1
|
Trifonova D, Curin M, Riabova K, Karsonova A, Keller W, Grönlund H, Käck U, Konradsen JR, van Hage M, Karaulov A, Valenta R. Allergenic Activity of Individual Cat Allergen Molecules. Int J Mol Sci 2023; 24:16729. [PMID: 38069052 PMCID: PMC10706119 DOI: 10.3390/ijms242316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
More than 10% of the world's population suffers from an immunoglobulin E (IgE)-mediated allergy to cats which is accompanied mainly by respiratory symptoms such as rhinitis and asthma. Several cat allergen molecules have been identified, but their allergenic activity has not been investigated in depth. Purified cat allergen molecules (Fel d 1, Fel d 2, Fel d 3, Fel d 4, Fel d 6, Fel d 7 and Fel d 8) were characterized via mass spectrometry and circular dichroism spectroscopy regarding their molecular mass and fold, respectively. Cat-allergen-specific IgE levels were quantified via ImmunoCAP measurements in IgE-sensitized subjects with (n = 37) and without (n = 20) respiratory symptoms related to cat exposure. The allergenic activity of the cat allergens was investigated by loading patients' IgE onto rat basophils expressing the human FcεRI receptor and studying the ability of different allergen concentrations to induce β-hexosaminidase release. Purified and folded cat allergens with correct masses were obtained. Cat-allergen-specific IgE levels were much higher in patients with a respiratory allergy than in patients without a respiratory allergy. Fel d 1, Fel d 2, Fel d 4 and Fel d 7 bound the highest levels of specific IgE and already-induced basophil degranulation at hundred-fold-lower concentrations than the other allergens. Fel d 1, Fel d 4 and Fel d 7 were recognized by more than 65% of patients with a respiratory allergy, whereas Fel d 2 was recognized by only 30%. Therefore, in addition to the major cat allergen Fel d 1, Fel d 4 and Fel d 7 should also be considered to be important allergens for the diagnosis and specific immunotherapy of cat allergy.
Collapse
Affiliation(s)
- Daria Trifonova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, 8010 Graz, Austria;
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Ulrika Käck
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden;
| | - Jon R. Konradsen
- Pediatric Allergy and Pulmonology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 17164 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden;
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (A.K.)
- Karl Landsteiner University for Healthcare Sciences, 3500 Krems, Austria
| |
Collapse
|
2
|
Bongiorno D, Avellone G, Napoli A, Mazzotti F, Piazzese D, Censi V, Indelicato S. Determination of trace levels of organic fining agents in wines: Latest and relevant findings. Front Chem 2022; 10:944021. [PMID: 35991603 PMCID: PMC9388762 DOI: 10.3389/fchem.2022.944021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The production of red wine plays a key role in the local and international economies of several nations. During the winemaking process, to clarify the final product, before bottling, and to remove undesired substances (proteins, phenols, and tannins), fining agents are commonly added to wines. These substances have different origins (animal and vegetable proteins or mineral compounds), and they show a potential risk for the health of allergic subjects. For these reasons, the residues of fining agents, constituted by exogenous proteins based on gluten, egg, and milk proteins, should not be present in the final product and their trace residues should be quantified with accuracy. In the last decade, several analytical approaches have been developed for their quantitative determination using different sample treatment protocols and analytical techniques. These methods are based on liquid chromatography coupled with mass spectrometry or enzyme-linked immunosorbent assays (ELISAs). Recently, biosensors have been proposed as a potential alternative to immunoassay approaches, allowing rapid, cheap, and simple multi-residue detection. This short review aimed to report the most recent and relevant findings in the field.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)—Università degli Studi di Palermo—via Archirafi,Palermo,Italy
| | - Giuseppe Avellone
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)—Università degli Studi di Palermo—via Archirafi,Palermo,Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria Arcavacata di Rende, Calabria, Italy
| | - Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria Arcavacata di Rende, Calabria, Italy
| | - Daniela Piazzese
- Dipartmento di Scienze della Terra e del Mare—Università degli Studi di Palermo—via Archirafi, Palermo, Italy
| | - Valentina Censi
- Dipartmento di Scienze della Terra e del Mare—Università degli Studi di Palermo—via Archirafi, Palermo, Italy
| | - Serena Indelicato
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)—Università degli Studi di Palermo—via Archirafi,Palermo,Italy
- *Correspondence: Serena Indelicato,
| |
Collapse
|
3
|
Does the Food Ingredient Pectin Provide a Risk for Patients Allergic to Non-Specific Lipid-Transfer Proteins? Foods 2021; 11:foods11010013. [PMID: 35010137 PMCID: PMC8750200 DOI: 10.3390/foods11010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Pectin, a dietary fiber, is a polysaccharide that is widely used in food industry as a gelling agent. In addition, prebiotic and beneficial immunomodulatory effects of pectin have been demonstrated, leading to increased importance as food supplement. However, as cases of anaphylactic reactions after consumption of pectin-supplemented foods have been reported, the present study aims to evaluate the allergy risk of pectin. This is of particular importance since most of the pectin used in the food industry is extracted from citrus or apple pomace. Both contain several allergens such as non-specific lipid transfer proteins (nsLTPs), known to induce severe allergic reactions, which could impair the use of pectins in nsLTP allergic patients. Therefore, the present study for the first time was performed to analyze residual nsLTP content in two commercial pectins using different detection methods. Results showed the analytical sensitivity was diminished by the pectin structure. Finally, spiking of pectin with allergenic peach nsLTP Pru p 3 led to the conclusion that the potential residual allergen content in both pectins is below the threshold to induce anaphylactic reactions in nsLTP-allergic patients. This data suggests that consumption of the investigated commercial pectin products provides no risk for inducing severe reactions in nsLTP-allergic patients.
Collapse
|
4
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Pavón-Pérez J, Henriquez-Aedo K, Herrero M, Aranda M. Occurrence of allergen proteins in wines from Chilean market. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:268-274. [DOI: 10.1080/19393210.2020.1769194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jessy Pavón-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Karem Henriquez-Aedo
- Laboratorio de Biotecnología y Genética de Alimentos, Departamento de Ciencia y Tecnología de Los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Laboratorio de Alimentos Funcionales, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Miguel Herrero
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Mario Aranda
- Laboratorio de Investigación en Fármacos y Alimentos, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Ferrari E, Corsini R, Burastero SE, Tanfani F, Spisni A. The allergen Mus m 1.0102: Cysteine residues and molecular allergology. Mol Immunol 2020; 120:1-12. [PMID: 32044430 DOI: 10.1016/j.molimm.2020.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Mus m 1.0102 is a member of the mouse Major Urinary Protein family, belonging to the Lipocalins superfamily. Major Urinary Proteins (MUPs) are characterized by highly conserved structural motifs. These include a disulphide bond, involved in protein oxidative folding and protein structure stabilization, and a free cysteine residue, substituted by serine only in the pheromonal protein Darcin (MUP20). The free cysteine is recognized as responsible for the onset of inter- or intramolecular thiol/disulphide exchange, an event that favours protein aggregation. Here we show that the substitution of selected cysteine residues modulates Mus m 1.0102 protein folding, fold stability and unfolding reversibility, while maintaining its allergenic potency. Recombinant allergens used for immunotherapy or employed in allergy diagnostic kits require, as essential features, conformational stability, sample homogeneity and proper immunogenicity. In this perspective, recombinant Mus m 1.0102 might appear reasonably adequate as lead molecule because of its allergenic potential and thermal stability. However, its modest resistance to aggregation renders the protein unsuitable for pharmacological preparations. Point mutation is considered a winning strategy. We report that, among the tested mutants, C138A mutant acquires a structure more resistant to thermal stress and less prone to aggregation, two events that act positively on the protein shelf life. Those features make that MUP variant an attractive lead molecule for the development of a diagnostic kit and/or a vaccine.
Collapse
Affiliation(s)
- Elena Ferrari
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| | - Romina Corsini
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| | - Samuele E Burastero
- Div. Immunology, IRCCS San Raffaele, Via Olgettina 60, 20132, Milano, Italy.
| | - Fabio Tanfani
- Dept. Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131, Ancona, Italy.
| | - Alberto Spisni
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
7
|
Barwary NJS, Wan D, Falcone FH. NPY-mRFP Rat Basophilic Leukemia (RBL) Reporter: A Novel, Fast Reporter of Basophil/Mast Cell Degranulation. Methods Mol Biol 2020; 2163:163-170. [PMID: 32766974 DOI: 10.1007/978-1-0716-0696-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Humanized rat basophilic leukemia (RBL) reporter cell lines are increasingly used for the detection of allergen-specific IgE and other purposes, such as the detection of allergens and standardization of allergen preparations. Existing reporter systems have many strengths and advantages but can be expensive or require longer incubation times. The new NPY-mRFP reporter cell line addresses such problems, as it requires neither expensive substrates nor overnight incubation for detection of activation. The fusion of Neuropeptide Y (NPY) with monomeric Red Fluorescent Protein (mRFP) results in localization of the fluorescent protein in granules. As NPY-mRFP is preformed in granules, the reporter system activation can be assessed using fluorescence measurements after as soon as 45-60 min, as described in this chapter, without the need to add any substrates.
