1
|
Kartchner D, McCoy K, Dubey J, Zhang D, Zheng K, Umrani R, Kim JJ, Mitchell CS. Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19. BIOLOGY 2023; 12:1269. [PMID: 37759668 PMCID: PMC10526006 DOI: 10.3390/biology12091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts directly related to COVID-19 and resistant hypertension or connected via one of three renin-angiotensin-aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel, angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic glutamate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes, MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein, corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stimulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392, BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2 gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins, human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes: altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%.
Collapse
Affiliation(s)
- David Kartchner
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin McCoy
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Janhvi Dubey
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dongyu Zhang
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin Zheng
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rushda Umrani
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. Kim
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Catalytic Antibodies: Design, Expression, and Their Applications in Medicine. Appl Biochem Biotechnol 2023; 195:1514-1540. [PMID: 36222989 PMCID: PMC9554387 DOI: 10.1007/s12010-022-04183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
Catalytic antibodies made it feasible to develop new catalysts, which had previously been the subject of research. Scientists have discovered natural antibodies that can hydrolyze substrates such as nucleic acids, proteins, and polysaccharides during decades of research, as well as several ways of producing antibodies with specialized characteristics and catalytic functions. These antibodies are widely used in chemistry, biology, and medicine. Catalytic antibodies can continue to play a role and even fully prevent the emergence of autoimmune disorders, especially in the field of infection and immunity, where the process of its occurrence and development often takes a long time. In this work, the development, design and evolution methodologies, and the expression systems and applications of catalytic antibodies, are discussed. Trial registration: not applicable.
Collapse
|
3
|
The Blood of the HIV-Infected Patients Contains κ-IgG, λ-IgG, and Bispecific κλ-IgG, Which Possess DNase and Amylolytic Activity. Life (Basel) 2022; 12:life12020304. [PMID: 35207591 PMCID: PMC8880267 DOI: 10.3390/life12020304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Though hundreds of thousands of papers are currently being published on HIV/AIDS, only tens of hundreds of them are devoted to the antibodies generated during the disease. Most of these papers discuss antibodies in HIV/AIDS as a diagnostic tool, and some articles describe neutralizing antibodies as a promising treatment. In this paper, we used affinity chromatography and ELISA to isolate natural IgG from the blood of 26 HIV-infected patients. IgG preparations were separated into the subfractions containing different types of light chains, and catalytic activities of subfractions were analyzed. Here, we show for the first time that the blood of HIV patients contains ~20% of bispecific κλ-IgG, presented with all IgG subclasses. Analysis of DNA-hydrolyzing and amylolytic activity show that most IgG preparations and subfractions are catalytically active. Our results expand the possible biological functions of natural IgG in HIV infection.
Collapse
|
4
|
Choi MY, FitzPatrick RD, Buhler K, Mahler M, Fritzler MJ. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun Rev 2020; 19:102463. [PMID: 31927088 DOI: 10.1016/j.autrev.2020.102463] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022]
Abstract
The discovery of autoantibodies to ribosomal proteins (anti-RibP) dates back more than fifty years when antibodies to ribosomes were identified in systemic lupus erythematosus (SLE) sera. Over the years, anti-RibP autoantibodies have been the subject of extensive study and became known as a highly specific biomarker for the diagnosis of SLE and were associated with neuropsychiatric SLE (NPSLE), lupus nephritis (LN) and hepatitis (LH). As demonstrated by studies on cultured human cells and of murine models, there is evidence to suggest that anti-RibP may have a pathogenic role in LN and NPSLE. Despite a wealth of evidence, in comparison to other SLE autoantibodies such as anti-Sm and anti-dsDNA, anti-RibP has not been included in classification criteria for SLE. A significant challenge is the variability of assays used to detect anti-RibP, including the antigens and diagnostic platforms employed. This may account for the marked variation in frequencies (10-47%) in SLE and its association with clinical and demographic features reported in SLE cohorts. We performed a systematic literature review and meta-analysis to help clarify its prevalence, various clinical and serological associations in SLE based on the different RibP antigens and assay platforms used.
