacterial infections or infection-related ocular diseases through PubMed, Google Scholar, and the Web of Science databases. Results SP-D acts as an important immune factor that can resemble molecules in different polymerization states and that defends against pathogen invasion. The increased SP-D production and secretion in tear fluid and the cornea after ocular bacterial infections such as Staphylococcus aureus, Pseudomonas aeruginosa keratitis, and infection-related ocular diseases, was shown to have potential anti-inflammatory effects. The mechanisms of SP-D’s action against ocular bacterial infections include presenting, aggregating, opsonizing, and phagocytizing antigens, as well as regulating anti-bacterial immunity processes, including toll-like receptor-5 (TLR-5) pathway and IL-8 effect, TLR-4 and TLR-2 pathways and other possible ways remained to be elucidated in more detail. The findings demonstrate the potential of SP-D as an important clinical diagnostic biomarker prognosis predictor, and target for ocular immunotherapy. Conclusion SP-D participates in invasion by different ocular bacteria and infection-related ocular diseases through multiple immune mechanisms. This finding provides new prospects for the diagnosis, prognosis and treatment of ocular bacterial infection.
Collapse
Affiliation(s)
- Xinzhu Hou
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhiyong Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China. .,Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Watson A, Madsen J, Clark HW. SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Front Immunol 2021; 11:622598. [PMID: 33542724 PMCID: PMC7851053 DOI: 10.3389/fimmu.2020.622598] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here, we review how the properties of these first line defense molecules modulate inflammatory responses, as well as host-mediated immunopathology in response to viral infections. Since SP-A and SP-D are known to offer protection from viral and other infections, if their levels are decreased in some disease states as they are in severe asthma and chronic obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful in both blocking respiratory viral infection while also modulating the immune system to prevent excessive inflammatory responses seen in, for example, RSV or coronavirus disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential in neutralizing both current and future strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has recently been shown to neutralize SARS-CoV-2. Further work investigating the potential therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory diseases is indicated.
Collapse
Affiliation(s)
- Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Jens Madsen
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Howard William Clark
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospital (UCLH), University College London (UCL), London, United Kingdom
| |
Collapse
|
7
|
Madan T, Kishore U. Surfactant Protein D Recognizes Multiple Fungal Ligands: A Key Step to Initiate and Intensify the Anti-fungal Host Defense. Front Cell Infect Microbiol 2020; 10:229. [PMID: 32547959 PMCID: PMC7272678 DOI: 10.3389/fcimb.2020.00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
With limited therapeutic options and associated severe adverse effects, fungal infections are a serious threat to human health. Innate immune response mediated by pattern recognition proteins is integral to host defense against fungi. A soluble pattern recognition protein, Surfactant protein D (SP-D), plays an important role in immune surveillance to detect and eliminate human pathogens. SP-D exerts its immunomodulatory activity via direct interaction with several receptors on the epithelial cells lining the mucosal tracts, as well as on innate and adaptive immune cells. Being a C-type lectin, SP-D shows calcium- and sugar-dependent interactions with several glycosylated ligands present on fungal cell walls. The interactome includes cell wall polysaccharides such as 1,3-β-D-glucan, 1,6-β-D-glucan, Galactosaminogalactan Galactomannan, Glucuronoxylomannan, Mannoprotein 1, and glycosylated proteins such as gp45, gp55, major surface glycoprotein complex (gpA). Recently, binding of a recombinant fragment of human SP-D to melanin on the dormant conidia of Aspergillus fumigatus was demonstrated that was not inhibited by sugars, suggesting a likely protein-protein interaction. Interactions of the ligands on the fungal spores with the oligomeric forms of full-length SP-D resulted in formation of spore-aggregates, increased uptake by phagocytes and rapid clearance besides a direct fungicidal effect against C. albicans. Exogenous administration of SP-D showed significant therapeutic potential in murine models of allergic and invasive mycoses. Altered susceptibility of SP-D gene-deficient mice to various fungal infections emphasized relevance of SP-D as an important sentinel of anti-fungal immunity. Levels of SP-D in the serum or lung lavage were significantly altered in the murine models and patients of fungal infections and allergies. Here, we review the cell wall ligands of clinically relevant fungal pathogens and allergens that are recognized by SP-D and their impact on the host defense. Elucidation of the molecular interactions between innate immune humoral such as SP-D and fungal pathogens would facilitate the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