Collapse
Affiliation(s)
- Nafal J S Barwary
- Department of Biology, School of Science, University of Duhok, Duhok, Kurdistan Regional Government, Iraq
| | | | - Franco H Falcone
- Institute for Parasitology, Justus Liebig University Giessen, Biomedizinisches Forschungszentrum Seltersberg (BFS), Giessen, Germany.
| |
Collapse
|
8
|
|
9
|
Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, Focke-Tejkl M, Curin M, Namazova-Baranova L, Wang JY, Pawankar R, Khaitov M. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1845-1855.e2. [PMID: 30297269 PMCID: PMC6390933 DOI: 10.1016/j.jaip.2018.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Today, in vivo allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For in vitro allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used in vivo for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for in vivo allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jiu-Yao Wang
- Center for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
10
|
Hochwallner H, Schulmeister U, Swoboda I, Focke-Tejkl M, Reininger R, Civaj V, Campana R, Thalhamer J, Scheiblhofer S, Balic N, Horak F, Ollert M, Papadopoulos NG, Quirce S, Szepfalusi Z, Herz U, van Tol EAF, Spitzauer S, Valenta R. Infant milk formulas differ regarding their allergenic activity and induction of T-cell and cytokine responses. Allergy 2017; 72:416-424. [PMID: 27455132 PMCID: PMC5321598 DOI: 10.1111/all.12992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
Background Several hydrolyzed cow's milk (CM) formulas are available for avoidance of allergic reactions in CM‐allergic children and for prevention of allergy development in high‐risk infants. Our aim was to compare CM formulas regarding the presence of immunoreactive CM components, IgE reactivity, allergenic activity, ability to induce T‐cell proliferation, and cytokine secretion. Methods A blinded analysis of eight CM formulas, one nonhydrolyzed, two partially hydrolyzed (PH), four extensively hydrolyzed (EH), and one amino acid formula, using biochemical techniques and specific antibody probes was conducted. IgE reactivity and allergenic activity of the formulas were tested with sera from CM‐allergic patients (n = 26) in RAST‐based assays and with rat basophils transfected with the human FcεRI, respectively. The induction of T‐cell proliferation and the secretion of cytokines in Peripheral blood mononuclear cell (PBMC) culture from CM allergic patients and nonallergic individuals were assessed. Results Immune‐reactive α‐lactalbumin and β‐lactoglobulin were found in the two PH formulas and casein components in one of the EH formulas. One PH formula and the EH formula containing casein components showed remaining IgE reactivity, whereas the other hydrolyzed formulas lacked IgE reactivity. Only two EH formulas and the amino acid formula did not induce T‐cell proliferation and proinflammatory cytokine release. The remaining formulas varied regarding the induction of Th2, Th1, and proinflammatory cytokines. Conclusion Our results show that certain CM formulas without allergenic and low proinflammatory properties can be identified and they may also explain different outcomes obtained in clinical studies using CM formulas.
Collapse
Affiliation(s)
- H. Hochwallner
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - U. Schulmeister
- Department of Medical & Chemical Laboratory Diagnostics; Medical University of Vienna; Vienna Austria
| | - I. Swoboda
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Focke-Tejkl
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - R. Reininger
- Department of Medical & Chemical Laboratory Diagnostics; Medical University of Vienna; Vienna Austria
| | - V. Civaj
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - R. Campana
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - J. Thalhamer
- Department of Molecular Biology; Christian Doppler Laboratory for Allergy Diagnosis & Therapy; University of Salzburg; Salzburg Austria
| | - S. Scheiblhofer
- Department of Molecular Biology; Christian Doppler Laboratory for Allergy Diagnosis & Therapy; University of Salzburg; Salzburg Austria
| | - N. Balic
- Department of Medical & Chemical Laboratory Diagnostics; Medical University of Vienna; Vienna Austria
| | - F. Horak
- Allergy Centre Vienna West; Vienna Austria
| | - M. Ollert
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette, Luxembourg; Germany
- Department of Dermatology and Allergy Center; Odense Research Center for Anaphylaxis; University of Southern Denmark; Odense Denmark
| | - N. G. Papadopoulos
- Allergy Research Center; 2nd Pediatric Clinic; University of Athens; Athens Greece
- Center for Pediatrics and Child Health; Institute of Human Development; University of Manchester; Manchester UK
| | - S. Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPAZ); Madrid Spain
| | - Z. Szepfalusi
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - U. Herz
- Mead Johnson Nutrition; Evansville IN USA
| | | | - S. Spitzauer
- Department of Medical & Chemical Laboratory Diagnostics; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| |
Collapse
|
11
|
Ferrari E, Casali E, Burastero SE, Spisni A, Pertinhez TA. The allergen Mus m 1.0102: Dissecting the relationship between molecular conformation and allergenic potency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1548-57. [PMID: 27519162 DOI: 10.1016/j.bbapap.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The species Mus musculus experiences an obligate proteinuria: predominant are the Major Urinary Proteins (MUPs), that, collectively known as the major mouse allergen Mus m 1, are among the most important aeroallergens for mouse allergic patients. The production of a soluble and stable hypoallergenic form of Mus m 1 is essential for the development of immunotherapeutic protocols to treat allergic symptoms. METHODS We introduced the substitution C138S in recombinant Mus m 1.0102, an allergenic isoform of Mus m 1. Solubility, conformation, stability and ability to refold after chemical denaturation were investigated with dynamic light scattering, circular dichroism, fluorescence and NMR spectroscopy. An in vitro degranulation assay was used to evaluate the protein allergenic potential, and compare it with Mus m 1.0102 and with an hypoallergenic variant bearing the substitution Y120A. RESULTS Mus m 1.0102-C138S retains a native-like fold revealing, however, local conformational alterations that influence some of its physical and allergenic properties: it is monodispersed, thermostable up to 56°C, able to reversibly unfold and it exhibits an enhanced allergenicity. CONCLUSIONS The unique free thiol group affects the solution structural stability of the native protein. Because the mutant C138S does not aggregate over time it is a good lead protein to develop diagnostic and therapeutic applications. GENERAL SIGNIFICANCE We elucidated the relationship between unfolding reversibility and sulphydryl reactivity. We ascribed the enhanced allergenicity of the mutant C138S to an increased accessibility of its allergenic determinants, an enticing feature to further investigate the structural elements of the allergen-IgE interface.
Collapse
Affiliation(s)
- Elena Ferrari
- Dept. of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Emanuela Casali
- Dept. of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | | | - Alberto Spisni
- Dept. Surgical Sciences, University of Parma, Parma, Italy.
| | - Thelma A Pertinhez
- Dept. of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Transfusion Medicine Unit, ASMN- IRCCS, Reggio Emilia, Italy
| |
Collapse
|
12
|
Zimmer J, Vieths S, Kaul S. Standardization and Regulation of Allergen Products in the European Union. Curr Allergy Asthma Rep 2016; 16:21. [PMID: 26874849 DOI: 10.1007/s11882-016-0599-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Product-specific standardization is of prime importance to ensure persistent quality, safety, and efficacy of allergen products. The regulatory framework in the EU has induced great advancements in the field in the last years although national implementation still remains heterogeneous. Scores of methods for quantification of individual allergen molecules are developed each year and also the challenging characterization of chemically modified allergen products is progressing. However, despite the unquestionable increase in knowledge and the subsequent improvements in control of quality parameters of allergen products, an important aim has not been reached yet, namely cross-product comparability. Still, comparison of allergen product potency, either based on total allergenic activity or individual allergen molecule content, is not possible due to a lack of standard reference preparations in conjunction with validated standard methods. This review aims at presenting the most recent developments in product-specific standardization as well as activities to facilitate cross-product comparability in the EU.
