1
|
Mustillo PJ, Sullivan KE, Chinn IK, Notarangelo LD, Haddad E, Davies EG, de la Morena MT, Hartog N, Yu JE, Hernandez-Trujillo VP, Ip W, Franco J, Gambineri E, Hickey SE, Varga E, Markert ML. Clinical Practice Guidelines for the Immunological Management of Chromosome 22q11.2 Deletion Syndrome and Other Defects in Thymic Development. J Clin Immunol 2023; 43:247-270. [PMID: 36648576 PMCID: PMC9892161 DOI: 10.1007/s10875-022-01418-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
Current practices vary widely regarding the immunological work-up and management of patients affected with defects in thymic development (DTD), which include chromosome 22q11.2 microdeletion syndrome (22q11.2del) and other causes of DiGeorge syndrome (DGS) and coloboma, heart defect, atresia choanae, retardation of growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome. Practice variations affect the initial and subsequent assessment of immune function, the terminology used to describe the condition and immune status, the accepted criteria for recommending live vaccines, and how often follow-up is needed based on the degree of immune compromise. The lack of consensus and widely varying practices highlight the need to establish updated immunological clinical practice guidelines. These guideline recommendations provide a comprehensive review for immunologists and other clinicians who manage immune aspects of this group of disorders.
Collapse
Affiliation(s)
- Peter J Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ivan K Chinn
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Infectious Diseases and Immunology, CHU Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3HJ, UK
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Nicholas Hartog
- Spectrum Health Helen DeVos Children's Hospital Department of Allergy and Immunology, Michigan State University College of Human Medicine, East Lansing, USA
| | - Joyce E Yu
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Winnie Ip
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3JH, UK
| | - Jose Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Eleonora Gambineri
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Scott E Hickey
- Division of Genetic & Genomic Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Elizabeth Varga
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - M Louise Markert
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
2
|
Raje NR, Noel-MacDonnell JR, Shortt KA, Gigliotti NM, Chan MA, Heruth DP. T Cell Transcriptome in Chromosome 22q11.2 Deletion Syndrome. THE JOURNAL OF IMMUNOLOGY 2022; 209:874-885. [DOI: 10.4049/jimmunol.2100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
|
3
|
Sabaie H, Gharesouran J, Asadi MR, Farhang S, Ahangar NK, Brand S, Arsang-Jang S, Dastar S, Taheri M, Rezazadeh M. Downregulation of miR-185 is a common pathogenic event in 22q11.2 deletion syndrome-related and idiopathic schizophrenia. Metab Brain Dis 2022; 37:1175-1184. [PMID: 35075501 DOI: 10.1007/s11011-022-00918-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SCZ) is known as a complicated mental disease with an unknown etiology. The microdeletion of 22q11.2 is the most potent genetic risk factor. Researchers are still trying to find which genes in the deletion region are linked to SCZ. MIR185, encoding microRNA (miR)-185, is present in the minimal 1.5 megabase deletion. Nonetheless, the miR-185 expression profile and its corresponding target genes in animal models and patients with 22q11.2 deletion syndrome (22q11.2DS) imply that more study is required about miR-185 and its corresponding downstream pathways within idiopathic SCZ. The expression of hsa-miR-185-5p and its corresponding target gene, shisa family member 7 (SHISA7), sometimes called CKAMP59, were evaluated in the peripheral blood (PB) samples of Iranian Azeri patients with idiopathic SCZ and healthy subjects, matched by gender and age as control groups by quantitative polymerase chain reaction (qPCR). Fifty SCZ patients (male/female: 22/28, age (mean ± standard deviation (SD)): 35.9 ± 5.6) and 50 matched healthy controls (male/female: 23/27, age (mean ± SD): 34.7 ± 5.4) were enrolled. The expression of hsa-miR-185-5p in the PB samples from subjects with idiopathic SCZ was substantially lower than in that of control groups (posterior beta = -0.985, adjusted P-value < 0.0001). There was also a difference within the expression profile between female and male subgroups (posterior beta = -0.86, adjusted P-value = 0.046 and posterior beta = -1.015, adjusted P-value = 0.004, in turn). Nevertheless, no significant difference was present in the expression level of CKAMP59 between PB samples from patients and control groups (adjusted P-value > 0.999). The analysis of the receiver operating characteristic (ROC) curve suggested that hsa-miR-185-5p may correctly distinguish subjects with idiopathic SCZ from healthy people (the area under curve (AUC) value: 0.722). Furthermore, there was a strong positive correlation between the expression pattern of the abovementioned genes in patients with SCZ and healthy subjects (r = 0.870, P < 0.001 and r = 0.812, P < 0.001, respectively), indicating that this miR works as an enhancer. More research is needed to determine if the hsa-miR-185-5p has an enhancer activity. In summary, this is the first research to highlight the expression of the miR-185 and CKAMP59 genes in the PB from subjects with idiopathic SCZ. Our findings suggest that gene expression alterations mediated by miR-185 may play a role in the pathogenesis of idiopathic and 22q11.2DS SCZ. It is worth noting that, despite a substantial and clear relationship between CKAMP59 and hsa-miR-185-5p, indicating an interactive network, their involvement in the development of SCZ should be reconsidered based on the whole blood sample since the changed expression level of CKAMP59 was not significant. Further research with greater sample sizes and particular leukocyte subsets can greatly make these results stronger.