9
|
Dy ABC, Arif MZ, Addison KJ, Que LG, Boitano S, Kraft M, Ledford JG. Genetic Variation in Surfactant Protein-A2 Delays Resolution of Eosinophilia in Asthma. THE JOURNAL OF IMMUNOLOGY 2019; 203:1122-1130. [PMID: 31350355 DOI: 10.4049/jimmunol.1900546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
Abstract
Surfactant protein-A (SP-A) is an important mediator of pulmonary immunity. A specific genetic variation in SP-A2, corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 of the lectin domain, was shown to alter the ability of SP-A to inhibit eosinophil degranulation. Because a large subgroup of asthmatics have associated eosinophilia, often accompanied by inflammation associated with delayed clearance, our goal was to define how SP-A mediates eosinophil resolution in allergic airways and whether genetic variation affects this activity. Wild-type, SP-A knockout (SP-A KO) and humanized (SP-A2 223Q/Q, SP-A2 223K/K) C57BL/6 mice were challenged in an allergic OVA model, and parameters of inflammation were examined. Peripheral blood eosinophils were isolated to assess the effect of SP-A genetic variation on apoptosis and chemotaxis. Five days postchallenge, SP-A KO and humanized SP-A2 223K/K mice had persistent eosinophilia in bronchoalveolar lavage fluid compared with wild-type and SP-A2 223Q/Q mice, suggesting an impairment in eosinophil resolution. In vitro, human SP-A containing either the 223Q or the 223K allele was chemoattractant for eosinophils whereas only 223Q resulted in decreased eosinophil viability. Our results suggest that SP-A aids in the resolution of allergic airway inflammation by promoting eosinophil clearance from lung tissue through chemotaxis, independent of SP-A2 Q223K, and by inducing apoptosis of eosinophils, which is altered by the polymorphism.
Collapse
Affiliation(s)
- Alane Blythe C Dy
- Clinical Translational Sciences, University of Arizona Health Sciences, Tucson, AZ 85721.,Asthma and Airway Disease Research Center, Tucson, AZ 85724
| | - Muhammad Z Arif
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - Kenneth J Addison
- Asthma and Airway Disease Research Center, Tucson, AZ 85724.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Loretta G Que
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and
| | - Scott Boitano
- Asthma and Airway Disease Research Center, Tucson, AZ 85724.,Department of Physiology, University of Arizona, Tucson, AZ 85724
| | - Monica Kraft
- Asthma and Airway Disease Research Center, Tucson, AZ 85724.,Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - Julie G Ledford
- Asthma and Airway Disease Research Center, Tucson, AZ 85724; .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
10
|
Choi Y, Lee D, Trinh HKT, Ban G, Park H, Shin YS, Kim S, Park H. Surfactant protein D alleviates eosinophil-mediated airway inflammation and remodeling in patients with aspirin-exacerbated respiratory disease. Allergy 2019; 74:78-88. [PMID: 29663427 DOI: 10.1111/all.13458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Surfactant protein D (SPD) is a member of the collectin family that lines the airway epithelial cells with host defense. However, the role of SPD in the pathogenesis of aspirin-exacerbated respiratory disease (AERD) is still unclear. METHODS The serum SPD level was measured in patients with AERD (n = 336), those with aspirin-tolerant asthma (ATA, n = 442), and healthy controls (HC, n = 104). Polymorphisms of SFTPD in the study subjects were analyzed. The effect of LTE4 on SPD production through eosinophil infiltration was investigated in BALB/c mice. The protective function of SPD against eosinophils inducing inflammation and remodeling was assessed in vitro/vivo. The potential efficacy of nintedanib against airway remodeling through the production of SPD was evaluated. RESULTS The serum SPD level was significantly lower (P < .001) in AERD compared with ATA patients, and negatively correlated with fall in FEV1 (%) after lysine-aspirin bronchoprovocation test and/or the urinary LTE4 level. In addition, polymorphism of SFTPD at rs721917 was significantly different in the study subjects (odds ratio, 1.310; 95% confidence intervals, 2.124-3.446; P = .002). LTE4-exposed mice showed an increased eosinophil count with a decreased SPD level in bronchoalveolar lavage fluid. Eosinophils increased α-smooth muscle actin expression in airway epithelial cells, which was attenuated by SPD treatment. Furthermore, nintedanib protected the airway epithelial cells against eosinophils by enhancing the production of SPD. CONCLUSION The decreased level of SPD in AERD was associated with airway inflammation/remodeling under the eosinophilic condition, suggesting that modulation of SPD may provide a potential benefit in AERD.
