1
|
Behera J, Kelly KE, Tyagi N. Hydrogen sulfide prevents ethanol-induced ZO-1 CpG promoter hypermethylation-dependent vascular permeability via miR-218/DNMT3a axis. J Cell Physiol 2021; 236:6852-6867. [PMID: 33855696 DOI: 10.1002/jcp.30382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Ethanol (ET) causes cerebrovascular dysfunction by altering homocysteine (Hcy) metabolism and by causing oxidative stress. However, there are no strategies to prevent ET-induced epigenetic deregulation of tight junction protein (hyper-methylation) and endothelial cell permeability to date. Hydrogen sulfide (H2 S) has an antioxidative, antiapoptotic, and anti-inflammatory effect. Here, we investigated the protective role of H2 S in ET-induced endothelial permeability through epigenetic changes in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 50 mM ET treatment in the presence or absence of 50 μM NaHS (H2 S donor). The result demonstrates that ET-induced cellular toxicity increased intracellular Hcy levels, which further intensified mitochondrial dysfunction and energy defects. Using miScript microRNA (miRNA) polymerase chain reaction array-based screening, we identified a particular miRNA, miR-218, as a novel target of ET-induced DNA methyltransferase-3a (DNMT3a) activation. miR-218 influences CpG island methylation of the zonula occludens 1 (ZO-1) promoter in the endothelial cells. We discovered that ET suppressed miR-218 levels and induced endothelial permeability via DNMT3a-mediated ZO-1 hyper-methylation. Treatment with mito-TEMPO (mitochondria-targeted antioxidant), 5'-azacitidine (DNMT inhibitor), or miR-218 overexpression was shown to protect endothelial cells against ET-induced permeability. Also, bEnd3 cells pretreated with NaHS attenuated ET-induced vascular permeability and prevented CpG island methylation at the promoter. In conclusion, our data provide evidence that H2 S treatment protects vascular integrity from ET-induced stress by mitigating CpG (ZO-1 promoter) DNA hyper-methylation. This finding uncovers a new mechanistic understanding of NaHS/H2 S, that may have therapeutic potential in preventing or diminishing ET-induced brain vascular permeability and dysfunction induced by alcoholism.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Kimberly E Kelly
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Dubrovskyi O, Hasten E, Dudek SM, Flavin MT, Chan LLY. Development of an Image-Based HCS-Compatible Method for Endothelial Barrier Function Assessment. SLAS DISCOVERY 2021; 26:1079-1090. [PMID: 34269109 DOI: 10.1177/24725552211030900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.
Collapse
Affiliation(s)
- Oleksii Dubrovskyi
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Erica Hasten
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, College of Medicine, University of Illinois in Chicago, Chicago, IL, USA
| | - Michael T Flavin
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
3
|
George AK, Behera J, Kelly KE, Mondal NK, Richardson KP, Tyagi N. Exercise Mitigates Alcohol Induced Endoplasmic Reticulum Stress Mediated Cognitive Impairment through ATF6-Herp Signaling. Sci Rep 2018; 8:5158. [PMID: 29581524 PMCID: PMC5980102 DOI: 10.1038/s41598-018-23568-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic ethanol/alcohol (AL) dosing causes an elevation in homocysteine (Hcy) levels, which leads to the condition known as Hyperhomocysteinemia (HHcy). HHcy enhances oxidative stress and blood-brain-barrier (BBB) disruption through modulation of endoplasmic reticulum (ER) stress; in part by epigenetic alternation, leading to cognitive impairment. Clinicians have recommended exercise as a therapy; however, its protective effect on cognitive functions has not been fully explored. The present study was designed to observe the protective effects of exercise (EX) against alcohol-induced epigenetic and molecular alterations leading to cerebrovascular dysfunction. Wild-type mice were subjected to AL administration (1.5 g/kg-bw) and subsequent treadmill EX for 12 weeks (5 day/week@7-11 m/min). AL affected mouse brain through increases in oxidative and ER stress markers, SAHH and DNMTs alternation, while decreases in CBS, CSE, MTHFR, tight-junction proteins and cellular H2S levels. Mechanistic study revealed that AL increased epigenetic DNA hypomethylation of Herp promoter. BBB dysfunction and cognitive impairment were observed in the AL treated mice. AL mediated transcriptional changes were abolished by administration of ER stress inhibitor DTT. In conclusion, exercise restored Hcy and H2S to basal levels while ameliorating AL-induced ER stress, diminishing BBB dysfunction and improving cognitive function via ATF6-Herp-signaling. EX showed its protective efficacy against AL-induced neurotoxicity.