Collapse
Affiliation(s)
- Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Farhang
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Rob Giel Research Center, University Medical Center Groningen, University Center for Psychiatry, University of Groningen, Groningen, Netherlands
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Serge Brand
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
| | - Shahram Arsang-Jang
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Saba Dastar
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul, Turkey
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Bhalla P, Wysocki CA, van Oers NSC. Molecular Insights Into the Causes of Human Thymic Hypoplasia With Animal Models. Front Immunol 2020; 11:830. [PMID: 32431714 PMCID: PMC7214791 DOI: 10.3389/fimmu.2020.00830] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
22q11.2 deletion syndrome (DiGeorge), CHARGE syndrome, Nude/SCID and otofaciocervical syndrome type 2 (OTFCS2) are distinct clinical conditions in humans that can result in hypoplasia and occasionally, aplasia of the thymus. Thymic hypoplasia/aplasia is first suggested by absence or significantly reduced numbers of recent thymic emigrants, revealed in standard-of-care newborn screens for T cell receptor excision circles (TRECs). Subsequent clinical assessments will often indicate whether genetic mutations are causal to the low T cell output from the thymus. However, the molecular mechanisms leading to the thymic hypoplasia/aplasia in diverse human syndromes are not fully understood, partly because the problems of the thymus originate during embryogenesis. Rodent and Zebrafish models of these clinical syndromes have been used to better define the underlying basis of the clinical presentations. Results from these animal models are uncovering contributions of different cell types in the specification, differentiation, and expansion of the thymus. Cell populations such as epithelial cells, mesenchymal cells, endothelial cells, and thymocytes are variably affected depending on the human syndrome responsible for the thymic hypoplasia. In the current review, findings from the diverse animal models will be described in relation to the clinical phenotypes. Importantly, these results are suggesting new strategies for regenerating thymic tissue in patients with distinct congenital disorders.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christian A. Wysocki
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
A pilot study on immuno-psychiatry in the 22q11.2 deletion syndrome: A role for Th17 cells in psychosis? Brain Behav Immun 2018; 70:88-95. [PMID: 29567371 PMCID: PMC6206432 DOI: 10.1016/j.bbi.2018.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A growing body of evidence supports a role for immune alterations in Schizophrenia Spectrum Disorders (SSD). A high prevalence (25-40%) of SSD has been found in patients with 22q11.2 deletion syndrome (22q11.2DS), which is known for T-cell deficits due to thymus hypoplasia. This study is the first to explore the association between the T-cell subsets and psychotic symptoms in adults with 22q11.2DS. METHODS 34 individuals (aged 19-38 yrs.) with 22q11.2DS and 34 healthy age- and gender matched control individuals were included. FACS analysis of the blood samples was performed to define T-cell subsets. Ultra-high risk for psychosis or diagnosis of SSD was determined based on CAARMS interviews and DSM-5 criteria for SSD. Positive psychotic symptom severity was measured based on the PANSS positive symptoms subscale. RESULTS A partial T-cell immune deficiency in 22q11.2DS patients was confirmed by significantly reduced percentages of circulating T and T-helper cells. Significantly higher percentages of inflammatory Th1, Th17, and memory T-helper cells were found in adults with 22q11.2DS. Most importantly an increased Th17 percentage was found in adults with psychotic symptoms as compared to non-psychotic adults with 22q11.2DS, and Th17 percentage were related to the presence of positive psychotic symptoms. CONCLUSIONS Given the literature on the role of T cells and in particular of Th17 cells and IL-17 in hippocampus development, cognition and behavior, these results support the hypothesis for a role of Th17 cells in the development and/or regulation of psychotic symptoms in 22q11.2DS. This pilot study underlines the importance to further study the role of T-cell defects and of Th17 cells in the development of psychiatric symptoms. It also supports the possibility to use 22q11.2DS as a model to study T-cell involvement in the development of SSD.