Collapse
Affiliation(s)
- Y. Choi
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - D.‐H. Lee
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
- Department of Biomedical Science Graduate School of Ajou University Suwon Korea
| | - H. K. T. Trinh
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - G.‐Y. Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - H.‐K. Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Y. S. Shin
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - S.‐H. Kim
- Clinical Trial Center Ajou University Medical Center Suwon Korea
| | - H.‐S. Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
- Department of Biomedical Science Graduate School of Ajou University Suwon Korea
| |
Collapse
|
11
|
Choi Y, Lee Y, Park HS. Which Factors Associated With Activated Eosinophils Contribute to the Pathogenesis of Aspirin-Exacerbated Respiratory Disease? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:320-329. [PMID: 30912322 PMCID: PMC6439191 DOI: 10.4168/aair.2019.11.3.320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022]
Abstract
Eosinophils have long been recognized as a central effector cell in the lungs of asthmatic patients. They contribute to airway inflammation and remodeling through releasing several molecules such as cytokines, granule proteins, lipid mediators and extracellular traps/vesicles. Repeated evidence reveals that intense eosinophil infiltration in upper and lower airway mucosae contributes to the pathogenesis of aspirin-exacerbated respiratory disease (AERD). Persistent eosinophilia is found to be associated with type 2 immune responses, cysteinyl leukotriene overproduction and eosinophil-epithelium interactions. This review highlights recent findings about key mechanisms of eosinophil activation in the airway inflammation of AERD. In addition, current biologics (targeting type 2 immune responses) were suggested to control eosinophilic inflammation for AERD patients.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
12
|
Yousefi S, Sharma SK, Stojkov D, Germic N, Aeschlimann S, Ge MQ, Flayer CH, Larson ED, Redai IG, Zhang S, Koziol-White CJ, Karikó K, Simon HU, Haczku A. Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 2018; 104:205-214. [PMID: 29733456 DOI: 10.1002/jlb.3ab1117-455r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022] Open
Abstract
The asthmatic airways are highly susceptible to inflammatory injury by air pollutants such as ozone (O3 ), characterized by enhanced activation of eosinophilic granulocytes and a failure of immune protective mechanisms. Eosinophil activation during asthma exacerbation contributes to the proinflammatory oxidative stress by high levels of nitric oxide (NO) production and extracellular DNA release. Surfactant protein-D (SP-D), an epithelial cell product of the airways, is a critical immune regulatory molecule with a multimeric structure susceptible to oxidative modifications. Using recombinant proteins and confocal imaging, we demonstrate here that SP-D directly bound to the membrane and inhibited extracellular DNA trap formation by human and murine eosinophils in a concentration and carbohydrate-dependent manner. Combined allergic airway sensitization and O3 exposure heightened eosinophilia and nos2 mRNA (iNOS) activation in the lung tissue and S-nitrosylation related de-oligomerisation of SP-D in the airways. In vitro reproduction of the iNOS action led to similar effects on SP-D. Importantly, S-nitrosylation abolished the ability of SP-D to block extracellular DNA trap formation. Thus, the homeostatic negative regulatory feedback between SP-D and eosinophils is destroyed by the NO-rich oxidative lung tissue environment in asthma exacerbations.