Collapse
Affiliation(s)
- Akash K George
- Department of Physiology, University of Louisville School of medicine, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Department of Physiology, University of Louisville School of medicine, Louisville, KY, 40202, USA
| | - Kimberly E Kelly
- Department of Physiology, University of Louisville School of medicine, Louisville, KY, 40202, USA
| | - Nandan K Mondal
- Department of Physiology, University of Louisville School of medicine, Louisville, KY, 40202, USA
| | - Kennedy P Richardson
- Department of Physiology, University of Louisville School of medicine, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an In vitro sepsis model. PLoS One 2017; 12:e0179850. [PMID: 28662100 PMCID: PMC5491059 DOI: 10.1371/journal.pone.0179850] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNAs) play an essential role in inflammation processes including sepsis. This study aimed to identify miRNAs as candidates for therapies that are involved in the innate immune response and to assess their potential functions in the activation of the endothelium. We stimulated THP-1 monocytes with 10 ng/ml LPS for 4 h and used the supernatant for the stimulation of human umbilical vein endothelial cells (HUVEC) or human pulmonary microvascular endothelial cells (HPMEC) for 16 h. miRNA array analysis (of 1,891 miRNAs) identified a 1.5-fold upregulation of miR-146a, miR-146b, and miR-155 in stimulated endothelial cells. HUVEC were transfected with miRNA inhibitors for miR-146a, miR-146b, and miR-155 to investigate the function of these miRNAs in endothelial inflammatory pathways. Inhibition of miR-146a resulted in a diminished release of interleukin (IL)-6 and IL-8 by respective 68% and 55% (P<0.001). Inhibition of miR-146b reduced the expression of IL-6 by 49% (P<0.001). Inhibition of miR-155 reduced the expression of IL-6 and IL-8 by respective 31% (P<0.001) and 14%. The inhibition of miR-146a, miR-146b, and miR-155 reduced the release of HSP10 by 50%, 35%, and 69% (P<0.05), respectively, but did not influence the expression of HSP27 or TXA2. In conclusion, miR-146a, miR-146b, and miR-155 are exerting anti-inflammatory properties by down-regulating IL-6 and IL-8, and influencing the expression of HSP10 in the activated endothelium. We provide evidence for the central role of selected miRNAs in sepsis and their use in the development of small interfering RNA therapeutics to target immune cells and sepsis pathways.
Collapse
|
5
|
Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters. J Virol 2016; 90:6200-6215. [PMID: 27099308 PMCID: PMC4936146 DOI: 10.1128/jvi.00304-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.
Collapse
|
6
|
Nymo S, Gustavsen A, Nilsson PH, Lau C, Espevik T, Mollnes TE. Human Endothelial Cell Activation by Escherichia coli and Staphylococcus aureus Is Mediated by TNF and IL-1β Secondarily to Activation of C5 and CD14 in Whole Blood. THE JOURNAL OF IMMUNOLOGY 2016; 196:2293-9. [PMID: 26800874 DOI: 10.4049/jimmunol.1502220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
Endothelial cells (EC) play a central role in inflammation. E-selectin and ICAM-1 expression are essential for leukocyte recruitment and are good markers of EC activation. Most studies of EC activation are done in vitro using isolated mediators. The aim of the present study was to examine the relative importance of pattern recognition systems and downstream mediators in bacteria-induced EC activation in a physiological relevant human model, using EC incubated with whole blood. HUVEC were incubated with human whole blood. Escherichia coli- and Staphylococcus aureus-induced EC activation was measured by E-selectin and ICAM-1 expression using flow cytometry. The mAb 18D11 was used to neutralize CD14, and the lipid A analog eritoran was used to block TLR4/MD2. C5 cleavage was inhibited using eculizumab, and C5aR1 was blocked by an antagonist. Infliximab and canakinumab were used to neutralize TNF and IL-1β. The EC were minimally activated when bacteria were incubated in serum, whereas a substantial EC activation was seen when the bacteria were incubated in whole blood. E. coli-induced activation was largely CD14-dependent, whereas S. aureus mainly caused a C5aR1-mediated response. Combined CD14 and C5 inhibition reduced E-selectin and ICAM-1 expression by 96 and 98% for E. coli and by 70 and 75% for S. aureus. Finally, the EC activation by both bacteria was completely abolished by combined inhibition of TNF and IL-1β. E. coli and S. aureus activated EC in a CD14- and C5-dependent manner with subsequent leukocyte secretion of TNF and IL-1β mediating the effect.