Collapse
|
6
|
Crowley B, Ruffner M, McDonald McGinn DM, Sullivan KE. Variable immune deficiency related to deletion size in chromosome 22q11.2 deletion syndrome. Am J Med Genet A 2018; 176:2082-2086. [PMID: 29341423 DOI: 10.1002/ajmg.a.38597] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The clinical features of 22q11.2 deletion syndrome include virtually every organ of the body. This review will focus on the immune system and the differences related to deletion breakpoints. A hypoplastic thymus was one of the first features described in this syndrome and low T cell counts, as a consequence of thymic hypoplasia, are the most commonly described immunologic feature. These are most prominently seen in early childhood and can be associated with increased persistence of viruses. Later in life, evidence of T cell exhaustion may be seen and secondary deficiencies of antibody function have been described. The relationship of the immunodeficiency to the deletion breakpoints has been understudied due to the infrequent analysis of people carrying smaller deletions. This manuscript will review the immune deficiency in 22q11.2 deletion syndrome and describe differences in the T cell counts related to the deletion breakpoints. Distal, non-TBX1 inclusive deletions, were found to be associated with better T cell counts. Another new finding is the relative preservation of T cell counts in those patients with a 22q11.2 duplication.
Collapse
Affiliation(s)
- Blaine Crowley
- The Division of Clinical Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melanie Ruffner
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Donna M McDonald McGinn
- The Division of Clinical Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathleen E Sullivan
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Morsheimer M, Brown Whitehorn TF, Heimall J, Sullivan KE. The immune deficiency of chromosome 22q11.2 deletion syndrome. Am J Med Genet A 2017. [PMID: 28627729 DOI: 10.1002/ajmg.a.38319] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The syndrome originally described by Dr. Angelo DiGeorge had immunodeficiency as a central component. When a 22q11.2 deletion was identified as the cause in the majority of patients with DiGeorge syndrome, the clinical features of 22q11.2 deletion syndrome became so expansive that the immunodeficiency became less prominent in our thinking about the syndrome. This review will focus on the immune system and the changes in our understanding over the past 50 years. Initially characterized as a pure defect in T cell development, we now appreciate that many of the clinical features related to the immunodeficiency are well downstream of the limitation imposed by a small thymus. Dysfunctional B cells presumed to be secondary to compromised T cell help, issues related to T cell exhaustion, and high rates of atopy and autoimmunity are aspects of management that require consideration for optimal clinical care and for designing a cogent monitoring approach. New data on atopy are presented to further demonstrate the association.