Collapse
Affiliation(s)
| | | | | | | | | | - Moyar Q Ge
- University of Pennsylvania, Philadelphia, Pennsylvania, USA.,University of California, Davis, California, USA
| | | | | | - Imre G Redai
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suhong Zhang
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cynthia J Koziol-White
- University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Rutgers University, New Brunswick, New Jersey, USA
| | - Katalin Karikó
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Angela Haczku
- University of Pennsylvania, Philadelphia, Pennsylvania, USA.,University of California, Davis, California, USA
| |
Collapse
|
13
|
|
14
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Mackay RMA, Grainge CL, Lau LC, Barber C, Clark HW, Howarth PH. Airway Surfactant Protein D Deficiency in Adults With Severe Asthma. Chest 2016; 149:1165-72. [PMID: 26836907 DOI: 10.1016/j.chest.2015.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Accepted: 11/14/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Surfactant protein D (SP-D) is an essential component of the innate immune defense against pathogens within the airways. SP-D also regulates allergic inflammation and promotes the removal of apoptotic cells. SP-D dysregulation is evident in several pulmonary diseases. Our aim was to investigate whether airway and serum levels of SP-D are altered in treatment-resistant severe asthma. METHODS SP-D concentrations were measured in matched serum and BAL samples collected from 10 healthy control subjects (HC) and 50 patients with asthma (22 with mild asthma [MA] and 28 with severe asthma [SA]). These samples were also evaluated by using Western blot analysis to investigate variations in SP-D size. RESULTS SP-D levels in BAL samples were significantly lower in SA compared with HC and MA (P < .001) and inversely correlated with BAL eosinophil cationic protein concentrations in SA (P < .01). Serum SP-D was significantly increased in SA compared with HC and MA (P < .001), and BAL/serum ratios were significantly lower in SA compared with HC and MA (P < .001). Reduced SP-D levels in BAL samples, with concomitant increases in serum in SA, were associated with degraded fragments of SP-D in the serum and increased BAL neutrophil counts and lipopolysaccharide levels. CONCLUSIONS These findings suggest defective innate immunity within the airways in SA, as reflected by low BAL SP-D concentrations and altered bacterial presence with airway neutrophilia. Furthermore, BAL SP-D leakage into the serum in patients with SA may provide a peripheral blood biomarker, reflecting increased epithelial damage and/or epithelial permeability within the peripheral airways.
Collapse
Affiliation(s)
- Rose-Marie A Mackay
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.
| | - Christopher L Grainge
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK; Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia
| | - Laurie C Lau
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Clair Barber
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Howard W Clark
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter H Howarth
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
16
|
Fakih D, Pilecki B, Schlosser A, Jepsen CS, Thomsen LK, Ormhøj M, Watson A, Madsen J, Clark HW, Barfod KK, Hansen S, Marcussen N, Jounblat R, Chamat S, Holmskov U, Sorensen GL. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1333-43. [PMID: 26432866 DOI: 10.1152/ajplung.00090.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma.
Collapse
Affiliation(s)
- Dalia Fakih
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon; Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christine S Jepsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Laura K Thomsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Ormhøj
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Alastair Watson
- Department of Child Health, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Department of Child Health, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Howard W Clark
- Department of Child Health, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Kenneth K Barfod
- National Research Centre for the Working Environment, Copenhagen, Denmark; and
| | - Soren Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Rania Jounblat
- Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon; Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Soulaima Chamat
- Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
17
|
Emmanouil P, Loukides S, Kostikas K, Papatheodorou G, Papaporfyriou A, Hillas G, Vamvakaris I, Triggidou R, Katafigiotis P, Kokkini A, Papiris S, Koulouris N, Bakakos P. Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma. Allergy 2015; 70:711-4. [PMID: 25728058 DOI: 10.1111/all.12603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 01/25/2023]
Abstract
Clara cell secretory protein (CC16) is associated with Th2 modulation. Surfactant protein D (SPD) plays an important role in surfactant homeostasis and eosinophil chemotaxis. We measured CC16 and SPD in sputum supernatants of 84 asthmatic patients and 12 healthy controls. In 22 asthmatics, we additionally measured CC16 and SPD levels in BAL and assessed smooth muscle area (SMA), reticular basement membrane (RBM) thickness, and epithelial detachment (ED) in bronchial biopsies. Induced sputum CC16 and SPD were significantly higher in patients with severe asthma (SRA) compared to mild-moderate and healthy controls. BAL CC16 and SPD levels were also higher in SRA compared to mild-moderate asthma. CC16 BAL levels correlated with ED, while SPD BAL levels correlated with SMA and RBM. Severity represented a significant covariate for these associations. CC16 and SPD levels are upregulated in SRA and correlate with remodeling indices, suggesting a possible role of these biomarkers in the remodeling process.