Collapse
Affiliation(s)
- Julia Zimmer
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | - Susanne Kaul
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| |
Collapse
|
13
|
Mao X, Zhang GF, Li C, Zhao YC, Liu Y, Wang TT, Duan CY, Wang JY, Liu LB. One-step method for the isolation of α-lactalbumin and β-lactoglobulin from cow’s milk while preserving their antigenicity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1181649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Falcone FH, Alcocer MJC, Okamoto-Uchida Y, Nakamura R. Use of humanized rat basophilic leukemia reporter cell lines as a diagnostic tool for detection of allergen-specific IgE in allergic patients: time for a reappraisal? Curr Allergy Asthma Rep 2016; 15:67. [PMID: 26452547 DOI: 10.1007/s11882-015-0568-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The interaction between allergens and specific IgE is at the heart of the allergic response and as such lies at the center of techniques used for diagnosis of allergic sensitization. Although serological tests are available, in vivo tests such as double-blind placebo-controlled food challenges (DBPCFC) and skin prick test (SPT) associated to the patients' clinical history are still the main guides to clinicians in many practices around the world. More recently, complex protein arrays and basophil activation tests, requiring only small amounts of whole blood, have been developed and refined, but are yet to enter clinical practice. Similarly, the use of rat basophilic leukemia (RBL) cell lines for detection of allergen-specific IgE has been made possible by stable transfection of the human FcεRI α chain into this cell line more than 20 years ago, but has not found widespread acceptance among clinicians. Here, we review the perceived limitations of diagnostic applications of humanized RBL systems. Furthermore, we illustrate how the introduction of reporter genes into humanized RBL cells is able to overcome most of these limitations, and has the potential to become a new powerful tool to complement the armamentarium of allergists. A demonstration of the usefulness of humanized RBL reporter systems for elucidation of complex IgE sensitization patterns against wheat proteins and a section on the use of fluorescence-based reporter systems in combination with allergen arrays close the review.
Collapse
Affiliation(s)
- Franco H Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Boots Science Building, Science Road, NG7 2RD, Nottingham, UK.
| | - Marcos J C Alcocer
- Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Nottingham, UK
| | | | | |
Collapse
|
15
|
Valenta R, Wollmann E. Bedeutung rekombinanter Allergene und Allergenderivate. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Lorenzini M, Mainente F, Zapparoli G, Cecconi D, Simonato B. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Food Chem 2015; 199:639-47. [PMID: 26776019 DOI: 10.1016/j.foodchem.2015.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/18/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022]
Abstract
The study of withered grape infection by Penicillium, a potentially toxigenic fungus, is relevant to preserve grape quality during the post-harvest dehydration process. This report describes the first proteomic analysis of Amarone wine grapes, infected by two strains of Penicillium expansum (Pe1) and Penicillium crustosum (Pc4). Protein identification by MS analysis allowed a better understanding of physiological mechanisms underlying the pathogen attack. The Pe1 strain had a major impact on Vitis vinifera protein expression inducing pathogenesis-related proteins and other protein species involved in energy metabolism. A greater expression of new Penicillium proteins involved in energy metabolism and some protein species related to redox homeostasis has been observed on grapes infected by Pc4 strain. Moreover, the new induced proteins in infected grapes could represent potential markers in withered grapes, thus creating the chance to develop case-sensitive prevention strategies to inhibit fungal growth.
Collapse
Affiliation(s)
- Marilinda Lorenzini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Federica Mainente
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
17
|
Identification of potential protein markers of noble rot infected grapes. Food Chem 2015; 179:170-4. [DOI: 10.1016/j.foodchem.2015.01.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022]
|
18
|
Bencharitiwong R, van der Kleij HP, Koppelman SJ, Nowak-Węgrzyn A. Effect of chemical modifications on allergenic potency of peanut proteins. Allergy Asthma Proc 2015; 36:185-91. [PMID: 25976435 DOI: 10.2500/aap.2015.36.3840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Modification of native peanut extracts could reduce adverse effects of peanut immunotherapy. OBJECTIVE We sought to compare native and chemically modified crude peanut extract (CPE) and major peanut allergens Ara h 2 and Ara h 6 in a mediator-release assay based on the rat basophilic leukemia (RBL) cell line transfected with human Fcε receptor. METHODS Native Ara h 2/6 was reduced and alkylated (RA), with or without additional glutaraldehyde treatment (RAGA). CPE was reduced and alkylated. Sera of subjects with peanut allergy (16 males; median age 7 years) were used for overnight RBL-passive sensitization. Cells were stimulated with 0.1 pg/mL to 10 μg/mL of peanut. β-N-acetylhexosaminidase release (NHR) was used as a marker of RBL degranulation, expressed as a percentage of total degranulation caused by Triton X. RESULTS Median peanut-specific immunoglobulin E was 233 kUA/L. Nineteen subjects were responders, NHR ≥ 10% in the mediator release assay. Responders had reduced NHR by RA and RAGA compared with the native Ara h 2/6. Modification resulted in a later onset of activation by 10- to 100-fold in concentration and a lowering of the maximum release. Modified RA-Ara h 2/6 and RAGA-Ara h 2/6 caused significantly lower maximum mediator release than native Ara h 2/6, at protein concentrations 0.1, 1, and 10 ng/mL (p < 0.001, < 0.001, and < 0.001, respectively, for RA; and < 0.001, 0.026, and 0.041, respectively, for RAGA). RA-CPE caused significantly lower maximum NHR than native CPE, at protein concentration 1 ng/mL (p < 0.001) and 10 ng/mL (p < 0.002). Responders had high rAra h 2 immunoglobulin E (mean, 61.1 kUA/L; p < 0.001) and higher NHR in mediator release assay to native Ara h 2/6 than CPE, which indicates that Ara h 2/6 were the most relevant peanut allergens in these responders. CONCLUSIONS Chemical modification of purified native Ara h 2 and Ara h 6 reduced mediator release in an in vitro assay ∼100-fold, which indicates decreased allergenicity for further development of the alternative candidate for safe peanut immunotherapy.
Collapse
Affiliation(s)
- Ramon Bencharitiwong
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | |
Collapse
|
19
|
Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J. Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Crit Rev Food Sci Nutr 2015; 56:2511-2542. [DOI: 10.1080/10408398.2013.873767] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Dehus O, Zimmer J, Döring S, Führer F, Hanschmann KM, Holzhauser T, Neske F, Strecker D, Trösemeier JH, Vieths S, Kaul S. Development and in-house validation of an allergen-specific ELISA for quantification of Bet v 4 in diagnostic and therapeutic birch allergen products. Anal Bioanal Chem 2015; 407:1673-83. [DOI: 10.1007/s00216-014-8418-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
21
|
Sun N, Tekutyeva L, Wang S, Pu Q, Zhou C, Wang J, Che H. A modified weight-of-evidence approach to evaluate the allergenic potential of food proteins. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00211c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic interpretation of a modified weight-of-evidence approach for evaluating the allergenic potential of food proteins.
Collapse
Affiliation(s)
- Na Sun
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Liudmila Tekutyeva
- Department of Commodity Science and Examination of Goods
- School of Business and Public Administration
- Far Eastern Federal University
- 8 Suhanova St. Vladivostok
- Russia
| | - Shiping Wang
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Qiankun Pu
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Cui Zhou
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Jing Wang
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Huilian Che
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
- The Supervision
| |
Collapse
|
22
|
Baar A, Pahr S, Constantin C, Giavi S, Papadopoulos NG, Pelkonen AS, Mäkelä MJ, Scheiblhofer S, Thalhamer J, Weber M, Ebner C, Mari A, Vrtala S, Valenta R. The high molecular weight glutenin subunit Bx7 allergen from wheat contains repetitive IgE epitopes. Allergy 2014; 69:1316-23. [PMID: 24943225 DOI: 10.1111/all.12464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wheat is one of the most common food allergen sources for children and adults. The aim of this study was to characterize new wheat allergens using an IgE discovery approach and to investigate their IgE epitopes. METHODS A cDNA expression library representing the wheat transcriptome was constructed in phage lambda gt11 and screened with IgE antibodies from wheat food allergic patients. IgE-reactive cDNA clones coding for portions of high molecular weight (HMW) glutenin subunits were identified by sequence analysis of positive clones. IgE epitopes were characterized using recombinant fragments from the HMW Bx7 and synthetic peptides thereof for testing of allergic patients' sera and in basophil degranulation assays. RESULTS We found that the major IgE-reactive areas of HMW glutenins are located in the repetitive regions of the protein and could show that two independent IgE-reactive fragments from HMW Bx7 contained repetitive IgE epitopes. CONCLUSIONS Our results demonstrate that IgE antibodies from wheat food allergic patients can recognize repetitive epitopes in one of the important wheat food allergens. Recombinant HMW Bx7 may be included into the panel of allergens for component-resolved diagnosis of wheat food allergy.