Collapse
Affiliation(s)
- Megan Morsheimer
- Nemours Children's Health System, DuPont Hospital for Children, Wilmington, Delaware
| | - Terri F Brown Whitehorn
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Jennifer Heimall
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Kathleen E Sullivan
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| |
Collapse
|
8
|
Aresvik DM, Lima K, Øverland T, Mollnes TE, Abrahamsen TG. Increased Levels of Interferon-Inducible Protein 10 (IP-10) in 22q11.2 Deletion Syndrome. Scand J Immunol 2016; 83:188-94. [PMID: 26708691 DOI: 10.1111/sji.12406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2 DS), also known as DiGeorge syndrome, is a genetic disorder with an estimated incidence of 1:4000 births. These patients may suffer from affection of many organ systems with cardiac malformations, thymic hypoplasia or aplasia, hypoparathyroidism, palate anomalies and psychiatric disorders being the most frequent. The incidence of autoimmune diseases is increased in older patients. The aim of the present study was to examine a cytokine profile in patients with 22q11.2 DS by measuring a broad spectrum of serum cytokines. Patients with a proven deletion of chromosome 22q11.2 (n = 55) and healthy individuals (n = 54) recruited from an age- and sex-comparable group were included in the study. Serum levels of 27 cytokines, including chemokines and growth factors, were analysed using multiplex technology. Interferon-inducible protein 10 (IP-10) was also measured by ELISA to confirm the multiplex results. The 22q11.2 DS patients had distinctly and significantly raised levels of pro-inflammatory and angiostatic chemokine IP-10 (P < 0.001) compared to controls. The patients with congenital heart defects (n = 31) had significantly (P = 0.018) raised serum levels of IP-10 compared to patients born without heart defects (n = 24). The other cytokines investigated were either not detectable or did not differ between patients and controls.
Collapse
Affiliation(s)
- D M Aresvik
- Department of Pediatric Research, Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - K Lima
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Department of Pediatrics, Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - T Øverland
- Department of Pediatrics, Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - T E Mollnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - T G Abrahamsen
- Department of Pediatrics, Women and Children's Division, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Clinical Phenotype of DiGeorge Syndrome with Negative Genetic Tests: A Case of DiGeorge-Like Syndrome? Case Rep Pediatr 2015; 2015:938074. [PMID: 26793401 PMCID: PMC4697090 DOI: 10.1155/2015/938074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
We report a case of DiGeorge-like syndrome in which immunodeficiency coexisting with juvenile idiopathic arthritis, congenital heart disease, delay in emergence of language and in motor milestones, feeding and growing problems, enamel hypoplasia, mild skeletal anomalies, and facial dysmorphisms are associated with no abnormalities found on genetic tests.
Collapse
|
10
|
Maggadottir SM, Sullivan KE. The diverse clinical features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:589-94. [PMID: 24565705 DOI: 10.1016/j.jaip.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 01/15/2023]
Abstract
A 2-year-old boy with chromosome 22q11.2 deletion syndrome was referred for recurrent sinopulmonary infections. He was diagnosed shortly after birth by a fluorescence in situ hybridization test that was performed due to interrupted aortic arch type B. He had no hypocalcemia, and his recovery from cardiac repair was uneventful. He had difficulty feeding and gained weight slowly, but, otherwise, there were no concerns during his first year of life. At 15 months of age, he began to develop significant otitis media and bronchitis. He was hospitalized once for pneumonia at 18 months of age and has never been off antibiotics for more than 1 week since then. He has not had any previous immunologic evaluation. Recurrent sinopulmonary infections in a child with chromosome 22q11.2 deletion syndrome can have the same etiologies as in any other child. Atopy, anatomic issues, cystic fibrosis, and new environmental exposures could be considered in this setting. Early childhood can be problematic for patients with chromosome 22q11.2 deletion syndrome due to unfavorable drainage of the middle ear and sinuses. Atopy occurs at a higher frequency in 22q11.2 deletion syndrome, and these children also have a higher rate of gastroesophageal reflux and aspiration than the general population. As would be appropriate for any child who presents with recurrent infections at 2 years of age, an immunologic evaluation should be performed. In this review, we will highlight recent findings and new data on the management of children and adults with chromosome 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa.