Collapse
Affiliation(s)
- P. Emmanouil
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - S. Loukides
- 2nd Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Attikon’ Hospital; Athens Greece
| | - K. Kostikas
- 2nd Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Attikon’ Hospital; Athens Greece
| | | | - A. Papaporfyriou
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - G. Hillas
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - I. Vamvakaris
- Pathology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - R. Triggidou
- Pathology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - P. Katafigiotis
- Pathology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - A. Kokkini
- Cytology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - S. Papiris
- 2nd Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Attikon’ Hospital; Athens Greece
| | - N. Koulouris
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - P. Bakakos
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| |
Collapse
|
18
|
Ledford JG, Addison KJ, Foster MW, Que LG. Eosinophil-associated lung diseases. A cry for surfactant proteins A and D help? Am J Respir Cell Mol Biol 2015; 51:604-14. [PMID: 24960334 DOI: 10.1165/rcmb.2014-0095tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions.
Collapse
Affiliation(s)
- Julie G Ledford
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care, and
| | | | | | | |
Collapse
|
19
|
Ogawa H, Ledford JG, Mukherjee S, Aono Y, Nishioka Y, Lee JJ, Izumi K, Hollingsworth JW. Surfactant protein D attenuates sub-epithelial fibrosis in allergic airways disease through TGF-β. Respir Res 2014; 15:143. [PMID: 25472740 PMCID: PMC4262976 DOI: 10.1186/s12931-014-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 11/01/2014] [Indexed: 02/08/2023] Open
Abstract
Background Surfactant protein D (SP-D) can regulate both innate and adaptive immunity. Recently, SP-D has been shown to contribute to the pathogenesis of airway allergic inflammation and bleomycin-induced pulmonary fibrosis. However, in allergic airways disease, the role of SP-D in airway remodeling remains unknown. The objective of this study was to determine the contribution of functional SP-D in regulating sub-epithelial fibrosis in a mouse chronic house dust mite model of allergic airways disease. Methods C57BL/6 wild-type (WT) and SP-D−/− mice (C57BL/6 background) were chronically challenged with house dust mite antigen (Dermatophagoides pteronyssinus, Dp). Studies with SP-D rescue and neutralization of TGF-β were conducted. Lung histopathology and the concentrations of collagen, growth factors, and cytokines present in the airspace and lung tissue were determined. Cultured eosinophils were stimulated by Dp in presence or absence of SP-D. Results Dp-challenged SP-D−/− mice demonstrate increased sub-epithelial fibrosis, collagen production, eosinophil infiltration, TGF-β1, and IL-13 production, when compared to Dp-challenged WT mice. By immunohistology, we detected an increase in TGF-β1 and IL-13 positive eosinophils in SP-D−/− mice. Purified eosinophils stimulated with Dp produced TGF-β1 and IL-13, which was prevented by co-incubation with SP-D. Additionally, treatment of Dp challenged SP-D−/− mice with exogenous SP-D was able to rescue the phenotypes observed in SP-D−/− mice and neutralization of TGF-β1 reduced sub-epithelial fibrosis in Dp-challenged SP-D−/− mice. Conclusion These data support a protective role for SP-D in the pathogenesis of sub-epithelial fibrosis in a mouse model of allergic inflammation through regulation of eosinophil-derived TGF-β. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0143-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Molecular and Environmental Pathology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - Julie G Ledford
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Sambuddho Mukherjee
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Yoshinori Aono
- Department of Respiratory Medicine and Rheumatology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Division of Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - John W Hollingsworth
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Wexner Medical Center at Ohio State University, Columbus, Ohio, USA. .,Davis Heart & Lung Research Institute at Ohio State University, 473 West 12th Avenue, Columbus, OH, USA.