Collapse
Affiliation(s)
- May Y Choi
- Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N4N1, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Katherine Buhler
- Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N4N1, Canada
| | - Michael Mahler
- Inova Diagnostics, San Diego, CA, United States of America
| | - Marvin J Fritzler
- Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N4N1, Canada.
| |
Collapse
|
5
|
The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation. Mol Cell Biol 2018; 38:MCB.00067-18. [PMID: 29844065 DOI: 10.1128/mcb.00067-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Ribosomal stalk proteins recruit translation elongation GTPases to the factor-binding center of the ribosome. Initiation factor 5B (eIF5B in eukaryotes and aIF5B in archaea) is a universally conserved GTPase that promotes the joining of the large and small ribosomal subunits during translation initiation. Here we show that aIF5B binds to the C-terminal tail of the stalk protein. In the cocrystal structure, the interaction occurs between the hydrophobic amino acids of the stalk C-terminal tail and a small hydrophobic pocket on the surface of the GTP-binding domain (domain I) of aIF5B. A substitution mutation altering the hydrophobic pocket of yeast eIF5B resulted in a marked reduction in ribosome-dependent eIF5B GTPase activity in vitro In yeast cells, the eIF5B mutation affected growth and impaired GCN4 expression during amino acid starvation via a defect in start site selection for the first upstream open reading frame in GCN4 mRNA, as observed with the eIF5B deletion mutant. The deletion of two of the four stalk proteins diminished polyribosome levels (indicating defective translation initiation) and starvation-induced GCN4 expression, both of which were suppressible by eIF5B overexpression. Thus, the mutual interaction between a/eIF5B and the ribosomal stalk plays an important role in subunit joining during translation initiation in vivo.
Collapse
|
6
|
Ermakov EA, Smirnova LP, Parkhomenko TA, Dmitrenok PS, Krotenko NM, Fattakhov NS, Bokhan NA, Semke AV, Ivanova SA, Buneva VN, Nevinsky GA. DNA-hydrolysing activity of IgG antibodies from the sera of patients with schizophrenia. Open Biol 2016; 5:150064. [PMID: 26382278 PMCID: PMC4593665 DOI: 10.1098/rsob.150064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is believed that damage to the membranes of brain cells of schizophrenia (SCZ) patients induces the formation of autoantigens and autoantibodies. Nevertheless, the importance of immunological changes leading to the loss of tolerance to self-antigens in the genesis of SCZ has not been established. The MALDI mass spectra of the IgG light chains of 20 healthy donors were relatively homogeneous and characterized by one peak with only one maximum. In contrast to the healthy donors, the MALDI mass spectra of IgG light chains corresponding to 20 SCZ patients demonstrated, similarly to 20 autoimmune systemic lupus erythematosus (SLE) patients, two maxima of a comparable intensity. In addition, the MALDI spectra of the IgG light chains of five SLE and four SCZ patients contained a small additional brightly pronounced peak with remarkably lower molecular mass compared with the main one. DNase autoantibodies (abzymes) can be found in the blood of patients with several autoimmune diseases, while the blood of healthy donors or patients with diseases without a significant disturbance of the immune status does not contain DNase abzymes. Here, we present the first analysis of anti-DNA antibodies and DNase abzymes in the sera of SCZ patients. Several strict criteria have been applied to show that the DNase activity is an intrinsic property of IgGs from the sera of SCZ patients. The sera of approximately 30% of SCZ patients displayed a higher content of antibodies (compared with 37% of SLE) interacting with single- and double-stranded DNA compared with healthy donors. Antibodies with DNase activity were revealed in 80% of the patients. These data indicate that some SCZ patients may show signs of typical autoimmune processes to a certain extent.
Collapse
Affiliation(s)
- Evgeny A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Ludmila P Smirnova
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Taisiya A Parkhomenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel S Dmitrenok
- Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Nina M Krotenko
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Nikolai S Fattakhov
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Sato H, Onozuka M, Hagiya A, Hoshino S, Narita I, Uchiumi T. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein-RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice. Clin Exp Immunol 2015; 179:236-44. [PMID: 25255895 DOI: 10.1111/cei.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 11/30/2022] Open
Abstract
Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus.