| |
Collapse
|
11
|
Belkaya S, Murray SE, Eitson JL, de la Morena MT, Forman JA, van Oers NSC. Transgenic expression of microRNA-185 causes a developmental arrest of T cells by targeting multiple genes including Mzb1. J Biol Chem 2013; 288:30752-30762. [PMID: 24014023 DOI: 10.1074/jbc.m113.503532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
miR-185 is a microRNA (miR) that targets Bruton's tyrosine kinase in B cells, with reductions in miR-185 linked to B cell autoantibody production. In hippocampal neurons, miR-185 targets both sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and a novel Golgi inhibitor. This miR is haploinsufficient in 90-95% of individuals with chromosome 22q11.2 deletion syndrome, patients who can present with immune, cardiac, and parathyroid problems, learning disorders, and a high incidence of schizophrenia in adults. The reduced levels of miR-185 in neurons cause presynaptic neurotransmitter release. Many of the 22q11.2 deletion syndrome patients have a thymic hypoplasia, which results in a peripheral T cell lymphopenia and unusual T helper cell skewing. The molecular targets of miR-185 in thymocytes are unknown. Using an miR-185 T cell transgenic approach, increasing levels of miR-185 attenuated T cell development at the T cell receptor β (TCRβ) selection checkpoint and during positive selection. This caused a peripheral T cell lymphopenia. Mzb1, Nfatc3, and Camk4 were identified as novel miR-185 targets. Elevations in miR-185 enhanced TCR-dependent intracellular calcium levels, whereas a knockdown of miR-185 diminished these calcium responses. These effects concur with reductions in Mzb1, an endoplasmic reticulum calcium regulator. Consistent with their haploinsufficiency of miR-185, Mzb1 levels were elevated in thymocyte extracts from several 22q11.2 deletion syndrome patients. Our findings indicate that miR-185 regulates T cell development through its targeting of several mRNAs including Mzb1.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolai S C van Oers
- From the Departments of Immunology,; Pediatrics, and; Microbiology, the University of Texas Southwestern Medical Center, Dallas, Texas 75390-9093 and.
| |
Collapse
|
12
|
Roux A, Mourin G, Larsen M, Fastenackels S, Urrutia A, Gorochov G, Autran B, Donner C, Sidi D, Sibony-Prat J, Marchant A, Stern M, Sauce D, Appay V. Differential impact of age and cytomegalovirus infection on the γδ T cell compartment. THE JOURNAL OF IMMUNOLOGY 2013; 191:1300-6. [PMID: 23817410 DOI: 10.4049/jimmunol.1202940] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
γδ T cells represent a subset of unconventional T lymphocytes that are known for their reactivity against different pathogens and considered as intermediate mediators between adaptive and innate immunity. We provide in this paper further insights underlying the changes that affect the γδ T cell compartment with advanced age in humans. We show that both aging and CMV infection impact independently on the γδ T cell compartment. Most γδ T cells are significantly affected by age and present a decreased frequency in the elderly. The decline of the γδ T cell pool appears to be independent from the activity of the thymus, arguing in favor of an extrathymic site of γδ T cell production in humans. Of note, CMV infection, which is directly associated with the activation of the pool of Vδ2(-) γδ T cells, promotes nonetheless the inflation of this compartment throughout life. CMV seropositivity accentuates further the accumulation of highly differentiated lymphocytes in Vδ2(-) γδ T cell subsets with time, in contrast to Vδ2(+) γδ T cells, which maintain a less differentiated phenotype. This is similar to the effect of CMV on αβ T cells and suggests that γδ T cells may vary in differentiation phenotype according to distinct stimuli or pathogens.
Collapse
Affiliation(s)
- Antoine Roux
- INSERM Unité Mixte de Recherche S945, Infections and Immunity, Université Pierre et Marie Curie-Paris 6, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dittmer K. It’s not just bones anymore: The new and exciting world of vitamin D. Vet J 2012; 194:5-6. [DOI: 10.1016/j.tvjl.2012.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 10/28/2022]
|
14
|
Albuquerque AS, Marques JG, Silva SL, Ligeiro D, Devlin BH, Dutrieux J, Cheynier R, Pignata C, Victorino RMM, Markert ML, Sousa AE. Human FOXN1-deficiency is associated with αβ double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS One 2012; 7:e37042. [PMID: 22590644 PMCID: PMC3349657 DOI: 10.1371/journal.pone.0037042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Forkhead box N1 (FOXN1) is a transcription factor crucial for thymic epithelium development and prevention of its involution. Investigation of a patient with a rare homozygous FOXN1 mutation (R255X), leading to alopecia universalis and thymus aplasia, unexpectedly revealed non-maternal circulating T-cells, and, strikingly, large numbers of aberrant double-negative αβ T-cells (CD4negCD8neg, DN) and regulatory-like T-cells. These data raise the possibility that a thymic rudiment persisted, allowing T-cell development, albeit with disturbances in positive/negative selection, as suggested by DN and FoxP3+ cell expansions. Although regulatory-like T-cell numbers normalized following HLA-mismatched thymic transplantation, the αβDN subset persisted 5 years post-transplantation. Involution of thymus allograft likely occurred 3 years post-transplantation based on sj/βTREC ratio, which estimates intrathymic precursor T-cell divisions and, consequently, thymic explant output. Nevertheless, functional immune-competence was sustained, providing new insights for the design of immunological reconstitution strategies based on thymic transplantation, with potential applications in other clinical settings.