| |
Collapse
|
20
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
21
|
Mahajan L, Gautam P, Dodagatta-Marri E, Madan T, Kishore U. Surfactant protein SP-D modulates activity of immune cells: proteomic profiling of its interaction with eosinophilic cells. Expert Rev Proteomics 2014; 11:355-69. [PMID: 24697551 DOI: 10.1586/14789450.2014.897612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Surfactant protein D (SP-D), a C-type lectin, is known to protect against lung infection, allergy and inflammation. Its recombinant truncated form comprising homotrimeric neck and CRD region (rhSP-D) has been shown to bring down specific IgE levels, eosinophilia and restore Th2-Th1 homeostasis in murine models of lung hypersensitivity. SP-D knockout mice show intrinsic hypereosinophilia and airway hyper-responsiveness that can be alleviated by rhSP-D. The rhSP-D can bind activated eosinophils, inhibit chemotaxis and degranulation, and selectively induce oxidative burst and apoptosis in sensitized eosinophils. A global proteomics study of rhSP-D-treated eosinophilic cell line AML14.3D10 identified large-scale molecular changes associated with oxidative burst, cell stress and survival-related proteins potentially responsible for apoptosis induction. The data also suggested an involvement of RNA binding- and RNA splicing-related proteins. Thus, the proteomics approach yielded a catalog of differentially expressed proteins that may be protein signatures defining mechanisms of SP-D-mediated maintenance of homeostasis during allergy.
Collapse
Affiliation(s)
- Lakshna Mahajan
- CSIR Institute of Genomics and Integrative Biology, Mall road, Delhi 110007, India
| | | | | | | | | |
Collapse
|
22
|
Impact of surfactant protein D, interleukin-5, and eosinophilia on Cryptococcosis. Infect Immun 2013; 82:683-93. [PMID: 24478083 DOI: 10.1128/iai.00855-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that initiates infection following inhalation. As a result, the pulmonary immune response provides a first line of defense against C. neoformans. Surfactant protein D (SP-D) is an important regulator of pulmonary immune responses and is typically host protective against bacterial and viral respiratory infections. However, SP-D is not protective against C. neoformans. This is evidenced by previous work from our laboratory demonstrating that SP-D-deficient mice infected with C. neoformans have a lower fungal burden and live longer than wild-type (WT) control animals. We hypothesized that SP-D alters susceptibility to C. neoformans by dysregulating the innate pulmonary immune response following infection. Thus, inflammatory cells and cytokines were compared in the bronchoalveolar lavage fluid from WT and SP-D(-/-) mice after C. neoformans infection. Postinfection, mice lacking SP-D have reduced eosinophil infiltration and interleukin-5 (IL-5) in lung lavage fluid. To further explore the interplay of SP-D, eosinophils, and IL-5, mice expressing altered levels of eosinophils and/or IL-5 were infected with C. neoformans to assess the role of these innate immune mediators. IL-5-overexpressing mice have increased pulmonary eosinophilia and are more susceptible to C. neoformans infection than WT mice. Furthermore, susceptibility of SP-D(-/-) mice to C. neoformans infection could be restored to the level of WT mice by increasing IL-5 and eosinophils by crossing the IL-5-overexpressing mice with SP-D(-/-) mice. Together, these studies support the conclusion that SP-D increases susceptibility to C. neoformans infection by promoting C. neoformans-driven pulmonary IL-5 and eosinophil infiltration.