Collapse
Affiliation(s)
- H Sato
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Buneva VN, Krasnorutskii MA, Nevinsky GA. Natural antibodies to nucleic acids. BIOCHEMISTRY (MOSCOW) 2013; 78:127-143. [DOI: 10.1134/s0006297913020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
9
|
Parkhomenko TA, Buneva VN, Tyshkevich OB, Generalov II, Doronin BM, Nevinsky GA. DNA-hydrolyzing activity of IgG antibodies from the sera of patients with tick-borne encephalitis. Biochimie 2010; 92:545-54. [PMID: 20138955 DOI: 10.1016/j.biochi.2010.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
DNase autoantibodies (Abzs) can be found in the blood of patients with several autoimmune diseases, while the blood of healthy donors or patients with diseases with an insignificant disturbance of the immune status does not contain DNase Abzs. Here we present the first analysis of the DNase Abzs activity in the patients with tick-borne encephalitis (TBE). Several strict criteria have been applied to show that the DNase activity is an intrinsic property of IgGs from the sera of TBE patients but not from healthy donors. The relative activity of IgGs has been shown to vary extensively from patient to patient, but most of the preparations (91%) had detectable levels of the DNase activity. Polyclonal DNase IgGs were not active in the presence of EDTA or after a dialysis against EDTA, but could be activated by several externally added metal ions, with the level of activity decreasing in the order Mn(2+) + Ca(2+) > or = Mn(2+)+ Mg(2+) > or = Mn(2+) > or = Mg(2+) + Ca(2+) > or = Co(2+) > or = Mg(2+) > Ca(2+), while K(+), Na(+), Ni(2+), Zn(2+), and Cu(2+) did not stimulate DNA hydrolysis. Affinity chromatography on DNA-cellulose separated the DNase IgGs into many subfractions with various affinities for DNA and very different levels of the relative activity. Possible reasons for catalytic diversity of polyclonal human Abzs are discussed.
Collapse
Affiliation(s)
- Taisiya A Parkhomenko
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Division, Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Krasnorutskii MA, Buneva VN, Nevinsky GA. Antibodies against RNA hydrolyze RNA and DNA. J Mol Recognit 2008; 21:338-47. [PMID: 18729241 DOI: 10.1002/jmr.906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunization of animals with DNA leads to the production of anti-DNA antibodies (Abs) demonstrating both DNase and RNase activities. It is currently not known whether anti-RNA Abs can possess nuclease activities. In an attempt to address this question, we have shown that immunization of three rabbits with complex of RNA with methylated BSA (mBSA) stimulates production of IgGs with RNase and DNase activities belonging to IgGs, while polyclonal Abs from three non-immunized rabbits and three animals immunized with mBSA are catalytically inactive. Affinity chromatography of IgGs from the sera of autoimmune (AI) patients on DNA-cellulose usually demonstrates a number of fractions, all of which effectively hydrolyze both DNA and RNA, while rabbit catalytic IgGs were separated into Ab subfractions, some of which demonstrated only DNase activity, while others hydrolyzed RNA faster than DNA. The enzymic properties of the RNase and DNase IgGs from rabbits immunized with RNA distinguish them from all known canonical RNases and DNases and DNA- and RNA-hydrolyzing abzymes (Abzs) from patients with different AI diseases. In contrast to RNases and AI RNA-hydrolyzing Abs, rabbit RNase IgGs catalyze only the first step of the hydrolysis reaction but cannot hydrolyze the formed terminal 2',3'-cyclophosphate. The data indicate that Abzs of AI patients hydrolyzing nucleic acids in part may be Abs against RNA and its complexes with proteins.