Collapse
Affiliation(s)
- Adriana S. Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José G. Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Susana L. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Dario Ligeiro
- Immunogenetics Laboratory, Centro de Histocompatibilidade do Sul – CHSul, Lisboa, Portugal
| | - Blythe H. Devlin
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jacques Dutrieux
- Institut Cochin, Département Immunologie-Hematologie, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Département Immunologie-Hematologie, Paris, France
- Inserm, U567, Paris, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, Paris, France
- CNRS, UMR 8104, Paris, France
| | - Claudio Pignata
- Pediatric Immunology Unit, Department of Pediatrics, “Federico II” University, Naples, Italy
| | - Rui M. M. Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - M. Louise Markert
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ana E. Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
15
|
van Beveren NJM, Krab LC, Swagemakers S, Buitendijk G, Buitendijk GHS, Boot E, van der Spek P, Elgersma Y, van Amelsvoort TAMJ. Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One 2012; 7:e33473. [PMID: 22457764 PMCID: PMC3310870 DOI: 10.1371/journal.pone.0033473] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/09/2012] [Indexed: 12/19/2022] Open
Abstract
22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and development of neurons and neuronal circuits, and neurotransmission. We investigated whole-genome gene expression of Peripheral Blood Mononuclear Cells (PBMC's) of 8 22q11DS patients and 8 age- and gender-matched controls, to (1) investigate the expression levels of 22q11 genes and (2) to investigate whether 22q11 genes participate in functional genetic networks relevant to schizophrenia. Functional relationships between genes differentially expressed in patients (as identified by Locally Adaptive Statistical procedure (LAP) or satisfying p<0.05 and fold-change >1.5) were investigated with the Ingenuity Pathways Analysis (IPA). 14 samples (7 patients, 7 controls) passed quality controls. LAP identified 29 deregulated genes. Pathway analysis showed 262 transcripts differentially expressed between patients and controls. Functional pathways most disturbed were cell death, cell morphology, cellular assembly and organization, and cell-to-cell signaling. In addition, 10 canonical pathways were identified, among which the signal pathways for Natural Killer-cells, neurotrophin/Trk, neuregulin, axonal guidance, and Huntington's disease. Our findings support the use of 22q11DS as a research model for schizophrenia. We identified decreased expression of several genes (among which COMT, Ufd1L, PCQAP, and GNB1L) previously linked to schizophrenia as well as involvement of signaling pathways relevant to schizophrenia, of which Neurotrophin/Trk and neuregulin signaling seems to be especially notable.
Collapse
Affiliation(s)
- Nico J M van Beveren
- Department of Psychiatry, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The absence of an appropriate central tolerance in primary immunodeficiencies favors proliferation of autoreactive lymphocyte clones, causing a greater incidence of autoimmunity. Del 22q11.2 syndrome presents an increased incidence of allergic and autoimmune diseases. One of the most relevant and frequent immune manifestations is autoimmune thrombocytopenia. We present the case of a pediatric patient with autoimmune thrombocytopenia due to the immunological dysregulation observed in partial DiGeorge syndrome.
Collapse
|
17
|
Altered thymic activity in early life: how does it affect the immune system in young adults? Curr Opin Immunol 2011; 23:543-8. [DOI: 10.1016/j.coi.2011.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022]
|
18
|
McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore) 2011; 90:1-18. [PMID: 21200182 DOI: 10.1097/md.0b013e3182060469] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosome 22q11.2 deletion syndrome is a common syndrome also known as DiGeorge syndrome and velocardiofacial syndrome. It occurs in approximately 1:4000 births, and the incidence is increasing due to affected parents bearing their own affected children. The manifestations of this syndrome cross all medical specialties, and care of the children and adults can be complex. Many patients have a mild to moderate immune deficiency, and the majority of patients have a cardiac anomaly. Additional features include renal anomalies, eye anomalies, hypoparathyroidism, skeletal defects, and developmental delay. Each child's needs must be tailored to his or her specific medical problems, and as the child transitions to adulthood, additional issues will arise. A holistic approach, addressing medical and behavioral needs, can be very helpful.