Collapse
|
23
|
Abstract
In the present study we investigated the effect of bovine conglutinin on the phagocytic activity of leukocytes. We measured both the chemotactic activity of conglutinin and its effect on the internalization of zymosan particles and E. coli by granulocytes. We also assessed the binding of conglutinin to various microorganisms isolated from clinical cases in cattle. We showed that conglutinin binds strongly to the surface of yeast cells and to mannan-rich zymosan particles, while weak binding was observed in the case of the bacterial strains tested, including those whose O antigen is composed of mannan. Conglutinin (1-10 microg/ml) neither acts as a chemotactic factor for peripheral blood leukocytes nor affects ingestion of E. coli by granulocytes. However, as flow cytometry based assay showed, conglutinin (0.1-1 microg/ml) increased ingestion of zymosan expressed as mean fluorescence intensity (MFI) of positive cells.
Collapse
|
24
|
Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs. PLoS One 2012; 7:e32436. [PMID: 22384248 PMCID: PMC3285686 DOI: 10.1371/journal.pone.0032436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/30/2012] [Indexed: 01/21/2023] Open
Abstract
Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage.
Collapse
|
25
|
Atochina-Vasserman EN, Winkler C, Abramova H, Schaumann F, Krug N, Gow AJ, Beers MF, Hohlfeld JM. Segmental allergen challenge alters multimeric structure and function of surfactant protein D in humans. Am J Respir Crit Care Med 2011; 183:856-64. [PMID: 21131470 PMCID: PMC3086753 DOI: 10.1164/rccm.201004-0654oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 12/03/2010] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Surfactant protein D (SP-D), a 43-kD collectin, is synthesized and secreted by airway epithelia as a dodecamer formed by assembly of four trimeric subunits. We have previously shown that the quaternary structure of SP-D can be altered during inflammatory lung injury through its modification by S-nitrosylation, which in turn alters its functional behavior producing a proinflammatory response in effector cells. OBJECTIVES We hypothesized that alterations in structure and function of SP-D may occur in humans with acute allergic inflammation. METHODS Bronchoalveolar lavage (BAL) fluid was collected from 15 nonsmoking patients with mild intermittent allergic asthma before and 24 hours after segmental provocation with saline, allergen, LPS, and mixtures of allergen and LPS. Structural modifications of SP-D were analyzed by native and sodium dodecyl sulfate gel electrophoresis. MEASUREMENTS AND MAIN RESULTS The multimeric structure of native SP-D was found to be disrupted after provocation with allergen or a mixture of allergen and LPS. Interestingly, under reducing conditions, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that 7 of 15 patients with asthma developed an abnormal cross-linked SP-D band after segmental challenge with either allergen or a mixture of allergen with LPS but not LPS alone. Importantly, patients with asthma with cross-linked SP-D demonstrated significantly higher levels of BAL eosinophils, nitrogen oxides, IL-4, IL-5, IL-13, and S-nitrosothiol-SP-D compared with patients without cross-linked SP-D. CONCLUSIONS We conclude that segmental allergen challenge results in changes of SP-D multimeric structure and that these modifications are associated with an altered local inflammatory response in the distal airways.
Collapse
Affiliation(s)
- Elena N. Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Carla Winkler
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Helen Abramova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Schaumann
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Norbert Krug
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Andrew J. Gow
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Michael F. Beers
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Jens M. Hohlfeld
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; and Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Ledford JG, Pastva AM, Wright JR. Review: Collectins link innate and adaptive immunity in allergic airway disease. Innate Immun 2010; 16:183-90. [PMID: 20418258 DOI: 10.1177/1753425910368446] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although the lipoprotein complex of pulmonary surfactant has long been recognized as essential for reducing lung surface tension, its role in lung immune host defense has only relatively recently been elucidated. Surfactant-associated proteins A (SP-A) and D (SP-D) can attenuate bacterial and viral infection and inflammation by acting as opsonins and by regulating innate immune cell functions. Surfactant-associated protein A and D also interact with antigen-presenting cells and T cells, thereby linking the innate and adaptive immune systems. A recent study from our laboratory demonstrated that mice deficient in SP-A have enhanced susceptibility to airway hyper-responsiveness and lung inflammation induced by Mycoplasma pneumonia, an atypical bacterium present in the airways of approximately 50% of asthmatics experiencing their first episode, and further supports an important role for SP-A in the host response to allergic airway disease. Animal and human studies suggest that alterations in the functions or levels of SP-A and SP-D are associated with both infectious and non-infectious chronic lung diseases such as asthma. Future studies are needed to elucidate whether alterations in SP-A and SP-D are a consequence and/or cause of allergic airway disease.