Collapse
Affiliation(s)
- A. Baar
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Vienna General Hospital; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for the Development of Allergen Chips; Medical University of Vienna; Vienna Austria
| | - S. Pahr
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Vienna General Hospital; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for the Development of Allergen Chips; Medical University of Vienna; Vienna Austria
| | - C. Constantin
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Vienna General Hospital; Medical University of Vienna; Vienna Austria
| | - S. Giavi
- Allergy and Immunology Research Centre; University of Athens; Athens Greece
| | - N. G. Papadopoulos
- Allergy and Immunology Research Centre; University of Athens; Athens Greece
| | - A. S. Pelkonen
- Skin and Allergy Hospital; Helsinki University Central Hospital; Helsinki Finland
| | - M. J. Mäkelä
- Skin and Allergy Hospital; Helsinki University Central Hospital; Helsinki Finland
| | - S. Scheiblhofer
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - J. Thalhamer
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. Weber
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Vienna General Hospital; Medical University of Vienna; Vienna Austria
| | - C. Ebner
- Ambulatory for Allergy and Clinical Immunology; Vienna Austria
| | - A. Mari
- Associated Centers for Molecular Allergology; Rome Italy
| | - S. Vrtala
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Vienna General Hospital; Medical University of Vienna; Vienna Austria
- Christian Doppler Laboratory for the Development of Allergen Chips; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology & Immunology; Vienna General Hospital; Medical University of Vienna; Vienna Austria
| |
Collapse
|
23
|
Cell-based immunological assay: complementary applications in evaluating the allergenicity of foods with FAO/WHO guidelines. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Sun N, Zhou C, Zhou X, Sun L, Che H. Use of a rat basophil leukemia (RBL) cell-based immunological assay for allergen identification, clinical diagnosis of allergy, and identification of anti-allergy agents for use in immunotherapy. J Immunotoxicol 2014; 12:199-205. [PMID: 24920006 DOI: 10.3109/1547691x.2014.920063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Food allergy is an important public health problem that affects an estimated 8% of young children and 2% of adults. With an increasing interest in genetically-engineered foods, there is a growing need for development of sensitive and specific tests to evaluate potential allergenicity of foods and novel proteins as well as to determine allergic responses to ensure consumer safety. This review covers progress made in the field of development of cell models, specifically that involving a rat basophil leukemia (RBL) cell-based immunoassay, for use in allergen identification, diagnosis, and immunotherapy. The RBL assay has been extensively employed for determining biologically relevant cross-reactivities of food proteins, assessing the effect of processing on the allergenicity of food proteins, diagnosing allergic responses to whole-food products, and identifying anti-allergy food compounds. From the review of the literature, one might conclude the RBL cell-based assay is a better test system when compared to wild-type mast cell and basophil model systems for use in allergen identification, diagnosis, and analyses of potential immunotherapeutics. However, it is important to emphasize that this assay will only be able to identify those allergens to which the human has already been exposed, but will not identify a truly novel allergen, i.e. one that has never been encountered as in its preferred (humanized) configuration.
Collapse
Affiliation(s)
- Na Sun
- College of Food Science and Nutritional Engineering, China Agricultural University , Beijing , PR China and
| | | | | | | | | |
Collapse
|
25
|
Siebeneicher S, Reuter S, Krause M, Wangorsch A, Maxeiner J, Wolfheimer S, Schülke S, Naito S, Heinz A, Taube C, Vieths S, Scheurer S, Toda M. Epicutaneous immune modulation with Bet v 1 plus R848 suppresses allergic asthma in a murine model. Allergy 2014; 69:328-37. [PMID: 24329861 DOI: 10.1111/all.12326] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Combining allergen(s) with an adjuvant is a strategy to improve the efficacy and safety of allergen-specific immunotherapy. Here, we aimed at investigating the adjuvant effects of polyadenylic-polyuridylic acid (poly(A:U)), a TLR3 agonist, and R848 (resiquimod), a TLR7 agonist, in epicutaneous immunotherapy with Bet v 1, the major birch pollen allergen, to intervene in birch pollen allergy. METHODS AND RESULTS BALB/c mice received epicutaneous immunization (EPI) with recombinant Bet v 1 (rBet v 1) alone, or plus poly(A:U), or R848 on their depilated back using patches. Among the groups, EPI with rBet v 1 and R848 induced detectable levels of IFN-γ-producing CD4(+) T cells in lymph nodes and Bet v 1-specific IgG2a antibodies in the sera of mice. Before or after EPI, mice were sensitized with rBet v 1 plus aluminium hydroxide adjuvant and intranasally challenged with birch pollen extract. Prophylactic EPI with rBet v 1 plus R848 inhibited the production of biologically active Bet v 1-specific IgE antibodies in sensitization. Prophylactic and therapeutic EPI with rBet v 1 plus R848 suppressed lung inflammation upon challenges. Remarkably, only rBet v 1 plus R848 reduced the development of enhanced pause (PenH), a substituted parameter for airway hyper-reactivity, in challenged mice. In contrast to R848, poly(A:U) did not present adjuvant effect on the suppression of asthmatic features. CONCLUSION Epicutaneous immunization with rBet v 1 plus R848 induced predominant Bet v 1-specific Th1 responses and efficiently suppressed asthmatic features elicited by birch pollen. R848 could be a promising adjuvant in epicutaneous immunotherapy for birch pollen-induced allergic asthma.
Collapse
Affiliation(s)
- S. Siebeneicher
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
| | - S. Reuter
- The III Medical Department; University Hospital Mainz; Mainz Germany
| | - M. Krause
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
| | - A. Wangorsch
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - J. Maxeiner
- The III Medical Department; University Hospital Mainz; Mainz Germany
- Asthma Core Facility; The Research Centre Immunology (FZI); University Hospital Mainz; Mainz Germany
| | - S. Wolfheimer
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Schülke
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Naito
- Division of Quality Assurance; The National Institute of Infectious Diseases; Tokyo Japan
| | - A. Heinz
- The III Medical Department; University Hospital Mainz; Mainz Germany
| | - C. Taube
- Department of Pulmonology; Leiden University Medical Center; Leiden the Netherlands
| | - S. Vieths
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Scheurer
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - M. Toda
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
| |
Collapse
|
26
|
Bohnen C, Wangorsch A, Schülke S, Nakajima-Adachi H, Hachimura S, Burggraf M, Süzer Y, Schwantes A, Sutter G, Waibler Z, Reese G, Toda M, Scheurer S, Vieths S. Vaccination with recombinant modified vaccinia virus Ankara prevents the onset of intestinal allergy in mice. Allergy 2013; 68:1021-8. [PMID: 23909913 DOI: 10.1111/all.12192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Modified vaccinia virus Ankara (MVA)-encoding antigens are considered as safe vaccine candidates for various infectious diseases in humans. Here, we investigated the immune-modulating properties of MVA-encoding ovalbumin (MVA-OVA) on the allergen-specific immune response. METHODS The immune-modulating properties of MVA-OVA were investigated using GM-CSF-differentiated BMDCs from C57BL/6 mice. OVA expression upon MVA-OVA infection of BMDCs was monitored. Activation and maturation markers on viable MVA-OVA-infected mDCs were analyzed by flow cytometry. Secretion of INF-γ, IL-2, and IL-10 was determined in a co-culture of BMDCs infected with wtMVA or MVA-OVA and OVA-specific OT-I CD8(+) and OT-II CD4(+ ) T cells. BALB/c mice were vaccinated with wtMVA, MVA-OVA, or PBS, sensitized to OVA/alum and challenged with a diet containing chicken egg white. OVA-specific IgE, IgG1, and IgG2a and cytokine secretion from mesenteric lymph node (MLN) cells were analyzed. Body weight, body temperature, food uptake, intestinal inflammation, and health condition of mice were monitored. RESULTS Infection with wtMVA and MVA-OVA induced comparable activation of mDCs. MVA-OVA-infected BMDCs expressed OVA and induced enhanced IFN-γ and IL-2 secretion from OVA-specific CD8(+ ) T cells in comparison with OVA, wtMVA, or OVA plus wtMVA. Prophylactic vaccination with MVA-OVA significantly repressed OVA-specific IgE, whereas OVA-specific IgG2a was induced. MVA-OVA vaccination suppressed TH 2 cytokine production in MLN cells and prevented the onset of allergic symptoms and inflammation in a mouse model of OVA-induced intestinal allergy. CONCLUSION Modified vaccinia virus Ankara-ovalbumin (MVA-OVA) vaccination induces a strong OVA-specific TH 1- immune response, likely mediated by the induction of IFN-γ and IgG2a. Finally, MVA-based vaccines need to be evaluated for their therapeutic potential in established allergy models.