Collapse
|
19
|
Zemble R, Luning Prak E, McDonald K, McDonald-McGinn D, Zackai E, Sullivan K. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Immunol 2010; 136:409-18. [PMID: 20472505 DOI: 10.1016/j.clim.2010.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/23/2010] [Accepted: 04/10/2010] [Indexed: 01/02/2023]
Abstract
Clinical evidence suggests that patients with Chromosome 22q11.2 deletion (Ch22q11.2D) have an increased prevalence of atopic and autoimmune disease and this has been without explanation. We hypothesized that the increase in atopy was due to homeostatic proliferation of T cells leading to a Th2 skew. We performed intracellular cytokine staining to define Th1/Th2 phenotypes in toddlers (early homeostatic proliferation) and adults (post homeostatic proliferation) with this syndrome. To attempt to understand the predisposition to autoimmunity we performed immunophenotyping analyses to define Th17 cells and B cell subsets. Adult Ch22q11.2D patients had a higher percentage of IL-4+CD4+ T cells than controls. Th17 cells were no different in patients and controls. In addition, adult Ch22q11.2D syndrome patients had significantly lower switched memory B cells, suggesting a dysregulated B cell compartment. These studies demonstrate that the decrement in T cell production has secondary consequences in the immune system, which could mold the patients' clinical picture.
Collapse
Affiliation(s)
- R Zemble
- The Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
20
|
Eberle P, Berger C, Junge S, Dougoud S, Büchel EV, Riegel M, Schinzel A, Seger R, Güngör T. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11.2 microdeletion and partial DiGeorge syndrome. Clin Exp Immunol 2008; 155:189-98. [PMID: 19040613 DOI: 10.1111/j.1365-2249.2008.03809.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A subgroup of patients with 22q11.2 microdeletion and partial DiGeorge syndrome (pDGS) appears to be susceptible to non-cardiac mortality (NCM) despite sufficient overall CD4(+) T cells. To detect these patients, 20 newborns with 22q11.2 microdeletion and congenital heart disease were followed prospectively for 6 years. Besides detailed clinical assessment, longitudinal monitoring of naive CD4(+) and cytotoxic CD3(+)CD8(+) T cells (CTL) was performed. To monitor thymic activity, we analysed naive platelet endothelial cell adhesion molecule-1 (CD31(+)) expressing CD45RA(+)RO(-)CD4(+) cells containing high numbers of T cell receptor excision circle (T(REC))-bearing lymphocytes and compared them with normal values of healthy children (n = 75). Comparing two age periods, low overall CD4(+) and naive CD4(+) T cell numbers were observed in 65%/75%, respectively, of patients in period A (< 1 year) declining to 22%/50%, respectively, of patients in period B (> 1/< 7 years). The percentage of patients with low CTLs (< P10) remained robust until school age (period A: 60%; period B: 50%). Low numbers of CTLs were associated with abnormally low naive CD45RA(+)RO(-)CD4(+) T cells. A high-risk (HR) group (n = 11) and a standard-risk (SR) (n = 9) group were identified. HR patients were characterized by low numbers of both naive CD4(+) and CTLs and were prone to lethal infectious and lymphoproliferative complications (NCM: four of 11; cardiac mortality: one of 11) while SR patients were not (NCM: none of nine; cardiac mortality: two of nine). Naive CD31(+)CD45RA(+)RO(-)CD4(+), naive CD45RA(+)RO(-)CD4(+) T cells as well as T(RECs)/10(6) mononuclear cells were abnormally low in HR and normal in SR patients. Longitudinal monitoring of naive CD4(+) and cytotoxic T cells may help to discriminate pDGS patients at increased risk for NCM.