Collapse
Affiliation(s)
- Julie G Ledford
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
27
|
Dietert RR, Zelikoff JT. Early-life environment, developmental immunotoxicology, and the risk of pediatric allergic disease including asthma. ACTA ACUST UNITED AC 2009; 83:547-60. [PMID: 19085948 DOI: 10.1002/bdrb.20170] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Incidence of childhood allergic disease including asthma (AD-A) has risen since the mid-20th century with much of the increase linked to changes in environment affecting the immune system. Childhood allergy is an early life disease where predisposing environmental exposures, sensitization, and onset of symptoms all occur before adulthood. Predisposition toward allergic disease (AD) is among the constellation of adverse outcomes following developmental immunotoxicity (DIT; problematic exposure of the developing immune system to xenobiotics and physical environmental factors). Because novel immune maturation events occur in early life, and the pregnancy state itself imposes certain restrictions on immune functional development, the period from mid-gestation until 2 years after birth is one of particular concern relative to DIT and AD-A. Several prenatal-perinatal risk factors have been identified as contributing to a DIT-mediated immune dysfunction and increased risk of AD. These include maternal smoking, environmental tobacco smoke, diesel exhaust and traffic-related particles, heavy metals, antibiotics, environmental estrogens and other endocrine disruptors, and alcohol. Diet and microbial exposure also significantly influence immune maturation and risk of allergy. This review considers (1) the critical developmental windows of vulnerability for the immune system that appear to be targets for risk of AD, (2) a model in which the immune system of the DIT-affected infant exhibits immune dysfunction skewed toward AD, and (3) the lack of allergy-relevant safety testing of drugs and chemicals that could identify DIT hazards and minimize problematic exposure of pregnant women and children.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
28
|
Mahajan L, Madan T, Kamal N, Singh VK, Sim RB, Telang SD, Ramchand CN, Waters P, Kishore U, Sarma PU. Recombinant surfactant protein-D selectively increases apoptosis in eosinophils of allergic asthmatics and enhances uptake of apoptotic eosinophils by macrophages. Int Immunol 2008; 20:993-1007. [PMID: 18628238 DOI: 10.1093/intimm/dxn058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pulmonary surfactant protein-D (SP-D) is a multifunctional, pattern recognition molecule involved in resistance to allergen challenge and pulmonary inflammation. In view of therapeutic effects of exogenous SP-D or recombinant fragment of human surfactant protein-D (rhSP-D) (composed of eight Gly-X-Y collagen repeat sequences, homotrimeric neck and lectin domains) in murine models of lung allergy and hypereosinophilic SP-D gene-deficient mice, we investigated the possibility of a direct interaction of purified rhSP-D with human eosinophils derived from allergic patients and healthy donors. rhSP-D showed a sugar- and calcium-dependent binding to human eosinophils, suggesting involvement of its carbohydrate recognition domain. While eosinophils from allergic patients showed a significant increase in apoptosis, oxidative burst and CD69 expression in presence of rhSP-D, eosinophils from healthy donors showed no significant change. However, these eosinophils from healthy donors when primed with IL-5 exhibited increase in apoptosis on incubation with rhSP-D. Apoptosis mediated by rhSP-D in primed eosinophils was not affected by the antioxidant, N-acetyl-L-cysteine. There was a manifold increase in binding of rhSP-D to apoptotic eosinophils than the normal eosinophils and rhSP-D induced a significant increase in uptake of apoptotic eosinophils by J774A.1 macrophage cells. The study suggests that rhSP-D mediated preferential increase of apoptosis of primed eosinophils while not affecting the normal eosinophils and increased phagocytosis of apoptotic eosinophils may be important mechanisms of rhSP-D and plausibly SP-D-mediated resolution of allergic eosinophilic inflammation in vivo.
Collapse
Affiliation(s)
- Lakshna Mahajan
- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|