Collapse
Affiliation(s)
- C. Bohnen
- Division of Allergology; Paul-Ehrlich-Institut; Langen; Germany
| | - A. Wangorsch
- Division of Allergology; Paul-Ehrlich-Institut; Langen; Germany
| | - S. Schülke
- Division of Allergology; Paul-Ehrlich-Institut; Langen; Germany
| | - H. Nakajima-Adachi
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; Japan
| | - S. Hachimura
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; Japan
| | - M. Burggraf
- Junior Research Group ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen; Germany
| | - Y. Süzer
- President's Research Group ‘Recombinant Measles Virus and Vaccines’; Paul-Ehrlich-Institut; Langen; Germany
| | - A. Schwantes
- President's Research Group ‘Recombinant Measles Virus and Vaccines’; Paul-Ehrlich-Institut; Langen; Germany
| | - G. Sutter
- Institute for Infectious Diseases and Zoonoses; Ludwig-Maximilians-Universität; München; Germany
| | - Z. Waibler
- Junior Research Group ‘Novel vaccination strategies and early immune responses’; Paul-Ehrlich-Institut; Langen; Germany
| | - G. Reese
- Division of Allergology; Paul-Ehrlich-Institut; Langen; Germany
| | - M. Toda
- Junior Research Group ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen; Germany
| | - S. Scheurer
- Division of Allergology; Paul-Ehrlich-Institut; Langen; Germany
| | - S. Vieths
- Division of Allergology; Paul-Ehrlich-Institut; Langen; Germany
| |
Collapse
|
27
|
Baranyi U, Pilat N, Gattringer M, Linhart B, Klaus C, Schwaiger E, Iacomini J, Valenta R, Wekerle T. Persistent molecular microchimerism induces long-term tolerance towards a clinically relevant respiratory allergen. Clin Exp Allergy 2012; 42:1282-92. [PMID: 22805476 DOI: 10.1111/j.1365-2222.2012.04049.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Development of antigen-specific preventive strategies is a challenging goal in IgE-mediated allergy. We have recently shown in proof-of-concept experiments that allergy can be successfully prevented by induction of durable tolerance via molecular chimerism. Transplantation of syngeneic hematopoietic stem cells genetically modified to express the clinically relevant grass pollen allergen Phl p 5 into myeloablated recipients led to high levels of chimerism (i.e. macrochimerism) and completely abrogated Phl p 5-specific immunity despite repeated immunizations with Phl p 5. OBJECTIVE It was unclear, however, whether microchimerism (drastically lower levels of chimerism) would be sufficient as well which would allow development of minimally toxic tolerance protocols. METHODS Bone marrow cells were transduced with recombinant viruses integrating Phl p 5 to be expressed in a membrane-anchored fashion. The syngeneic modified cells were transplanted into non-myeloablated recipients that were subsequently immunized repeatedly with Phl p 5 and Bet v 1 (control). Molecular chimerism was monitored using flow cytometry and PCR. T cell, B-cell and effector-cell tolerance were assessed by allergen-specific proliferation assays, isotype levels in sera and RBL assays. RESULTS Here we demonstrate that transplantation of Phl p 5-expressing bone marrow cells into recipients having received non-myeloablative irradiation resulted in chimerism persisting for the length of follow-up. Chimerism levels, however, declined from transient macrochimerism levels to persistent levels of microchimerism (followed for 11 months). Notably, these chimerism levels were sufficient to induce B-cell tolerance as no Phl p 5-specific IgE and other high affinity isotypes were detectable in sera of chimeric mice. Furthermore, T-cell and effector-cell tolerance were achieved. CONCLUSIONS AND CLINICAL RELEVANCE Low levels of persistent molecular chimerism are sufficient to induce long-term tolerance in IgE-mediated allergy. These results suggest that it will be possible to develop minimally toxic conditioning regimens sufficient for low level engraftment of genetically modified bone marrow.
Collapse
Affiliation(s)
- U Baranyi
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Analysis of commercial wines by LC-MS/MS reveals the presence of residual milk and egg white allergens. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Baar A, Pahr S, Constantin C, Scheiblhofer S, Thalhamer J, Giavi S, Papadopoulos NG, Ebner C, Mari A, Vrtala S, Valenta R. Molecular and immunological characterization of Tri a 36, a low molecular weight glutenin, as a novel major wheat food allergen. THE JOURNAL OF IMMUNOLOGY 2012; 189:3018-25. [PMID: 22904302 DOI: 10.4049/jimmunol.1200438] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wheat is an essential element in our nutrition but one of the most important food allergen sources. Wheat allergic patients often suffer from severe gastrointestinal and systemic allergic reactions after wheat ingestion. In this study, we report the molecular and immunological characterization of a new major wheat food allergen, Tri a 36. The cDNA coding for a C-terminal fragment of Tri a 36 was isolated by screening a wheat seed cDNA expression library with serum IgE from wheat food-allergic patients. Tri a 36 is a 369-aa protein with a hydrophobic 25-aa N-terminal leader peptide. According to sequence comparison it belongs to the low m.w. glutenin subunits, which can be found in a variety of cereals. The mature allergen contains an N-terminal domain, a repetitive domain that is rich in glutamine and proline residues, and three C-terminal domains with eight cysteine residues contributing to intra- and intermolecular disulfide bonds. Recombinant Tri a 36 was expressed in Escherichia coli and purified as soluble protein. It reacted with IgE Abs of ∼80% of wheat food-allergic patients, showed IgE cross-reactivity with related allergens in rye, barley, oat, spelt, and rice, and induced specific and dose-dependent basophil activation. Even after extensive in vitro gastric and duodenal digestion, Tri a 36 released distinct IgE-reactive fragments and was highly resistant against boiling. Thus, recombinant Tri a 36 is a major wheat food allergen that can be used for the molecular diagnosis of, and for the development of specific immunotherapy strategies against, wheat food allergy.
Collapse
Affiliation(s)
- Alexandra Baar
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Allergen-induced IgE-dependent gut inflammation in a human PBMC-engrafted murine model of allergy. J Allergy Clin Immunol 2012; 129:1126-35. [PMID: 22236728 DOI: 10.1016/j.jaci.2011.11.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Humanized murine models comprise a new tool to analyze novel therapeutic strategies for allergic diseases of the intestine. OBJECTIVE In this study we developed a human PBMC-engrafted murine model of allergen-driven gut inflammation and analyzed the underlying immunologic mechanisms. METHODS Nonobese diabetic (NOD)-scid-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or not. Three weeks later, mice were challenged with the allergen orally or rectally, and gut inflammation was monitored with a high-resolution video miniendoscopic system, as well as histologically. RESULTS Using the aeroallergens birch or grass pollen as model allergens and, for some donors, also hazelnut allergen, we show that allergen-specific human IgE in murine sera and allergen-specific proliferation and cytokine production of human CD4(+) T cells recovered from spleens after 3 weeks could only be measured in mice treated with PBMCs plus allergen. Importantly, these mice had the highest endoscopic scores evaluating translucent structure, granularity, fibrin, vascularity, and stool after oral or rectal allergen challenge and a strong histologic inflammation of the colon. Analyzing the underlying mechanisms, we demonstrate that allergen-associated colitis was dependent on IgE, human IgE receptor-expressing effector cells, and the mediators histamine and platelet-activating factor. CONCLUSION These results demonstrate that allergic gut inflammation can be induced in human PBMC-engrafted mice, allowing the investigation of pathophysiologic mechanisms of allergic diseases of the intestine and evaluation of therapeutic interventions.