Collapse
Affiliation(s)
- P Eberle
- Division of Immunology/Hematology/BMT, University Children's Hospital, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sullivan KE. Chromosome 22q11.2 deletion syndrome: DiGeorge syndrome/velocardiofacial Syndrome. Immunol Allergy Clin North Am 2008; 28:353-66. [PMID: 18424337 DOI: 10.1016/j.iac.2008.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DiGeorge syndrome, or chromosome 22q11.2 deletion syndrome, is a disorder affecting multiple organ systems. The immunologist may be called on to coordinate complex medical care tailored to the specific needs and unique clinical features of each patient. This article focuses on the immune system, but patients require a holistic approach. Attention to cardiac, nutritional, and developmental needs in early infancy is important, and it is critical to identify the rare infants who require either a lymphocyte or thymus transplant. Later, speech and school issues dominate the picture. Allergies and autoimmune disorders also may be troubling for some school-age children.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
22
|
Immunologic defects in 22q11.2 deletion syndrome. J Allergy Clin Immunol 2008; 122:362-7, 367.e1-4. [PMID: 18485468 DOI: 10.1016/j.jaci.2008.03.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND 22q11.2 Deletion syndrome, the most common congenital chromosome deletion syndrome, is associated with developmental defects including cardiac abnormalities and hypoplasia or abnormal migration of the thymus. These patients have variable defects in T-cell immunity with an increased incidence of infection and autoimmune disease. OBJECTIVE To investigate the immunologic constitution of children with 22q11.2 deletion syndrome. METHODS We characterized the immunologic constitution of 27 children with 22q11.2 deletion syndrome and 54 healthy controls by flow-cytometric analysis of peripheral blood lymphocyte populations. RESULTS Patients exhibited decreased T-cell numbers, although the normal age-related decrease in T-cell numbers was slower than in healthy children. There was a significant decrease in FoxP3(+) natural regulatory T (nTreg) cells with a strong correlation between nTreg cells and recent T-cell emigrants from the thymus, suggesting a link between the nTreg cell population and thymic function. Although total B-cell numbers were unaffected, patients showed a significantly decreased proportion of memory B cells in the B-cell pool. CONCLUSION Lower nTreg cells in patients suggest that the generation and maintenance of these cells in children is related to thymic function. In addition to T-cell abnormalities classically seen in this syndrome, subtle defects in the B-cell compartment may also be seen.
Collapse
|
23
|
Abstract
Velocardiofacial syndrome, DiGeorge syndrome, and some other clinical syndromes have in common a high frequency of hemizygous deletions of chromosome 22q11.2. This deletion syndrome is very common, affecting nearly one in 3000 children. Here, we focus on recent advances in cardiac assessment, speech, immunology, and pathophysiology of velocardiofacial syndrome. The complex medical care of patients needs a multidisciplinary approach, and every patient has his own unique clinical features that need a tailored approach. Patients with chromosome 22q11.2 deletion syndrome might have high level of functioning, but most often need interventions to improve the function of many organ systems.
Collapse
Affiliation(s)
- Lisa J Kobrynski
- Department of Pediatrics, Allergy and Immunology Section, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
24
|
O'gorman MRG. Role of flow cytometry in the diagnosis and monitoring of primary immunodeficiency disease. Clin Lab Med 2007; 27:591-626, vii. [PMID: 17658409 DOI: 10.1016/j.cll.2007.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This presentation is organized according to the recent classification of primary immunodeficiencies published by the International Union of Immunological Societies Primary Immunodeficiency meeting. The diseases have been classified into eight groups. After each list, individual diseases that are amenable to assessment by flow cytometry are reviewed with a brief clinical description and a discussion of the appropriate flow cytometry application.
Collapse
|
25
|
Sullivan KE. DiGeorge Syndrome/Velocardiofacial Syndrome: The Chromosome 22q11.2 Deletion Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:37-49. [PMID: 17712990 DOI: 10.1007/978-0-387-72005-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosome 22q11.2 deletion (CH22qD) syndrome is also known as DiGeorge syndrome or velocardiofacial syndrome. This deletion syndrome is extremely common with nearly one in 4000 children being affected. Recent advances and a holistic approach to patients have improved the care and well-being of these patients. This review will summarize advances in understanding the health needs and immune system of patients with CH22qD syndrome. Patients will most often need interventions directed at maximizing function for many organ systems but can ultimately have a high level of functioning.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Department of Pediatrics, Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|