Collapse
Affiliation(s)
- Michael A Krasnorutskii
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrent'eva 8, Novosibirsk, Russia
| | | | | |
Collapse
|
11
|
Kiss E, Shoenfeld Y. Are anti-ribosomal P protein antibodies relevant in systemic lupus erythematosus? Clin Rev Allergy Immunol 2007; 32:37-46. [PMID: 17426359 DOI: 10.1007/bf02686080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypal auto-immune disorder characterized with multiple organ involvement resulting in disability and increased mortality. Immune regulatory disturbances cumulate in activation of B cells and consequent auto-antibody production. Antigens for these auto-antibodies can be nuclear components and cytoplasmic elements. Anti-P antibodies react against acidic phosphorylated ribosomal proteins P0, P1, and P2 (with molecular mass of 38, 19, and 17 kDa, respectively) and are located on the S60 subunit of ribosomes. Ribosomal P proteins share a common 22-amino acid sequence that is present in the carboxyl-terminal. Anti-P antibodies can be detected in approx 15 to 20% of patients with lupus by several immunoassays, most frequently by enzyme-linked immunosorbent assay (ELISA) and/or Western blotting. However, no standardized assay is available. Auto-antibodies against eukaryotic P proteins appear highly specific for SLE; therefore, they can be used as diagnostic marker for the disease. Furthermore, association has been described with particular manifestations of lupus, especially with neuropsychiatric, renal, and hepatic involvements. Anti-P positivity and the titer of anti-P antibodies also fluctuate with clinical disease activity. Despite several lines of evidence, results are conflicting regarding the existence of such associations. Discrepancies can be explained by different study set-up or study population; it also can be attributed to the different sensitivity of tests used for the detection of anti-P antibody.
Collapse
Affiliation(s)
- Emese Kiss
- Third Department of Internal Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | | |
Collapse
|
12
|
Lin JLJ, Dubljevic V, Fritzler MJ, Toh BH. Major immunoreactive domains of human ribosomal P proteins lie N-terminal to a homologous C-22 sequence: application to a novel ELISA for systemic lupus erythematosus. Clin Exp Immunol 2005; 141:155-64. [PMID: 15958082 PMCID: PMC1809416 DOI: 10.1111/j.1365-2249.2005.02816.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to identify immunoreactive domains on human ribosomal P0, P1 and P2 proteins, other than the C-22 peptide, to develop a novel ELISA using a combination of these proteins and to compare this ELISA with one using the C-22 peptide. Human recombinant P0, P1, P2 and mutant P0 lacking the homologous C-22 peptide (N-P0) were produced in bacteria and tested by ELISA and immunoblotting using sera from 48 patients with systemic lupus erythematosus (SLE), 48 with an unrelated inflammatory disorder (Crohn's disease) and 47 healthy controls. ELISA with P0, P1 and P2, premixed at equimolar concentrations, gave higher OD readings than each protein tested individually. Eighteen SLE sera tested positive by ELISA with premixed P0, P1, P2 but only 3 tested positive with the C-22 peptide. Twenty-two SLE sera reacted positively, as determined by immunoblotting, with 5 different P protein combinations: P1P2, P0P1P2, P1, P0P1, P0 and P1. Only sera reactive with all three P proteins reacted with the C-22 peptide, with absent or minimal reactivity with N-P0. Native antigens yielded sensitivity (6/48, 13%) similar to the C-22 peptide assay. An ELISA with premixed P1 and P2 gave higher OD values than the arithmetic means with P1 or P2. Fifteen SLE patients had antibodies to double stranded (ds)-DNA, of which 6 also had antibodies to P0P1P2 by ELISA but 12 reactive with P0P1P2 did not have discernable ds-DNA antibodies. Ribosomal P autoantibodies react mainly with epitopes N-terminal to a homologous C-22 peptide. An ELISA with premixed P0, P1 and P2 has 5-fold greater sensitivity (38%) for SLE than an assay with the conventional C-22 peptide (7%). The combined sensitivity for SLE for antibodies to P0P1P2 and ds-DNA is 56%, higher than C-22 and ds-DNA, 38%. Only one of the SLE patients had neuropsychiatric lupus.
Collapse
Affiliation(s)
- J L J Lin
- Department of Immunology, Monash Medical School, the Alfred Hospital, Prahran, Australia
| | | | | | | |
Collapse
|
13
|
Leiro J, Siso MIG, Iglesias R, Ubeira FM, Sanmartín ML. Mouse antibody response to a microsporidian parasite following inoculation with a gene coding for parasite ribosomal RNA. Vaccine 2002; 20:2648-55. [PMID: 12034089 DOI: 10.1016/s0264-410x(02)00210-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study found that a plasmid construct encoding the small-subunit ribosomal RNA (SSUrRNA) of the microsporidian Microgemma caulleryi generates a humoral response upon intramuscular inoculation in mice. The plasmid used was pCMV, following preliminary trials indicating efficient beta-galactosidase gene expression in mouse muscle cells transfected with pCMV/beta-Gal. The antibodies produced after inoculation with pCMV/SSUDNA recognized parasite spore antigens and reached maximum levels at 30 days postinoculation, subsequently remaining stable for at least 120 days. Due to the highly conserved sequence of the SSUrDNA in different microsporidian species, these results open up interesting prospects for broad-spectrum vaccination.