Collapse
|
31
|
|
32
|
Vissers YM, Wichers HJ, Savelkoul HFJ. Influence of Food Processing, Digestion and the Food Matrix on Allergenicity & Cellular Measures of Allergenicity. MULTIDISCIPLINARY APPROACHES TO ALLERGIES 2012. [DOI: 10.1007/978-3-642-31609-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Ferrari E, Breda D, Longhi R, Vangelista L, Nakaie CR, Elviri L, Casali E, Pertinhez TA, Spisni A, Burastero SE. In search of a vaccine for mouse allergy: significant reduction of Mus m 1 allergenicity by structure-guided single-point mutations. Int Arch Allergy Immunol 2011; 157:226-37. [PMID: 22041937 DOI: 10.1159/000327551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mouse urinary proteins are relevant allergens from mice urine. We used the recombinant protein Mus m 1 as an allergen model to identify if, by altering Mus m 1 architecture via single-point mutations, we could effectively modify its allergenicity. METHODS Based on structural considerations, we synthesized two single-point mutants, Mus m 1-Y120A and Mus m 1-Y120F, which were expected to harbor large structural alterations. Circular dichroism and fluorescence analysis showed significant conformational rearrangements of the aromatic side chains in the internal cavity of Mus m 1-Y120A when compared to Mus m 1-Y120F and Mus m 1. Evaluation of the allergenic potential of the recombinant molecules was performed in vitro with both immunochemical approaches and assays based on the measurement of basophil degranulation. Moreover, to assess the integrity of the T cell epitopes and as an in vitro measure of immunogenicity, we tested the reactivity of T lymphocytes from subjects allergic to mouse urine against proteins and synthetic peptides encompassing the immunodominant linear epitope containing the mutation. RESULTS We found that the selected point mutation was able to modulate the protein allergenicity, and to severely impair the recognition of Mus m 1 by IgE, while T cell reactivity was fully maintained. CONCLUSIONS In silico predicted, minimum selected structural modifications allowed to design one protein with reduced allergenicity and preserved immunogenicity. Structurally guided mutations can direct the design of proteins with reduced allergenicity which can be used as vaccines for a safer and more effective immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Experimental Medicine, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Preparation of high quality allergen extracts is essential for the diagnosis and immunotherapy of allergic disorders. Standardization of allergen extracts concerns determination of the allergen unit, development of reference material and measurement of the overall IgE binding capacity of an allergen extract. Recently, quantification of individual allergens has been the main focus of allergen standardization because the allergenicity of most allergen extracts is known to be mainly dependent on the content of a small number of allergen molecules. Therefore, characterization of major allergens will facilitate the standardization of allergens. In this article, we review the current state of allergen standardization. In addition, we briefly summarize the components of allergen extracts that should be under control for the optimization of allergen standardization, since its adjuvant-like activities could play an important role in allergic reactions even though the molecule itself does not bind to the IgE antibodies from subjects.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Chein-Soo Hong
- Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Shil Lee
- Center for Immunology and Pathology, Korea National Institute of Health, Osong, Korea
| | - Jung-Won Park
- Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Simonato B, Mainente F, Tolin S, Pasini G. Immunochemical and mass spectrometry detection of residual proteins in gluten fined red wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3101-3110. [PMID: 21375303 DOI: 10.1021/jf104490z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recently, wheat gluten has been proposed as technological adjuvant in order to clarify wines. However, the possibility that residual gluten proteins remain in treated wines cannot be excluded, representing a hazard for wheat allergic or celiac disease patients. In this work, commercial wheat glutens, in both partially hydrolyzed (GBS-P51) and nonhydrolyzed (Gluvital 21000) forms, were used as fining agents in red wine at different concentrations. Beside immunoenzymatic analyses using anti-gliadin, anti-prolamin antibodies and pooled sera of wheat allergic patients, a method based on liquid chromatography coupled to mass spectrometry has been proposed to detect residues of gluten proteins. Residual gluten proteins were detected by anti-prolamin antibodies, anti-gliadin antibodies and sera-IgE only in the wine treated with GBS-P51 at concentration 50, 150, and 300 g/hL, respectively, whereas no residual proteins were detected by these systems in the wine treated with Gluvital 21000. In contrast liquid chromatography-mass spectrometry analyses allowed the detection of proteins in red wines fined down to 1 g/hL of Gluvital 21000 and GBS-P51. Our results indicate that MS methods are superior to immunochemical methods in detecting gluten proteins in wines and that adverse reactions against gluten treated wines cannot be excluded.
Collapse
Affiliation(s)
- Barbara Simonato
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | | | | |
Collapse
|
36
|
Harrer A, Lang R, Grims R, Braitsch M, Hawranek T, Aberer W, Vogel L, Schmid W, Ferreira F, Himly M. Diclofenac hypersensitivity: antibody responses to the parent drug and relevant metabolites. PLoS One 2010; 5:e13707. [PMID: 21060839 PMCID: PMC2965666 DOI: 10.1371/journal.pone.0013707] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022] Open
Abstract
Background Hypersensitivity reactions against nonsteroidal antiinflammatory drugs (NSAIDs) like diclofenac (DF) can manifest as Type I-like allergic reactions including systemic anaphylaxis. However, except for isolated case studies experimental evidence for an IgE-mediated pathomechanism of DF hypersensitivity is lacking. In this study we aimed to investigate the possible involvement of drug- and/or metabolite-specific antibodies in selective DF hypersensitivity. Methodology/Principal Findings DF, an organochemically synthesized linkage variant, and five major Phase I metabolites were covalently coupled to carrier proteins. Drug conjugates were analyzed for coupling degree and capacity to crosslink receptor-bound IgE antibodies from drug-sensitized mice. With these conjugates, the presence of hapten-specific IgE antibodies was investigated in patients' samples by ELISA, mediator release assay, and basophil activation test. Production of sulfidoleukotrienes by drug conjugates was determined in PBMCs from DF-hypersensitive patients. All conjugates were shown to carry more than two haptens per carrier molecule. Immunization of mice with drug conjugates induced drug-specific IgE antibodies capable of triggering mediator release. Therefore, the conjugates are suitable tools for detection of drug-specific antibodies and for determination of their anaphylactic activity. Fifty-nine patients were enrolled and categorized as hypersensitive either selectively to DF or to multiple NSAIDs. In none of the patients' samples evidence for drug/metabolite-specific IgE in serum or bound to allergic effector cells was found. In contrast, a small group of patients (8/59, 14%) displayed drug/metabolite-specific IgG. Conclusions/Significance We found no evidence for an IgE-mediated effector mechanism based on haptenation of protein carriers in DF-hypersensitive patients. Furthermore, a potential involvement of the most relevant metabolites in DF hypersensitivity reactions could be excluded.
Collapse
Affiliation(s)
- Andrea Harrer
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Robert Grims
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Michaela Braitsch
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Thomas Hawranek
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Werner Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Lothar Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Walther Schmid
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Fatima Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Himly
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- * E-mail:
| |
Collapse
|
37
|
Hochwallner H, Schulmeister U, Swoboda I, Balic N, Geller B, Nystrand M, Härlin A, Thalhamer J, Scheiblhofer S, Niggemann B, Quirce S, Ebner C, Mari A, Pauli G, Herz U, van Tol EAF, Valenta R, Spitzauer S. Microarray and allergenic activity assessment of milk allergens. Clin Exp Allergy 2010; 40:1809-18. [PMID: 20860558 DOI: 10.1111/j.1365-2222.2010.03602.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cow's milk is one of the most common causes of food allergy affecting approximately 2.5% of infants in the first years of their life. However, only limited information regarding the allergenic activity of individual cow's milk allergens is available. OBJECTIVE To analyse the frequency of IgE reactivity and to determine the allergenic activity of individual cow's milk allergens. METHODS A nitrocellulose-based microarray, based on purified natural and recombinant cow's milk allergens was used to determine IgE reactivity profiles using sera from 78 cow's milk-sensitized individuals of varying ages. The allergenic activity of the individual allergens was tested using patients' sera for loading rat basophil leukaemia cells (RBL) expressing the α-chain of the human receptor FcεRI. RESULTS Using the microarray and the RBL assay, cow's milk allergens were assessed for frequency of IgE recognition and allergenic activity. Moreover, the RBL assay allowed distinguishing individuals without or with mild clinical reactions from those with severe systemic or gastrointestinal symptoms as well as persons who grew out cow's milk allergy from those who did not. CONCLUSIONS Component-resolved testing using milk allergen microarrays and RBL assays seems to provide useful additional diagnostic information and may represent a basis for future forms of prophylactic and therapeutic strategies for cow's milk allergy.
Collapse
Affiliation(s)
- H Hochwallner
- Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wanich N, Bencharitiwong R, Tsai T, Nowak-Wegrzyn A. In vitro assessment of the allergenicity of a novel influenza vaccine produced in dog kidney cells in individuals with dog allergy. Ann Allergy Asthma Immunol 2010; 104:426-33. [PMID: 20486334 DOI: 10.1016/j.anai.2010.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND An inactivated influenza vaccine produced in canine kidney cells (MDCK 33016-PF) contains no egg proteins and may be used to immunize egg-allergic patients. Although no major dog allergens were identified in MDCK 33016-PF cells, minor dog allergens might be present and cause reactions in dog-allergic individuals. OBJECTIVE To evaluate the allergenicity of the inactivated influenza vaccine produced in cell culture in a mediator release assay. METHODS Rat basophil leukemia (RBL) cells transfected with human IgE receptor-1 were sensitized with sera from dog-allergic adults with positive skin prick test reactions to dog extract and detectable dog dander IgE and were stimulated with serial dilutions of vaccine and dog dander extract. N-hexosaminidase release (NHR) was used as a marker of RBL cell degranulation. Western blots were performed, and UniCAP was used to measure dog-specific IgE antibody levels. RESULTS The median (interquartile range) level of dog dander IgE was 8.31 kU(A)/L (1.895-14.5 kU(A)/L) and of dog epithelium IgE was 3.19 kU(A)/L (0.835-6.27 kU(A)L). Median (range) maximum NHR (at the first 10-fold dilution) was 0% (0%-1.4%) to vaccine and 10.2% (0%-35.9%) to dog dander (P < .001). In an egg-allergic control subject, the maximum NHR to a vaccine cultured in chick embryo and containing egg protein was 10.2%. IgE antibodies in pooled sera did not bind to vaccine on immunoblots but produced strong binding to dog dander and epithelium extracts. Serum from an egg-allergic control subject strongly bound embryonated egg-derived vaccine. CONCLUSION An influenza vaccine produced in continuous canine kidney cells did not trigger degranulation in RBL cells passively sensitized with human anti-dog IgE.
Collapse
Affiliation(s)
- Niya Wanich
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
39
|
Visualization of clustered IgE epitopes on α-lactalbumin. J Allergy Clin Immunol 2010; 125:1279-1285.e9. [DOI: 10.1016/j.jaci.2010.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/16/2010] [Accepted: 03/03/2010] [Indexed: 11/23/2022]
|
40
|
Schulmeister U, Hochwallner H, Swoboda I, Focke-Tejkl M, Geller B, Nystrand M, Härlin A, Thalhamer J, Scheiblhofer S, Keller W, Niggemann B, Quirce S, Ebner C, Mari A, Pauli G, Herz U, Valenta R, Spitzauer S. Cloning, expression, and mapping of allergenic determinants of alphaS1-casein, a major cow's milk allergen. THE JOURNAL OF IMMUNOLOGY 2009; 182:7019-29. [PMID: 19454699 DOI: 10.4049/jimmunol.0712366] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Milk is one of the first components introduced into human diet. It also represents one of the first allergen sources, which induces IgE-mediated allergies in childhood ranging from gastrointestinal, skin, and respiratory manifestations to severe life-threatening manifestations, such as anaphylaxis. Here we isolated a cDNA coding for a major cow's milk allergen, alphaS1-casein, from a bovine mammary gland cDNA library with allergic patients' IgE Abs. Recombinant alphaS1-casein was expressed in Escherichia coli, purified, and characterized by circular dichroism as a folded protein. IgE epitopes of alphaS1-casein were determined with recombinant fragments and synthetic peptides spanning the alphaS1-casein sequence using microarrayed components and sera from 66 cow's milk-sensitized patients. The allergenic activity of ralphaS1-casein and the alphaS1-casein-derived peptides was determined using rat basophil leukemia cells transfected with human FcepsilonRI, which had been loaded with the patients' serum IgE. Our results demonstrate that ralphaS1-casein as well as alphaS1-casein-derived peptides exhibit IgE reactivity, but mainly the intact ralphaS1-casein induced strong basophil degranulation. These results suggest that primarily intact alphaS1-casein or larger IgE-reactive portions thereof are responsible for IgE-mediated symptoms of food allergy. Recombinant alphaS1-casein as well as alphaS1-casein-derived peptides may be used in clinical studies to further explore pathomechanisms of food allergy as well as for the development of new diagnostic and therapeutic strategies for milk allergy.
Collapse
Affiliation(s)
- Ulrike Schulmeister
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kirsch S, Fourdrilis S, Dobson R, Scippo ML, Maghuin-Rogister G, De Pauw E. Quantitative methods for food allergens: a review. Anal Bioanal Chem 2009; 395:57-67. [DOI: 10.1007/s00216-009-2869-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
|
42
|
Edlmayr J, Niespodziana K, Linhart B, Focke-Tejkl M, Westritschnig K, Scheiblhofer S, Stoecklinger A, Kneidinger M, Valent P, Campana R, Thalhamer J, Popow-Kraupp T, Valenta R. A Combination Vaccine for Allergy and Rhinovirus Infections Based on Rhinovirus-Derived Surface Protein VP1 and a Nonallergenic Peptide of the Major Timothy Grass Pollen Allergen Phl p 1. THE JOURNAL OF IMMUNOLOGY 2009; 182:6298-306. [DOI: 10.4049/jimmunol.0713622] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Focke M, Marth K, Valenta R. Molecular composition and biological activity of commercial birch pollen allergen extracts. Eur J Clin Invest 2009; 39:429-36. [PMID: 19302561 DOI: 10.1111/j.1365-2362.2009.02109.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Commercial extracts used for diagnosis and treatment of allergy are currently prepared from natural allergen sources. The aim of this study was to analyse birch pollen allergen extracts produced for in vivo diagnosis of birch pollen allergy regarding their contents of individual birch pollen allergens (Bet v 1, Bet v 2 and Bet v 4). METHODS Protein contents were measured and the allergen composition was analysed by immunoblotting using antibody probes specific for Bet v 1, Bet v 2 and Bet v 4 in birch pollen extracts from five manufacturers of allergen extracts. The contents of the major birch pollen allergen, Bet v 1, were quantified with a specific two-site binding enzyme-linked immunosorbent assay with nanogram sensitivity for Bet v 1. The biological activities of the allergen extracts were evaluated by skin prick testing in birch pollen allergic patients and compared with their sensitization profiles. RESULTS A more than 10-fold variation regarding total protein contents (23.1-314 microg mL(-1)) and also regarding the amounts of the major birch pollen allergen, Bet v 1 (1.62-19.6 microg mL(-1)) was found. The highly cross-reactive Bet v 4 allergen was absent in three of the five tested extracts. Furthermore, varying skin test results were obtained in birch pollen allergic patients with the allergen extracts. CONCLUSIONS Commercial birch pollen extracts exhibit a considerable variability regarding allergen contents and hence deliver varying in vivo test results. These problems might be overcome with recombinant allergen-based preparations.
Collapse
Affiliation(s)
- M Focke
- Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
44
|
Nowak-Wegrzyn AH, Bencharitiwong R, Schwarz J, David G, Eggleston P, Gergen PJ, Liu AH, Pongracic JA, Sarpong S, Sampson HA. Mediator release assay for assessment of biological potency of German cockroach allergen extracts. J Allergy Clin Immunol 2009; 123:949-955.e1. [PMID: 19348929 DOI: 10.1016/j.jaci.2009.01.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/12/2009] [Accepted: 01/28/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cockroach is an important allergen in inner-city asthma. The diagnosis and treatment of cockroach allergy has been impeded by the lack of standardized cockroach extracts. OBJECTIVE We investigated the utility of a mediator release assay based on rat basophil leukemia (RBL) cells for comparing the potency of German cockroach extracts. METHODS RBL cells (line 2H3) transfected with human FcepsilonRI were passively sensitized with sera from subjects with cockroach allergy and stimulated with serial dilutions of 3 commercial cockroach extracts (1:10 weight/volume). In addition, the in-house prepared extract was tested in separate experiments with pooled sera that produced optimal performance in the RBL assay. N-hexosaminidase release (NHR) was used as a marker of RBL cell degranulation and was examined in relation to the intradermal skin test (ID(50)EAL) and serum cockroach-specific and total IgE levels. RESULTS The median cockroach-specific IgE concentration in 60 subjects was 0.72 kU(A)/L (interquartile range, 0.35-2.97 kU(A)/L); 19 sera (responders) produced a minimum 10% NHR to more than 1 extract. Responders had higher median cockroach-specific IgE (7.4 vs 1.0 kU(A)/L) and total IgE (429 vs 300 kU/L) levels than nonresponders. Ranking of extract potency was consistent between the mediator release assay and the ID(50)EAL. For the in-house prepared cockroach extract, the dose-response curves were shifted according to the concentration of the extract. NHR was reproducible between different experiments by using pooled sera. CONCLUSION The mediator release assay measures biologic potency and correlates with the ID(50)EAL. It should be further evaluated to determine whether it could be used to replace intradermal skin test titration for assessing the potency of cockroach extract.
Collapse
Affiliation(s)
- Anna H Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ball T, Linhart B, Sonneck K, Blatt K, Herrmann H, Valent P, Stoecklinger A, Lupinek C, Thalhamer J, Fedorov AA, Almo SC, Valenta R. Reducing allergenicity by altering allergen fold: a mosaic protein of Phl p 1 for allergy vaccination. Allergy 2009; 64:569-80. [PMID: 19243361 DOI: 10.1111/j.1398-9995.2008.01910.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The major timothy grass pollen allergen, Phl p 1, resembles the allergenic epitopes of natural group I grass pollen allergens and is recognized by more than 95% of grass-pollen-allergic patients. Our objective was the construction, purification and immunologic characterization of a genetically modified derivative of the major timothy grass pollen allergen, Phl p 1 for immunotherapy of grass pollen allergy. METHODS A mosaic protein was generated by PCR-based re-assembly and expression of four cDNAs coding for Phl p 1 fragments and compared to the Phl p 1 wild-type by circular dichroism analysis, immunoglobulin E (IgE)-binding capacity, basophil activation assays and enzyme-linked immunosorbent assay competition assays. Immune responses to the derivative were studied in BALB/c mice. RESULTS Grass-pollen-allergic patients exhibited greater than an 85% reduction in IgE reactivity to the mosaic as compared with the Phl p 1 allergen and basophil activation experiments confirmed the reduced allergenic activity of the mosaic. It also induced less Phl p 1-specific IgE antibodies than Phl p 1 upon immunization of mice. However, immunization of mice and rabbits with the mosaic induced IgG antibodies that inhibited patients' IgE-binding to the wild-type allergen and Phl p 1-induced degranulation of basophils. CONCLUSION We have developed a strategy based on rational molecular reassembly to convert one of the clinically most relevant allergens into a hypoallergenic derivative for allergy vaccination.