Collapse
Affiliation(s)
- J Leiro
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
14
|
Ghirardello A, Doria A, Zampieri S, Gerli R, Rapizzi E, Gambari PF. Anti-ribosomal P protein antibodies detected by immunoblotting in patients with connective tissue diseases: their specificity for SLE and association with IgG anticardiolipin antibodies. Ann Rheum Dis 2000; 59:975-81. [PMID: 11087701 PMCID: PMC1753043 DOI: 10.1136/ard.59.12.975] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the prevalence and clinical and serological associations of anti-ribosomal P protein antibodies (anti-P antibodies) in patients with connective tissue diseases (CTDs) and investigate the immunobiological nature of autoantibody clustering in which anti-P antibodies play a part. METHODS IgG anti-P antibodies in the sera of 267 patients with CTDs and 31 healthy subjects were analysed by immunoblotting performed on cytoplasmic extract of Raji cells. 60 patients with systemic lupus erythematosus (SLE), 32 systemic sclerosis, 46 primary Sjögren's syndrome, 16 poly/dermatomyositis, 11 rheumatoid arthritis, 8 undifferentiated CTD, 72 overlap CTD, and 22 primary antiphospholipid syndrome were studied. Anti-P antibodies were affinity purified by elution from nitrocellulose bound antigen and tested by ELISA for their binding activity to cardiolipin. RESULTS Anti-P antibodies were detected in 16 (6%) patients and in none of the controls: 12/60 SLE (20%) and 4/80 undifferentiated/overlap patients with CTD (5%). A close association of IgG antibodies with P proteins and with cardiolipin was seen in lupus sera (p=0.0009, odds ratio 18.33). Anti-P antibodies from 9 of 12 anti-P lupus serum samples could be affinity purified and none of the affinity purified fractions cross reacted with ELISA plate coated cardiolipin. CONCLUSIONS Anti-P immunoreactivity is a specific marker of SLE and lupus-like disease and its detection is recommended as a powerful diagnostic tool. Anti-P antibodies are strongly clustered with IgG anticardiolipin antibodies in lupus sera, even if they are independently elicited. This suggests that their cognate autoantigens play a part in a common pathogenetic pathway in SLE.
Collapse
Affiliation(s)
- A Ghirardello
- Division of Rheumatology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Ohosone Y, Matsumura M, Chiba J, Nagaoka S, Matsuoka Y, Irimajiri S, Mimori T. Anti-transfer RNA antibodies in two patients with pulmonary fibrosis, Raynaud's phenomenon and polyarthritis. Clin Rheumatol 1998; 17:144-7. [PMID: 9641513 DOI: 10.1007/bf01452262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patient W.S. (a 61-year-old woman) and patient T.M. (a 41-year-old man) developed recurrent fevers, polyarthritis, Raynaud's phenomenon and interstitial pulmonary fibrosis without apparent polymyositis. From HeLa cell extracts, sera from both patients immunoprecipitated all species of intact and deproteinised tRNAs. To identify the antibody binding site more precisely, tRNAs transcribed in vitro from cloned Escherichia coli tRNA genes and various mutants were prepared and used as antigens for immunoprecipitation. When the TpsiC loop, or the D loop were deleted, such mutants were not bound by both sera, suggesting that the D and TpsiC loops were required for antibody binding. Abrogation of tRNA binding occurred when 18G of tRNATrp was replaced with 18A to break the tertiary L-shape structure of tRNA. These results strongly suggest that sera from W.S. and T.M. recognise the tertiary conformation of L-shaped tRNA which is constructed with both D and TpsiC loops. These autoantibodies may also serve as a marker for a new subset of patients with connective tissue diseases that is distinct from anti-aminoacyl-tRNA synthetase syndrome.
Collapse
Affiliation(s)
- Y Ohosone
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
|