Collapse
MESH Headings
- Adult
- Aged
- Allergens/biosynthesis
- Allergens/chemistry
- Allergens/immunology
- Amino Acid Sequence
- Animals
- Basophils/immunology
- Basophils/metabolism
- Desensitization, Immunologic/methods
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- Histamine/biosynthesis
- Histamine/immunology
- Humans
- Immunoglobulin E/blood
- Immunoglobulin E/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Molecular Sequence Data
- Plant Proteins/biosynthesis
- Plant Proteins/chemistry
- Plant Proteins/immunology
- Polymerase Chain Reaction
- Protein Structure, Quaternary
- Rabbits
- Rats
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemical synthesis
- Recombinant Proteins/immunology
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/prevention & control
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- T Ball
- Department of Pathophysiology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Albrecht M, Suezer Y, Staib C, Sutter G, Vieths S, Reese G. Vaccination with a Modified Vaccinia Virus Ankara-based vaccine protects mice from allergic sensitization. J Gene Med 2008; 10:1324-33. [DOI: 10.1002/jgm.1256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
47
|
Constantin C, Quirce S, Grote M, Touraev A, Swoboda I, Stoecklinger A, Mari A, Thalhamer J, Heberle-Bors E, Valenta R. Molecular and immunological characterization of a wheat serine proteinase inhibitor as a novel allergen in baker's asthma. THE JOURNAL OF IMMUNOLOGY 2008; 180:7451-60. [PMID: 18490745 DOI: 10.4049/jimmunol.180.11.7451] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IgE-mediated sensitization to wheat flour belongs to the most frequent causes of occupational asthma. A cDNA library from wheat seeds was constructed and screened with serum IgE from baker's asthma patients. One IgE-reactive phage clone contained a full-length cDNA coding for an allergen with a molecular mass of 9.9 kDa and an isoelectric point of 6. According to sequence analysis it represents a member of the potato inhibitor I family, a group of serine proteinase inhibitors, and thus is the first allergen belonging to the group 6 pathogenesis-related proteins. The recombinant wheat seed proteinase inhibitor was expressed in Escherichia coli and purified to homogeneity. According to circular dichroism analysis, it represented a soluble and folded protein with high thermal stability containing mainly beta-sheets, random coils, and an alpha-helical element. The recombinant allergen showed allergenic activity in basophil histamine release assays and reacted specifically with IgE from 3 of 22 baker's asthma patients, but not with IgE from grass pollen allergic patients or patients suffering from food allergy to wheat. Allergen-specific Abs were raised to localize the allergen by immunogold electron microscopy in the starchy endosperm and the aleuron layer. The allergen is mainly expressed in mature wheat seeds and, despite an approximately 50% sequence identity, showed no relevant cross-reactivity with allergens from other plant-derived food sources such as maize, rice, beans, or potatoes. Recombinant wheat serine proteinase inhibitor, when used in combination with other specific allergens, may be useful for the diagnosis and therapy of IgE-mediated baker's asthma.
Collapse
Affiliation(s)
- Claudia Constantin
- Division of Immunopathology, Department of Pathophysiology, Center of Physiology, Pathophysiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thomas K, Herouet-Guicheney C, Ladics G, McClain S, MacIntosh S, Privalle L, Woolhiser M. Current and future methods for evaluating the allergenic potential of proteins: international workshop report 23-25 October 2007. Food Chem Toxicol 2008; 46:3219-25. [PMID: 18656521 DOI: 10.1016/j.fct.2008.06.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/25/2008] [Indexed: 11/15/2022]
Abstract
The International Life Science Institute's Health and Environmental Sciences Institute's Protein Allergenicity Technical Committee hosted an international workshop October 23-25, 2007, in Nice, France, to review and discuss existing and emerging methods and techniques for improving the current weight-of-evidence approach for evaluating the potential allergenicity of novel proteins. The workshop included over 40 international experts from government, industry, and academia. Their expertise represented a range of disciplines including immunology, chemistry, molecular biology, bioinformatics, and toxicology. Among participants, there was consensus that (1) current bioinformatic approaches are highly conservative; (2) advances in bioinformatics using structural comparisons of proteins may be helpful as the availability of structural data increases; (3) proteomics may prove useful for monitoring the natural variability in a plant's proteome and assessing the impact of biotechnology transformations on endogenous levels of allergens, but only when analytical techniques have been standardized and additional data are available on the natural variation of protein expression in non-transgenic bred plants; (4) basophil response assays are promising techniques, but need additional evaluation around specificity, sensitivity, and reproducibility; (5) additional research is required to develop and validate an animal model for the purpose of predicting protein allergenicity.
Collapse
Affiliation(s)
- Karluss Thomas
- International Life Sciences Institute Health and Environmental Sciences Institute, Washington, DC 20005, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ladics GS, van Bilsen JHM, Brouwer HMH, Vogel L, Vieths S, Knippels LMJ. Assessment of three human FcepsilonRI-transfected RBL cell-lines for identifying IgE induced degranulation utilizing peanut-allergic patient sera and peanut protein extract. Regul Toxicol Pharmacol 2008; 51:288-94. [PMID: 18534732 DOI: 10.1016/j.yrtph.2008.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 11/30/2022]
Abstract
Specific IgE sera screening studies are employed to investigate protein cross-reactivity. Such nonfunctional immunochemical methods cannot measure the biological activity of proteins. Therefore, an assay using RBL cells transfected with human FcepsilonRI was developed. Our objective was to evaluate the degranulation of three cell-lines expressing either the alpha-(RBL-hEI(a)-2B12 and RBL-30/25cells) or alpha-, beta-, and gamma-subunits (RBL SX-38) of the human FcepsilonRI by beta-hexosaminidase release. Purified human IgE and serum-derived polyclonal IgE from peanut-allergic subjects following challenge with anti-IgE or peanut protein extract, respectively, were utilized. Robust degranulation was induced in all three: RBL-30/25 (84%), -hEI(a)-2B12 (54%), SX-38 (94%), respectively, using purified IgE+anti-human IgE. Good release (18%, 40-45%, and 65%, respectively) occurred for one peanut-allergic subject+peanut extract with all cell-lines. With serum from three other peanut-allergic subjects, no beta-hexosaminidase release occurred with RBL-hEI(a)-2B12 cells+peanut extract, while only serum from one subject induced good degranulation, 30% and 60%, respectively, with RBL-30/25 and RBL SX 38 cells. Consistent degranulation with a potent food allergen (peanuts) was not observed. The assay's utility in safety assessment, predictive value and reproducibility for evaluating the cross-reactivity of proteins with allergens needs further investigation with additional proteins and well-characterized sera.
Collapse
Affiliation(s)
- G S Ladics
- DuPont Company, Building 353/334, Route 141 and Henry Clay Road, Wilmington, DE 19880, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bodinier M, Brossard C, Triballeau S, Morisset M, Guérin-Marchand C, Pineau F, de Coppet P, Moneret-Vautrin DA, Blank U, Denery-Papini S. Evaluation of an in vitro mast cell degranulation test in the context of food allergy to wheat. Int Arch Allergy Immunol 2008; 146:307-20. [PMID: 18367844 DOI: 10.1159/000121465] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 12/21/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Antigenic profiles obtained by ELISA with IgE from patients with wheat food allergy (WFA) established that major allergens are albumins/globulins (AG) for children suffering from atopic eczema/dermatitis syndrome (AEDS), omega5-gliadins for adults suffering from wheat-dependent exercise-induced anaphylaxis (WDEIA), anaphylaxis or urticaria and low-molecular-weight (LMW) glutenin subunits for patients with anaphylaxis. We aimed to characterize a new mast cell transfectant for its ability to degranulate with wheat proteins and patient sera and compare these results to those obtained by ELISA. METHODS Thirty sera from patients with WFA were tested: 14 with AEDS (group 1) and 16 with WDEIA, anaphylaxis or urticaria (group 2). An IgE Fc receptor (FcepsilonRI) humanized rat RBL-2H3 line was established by transfection with cDNAs encoding alpha-, beta- and gamma-subunits for the human IgE receptor. RESULTS A humanized RBL clone was selected for its capacity to express mRNA alpha-, beta- and gamma-subunits of FcepsilonRI, to bind allergen-specific human IgE and to degranulate. In group 1, sera induced enhanced degranulation with AG extract, but rarely reacted with gliadins and glutenins. In group 2, half of the sera showed degranulation with LMW glutenins whereas the AG fraction and lipid transfer proteins were rarely positive. omega5-Gliadins did not appear as a major allergen in degranulation assays, although functional allergen-specific IgE was measurable in appreciable amounts. CONCLUSION Our data demonstrate that in wheat food allergen evaluation, correlation exists between mast cell degranulation and IgE measurements, depending on the type of allergen. Therefore, the biological activity of some allergen types may also be affected by other parameters.
Collapse
Affiliation(s)
- M Bodinier
- Unité de Recherche 1268, Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, Université de Nantes, Nantes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|