Collapse
Affiliation(s)
- Stig Nymo
- Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Faculty of Health Sciences, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway; Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Faculty of Health Sciences, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Faculty of Health Sciences, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway; Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway; Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and
| |
Collapse
|
7
|
Nymo S, Niyonzima N, Espevik T, Mollnes TE. Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 2014; 219:786-92. [PMID: 25053140 DOI: 10.1016/j.imbio.2014.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022]
Abstract
Cholesterol crystals are known to be a hallmark of atherosclerosis with recent studies demonstrating deposition of these crystals in early fatty streak formation as well as penetrating the intima following plaque rupture. Inflammation has also become a central focus in atheroma development and endothelial cell activation is recognized as necessary for the recruitment of inflammatory cells to the plaque. However, the extent to which cholesterol crystals can induce inflammation and activate endothelial cells is not known. To investigate this, we developed a novel model activating human umbilical vein endothelial cells using lepirudin anticoagulated human whole blood. We found that cholesterol crystals caused a marked and dose-dependent increase in the adhesion molecules E-selectin and ICAM-1 on the surface of the endothelial cells after incubation with whole blood. There was no activation of the cells when the crystals were incubated in medium alone, or in human serum, despite substantial crystal-induced complement activation in serum. Complement inhibitors at the C3 and C5 levels reduced the whole blood induced endothelial cell activation by up to 89% (p<0.05) and abolished TNF release (p<0.01). Finally, the TNF inhibitor infliximab reduced endothelial activation to background levels (p<0.05). In conclusion, these data demonstrate that endothelial activation by cholesterol crystals is mediated by complement-dependent TNF release, and suggests that complement-inhibition might have a role in alleviating atherosclerosis-induced inflammation.
Collapse
Affiliation(s)
- Stig Nymo
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway.
| | - Nathalie Niyonzima
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen IRC, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Osmotic pressure of gingiva in periodontitis: Correlation with gingival proinflammatory cytokine production and alveolar bone destruction. J Dent Sci 2011. [DOI: 10.1016/j.jds.2011.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Pfeilschifter W, Czech B, Hoffmann BP, Sujak M, Kahles T, Steinmetz H, Neumann-Haefelin T, Pfeilschifter J. Pyrrolidine Dithiocarbamate Activates p38 MAPK and Protects Brain Endothelial Cells From Apoptosis: A Mechanism for the Protective Effect in Stroke? Neurochem Res 2010; 35:1391-401. [DOI: 10.1007/s11064-010-0197-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2010] [Indexed: 01/18/2023]
|
10
|
Macey BM, Rathburn CK, Thibodeaux LK, Burnett LE, Burnett KG. Clearance of Vibrio campbellii injected into the hemolymph of Callinectes sapidus, the Atlantic blue crab: the effects of prior exposure to bacteria and environmental hypoxia. FISH & SHELLFISH IMMUNOLOGY 2008; 25:718-730. [PMID: 18964085 DOI: 10.1016/j.fsi.2008.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/25/2008] [Accepted: 02/09/2008] [Indexed: 05/27/2023]
Abstract
The Atlantic blue crab, Callinectes sapidus (Rathbun), lives in a bacteria-rich environment that experiences daily fluctuations in water quality. In the present study, we tested the hypothesis that crustaceans with prior or ongoing exposure to bacteria in their hemolymph have an increased susceptibility to subsequent infections, and that acute exposure to low dissolved oxygen (hypoxia) and elevated carbon dioxide levels (hypercapnia) may further confound the ability of blue crabs to counter a subsequent infection. Adult male blue crabs held in well-aerated (normoxic; P O2=20.7 kPA; CO(2)<0.06 kPa; pH 7.8-8.0) or hypercapnic hypoxic (HH; P O2=4 kPa; CO(2)=1.8 kPa; pH 6.9-7.2) seawater received an injection (pre-challenge dose) of 1 x 10(5)Vibrio campbellii g(-1) crab. Control animals were injected with an equivalent dose of HEPES-buffered saline (1 microl g(-1) crab). At 2h or 24h after the pre-challenge injection, both Vibrio and saline-pre-challenged animals were injected with a dose of live V. campbellii (1 x 10(5)g(-1) crab). This second injection will be referred to as a second injection or challenge injection. Degradation in or physical removal of intact bacteria from hemolymph was quantified using real-time PCR; bacteriostasis was quantified as the percentage of intact bacteria that could not be recovered by selective plating. We demonstrated that bacteriostasis occurs in the hemolymph of blue crabs. Furthermore, blue crabs that received a challenge injection 2h after a pre-challenge dose of V. campbellii cleared culturable bacteria from their hemolymph more rapidly when compared to animals that received a pre-challenge dose of saline. This enhanced clearance of culturable bacteria was associated with an increase in antibacterial activity in the cell-free hemolymph. However, the enhanced clearance of culturable bacteria disappeared when the time interval between the pre-challenge and challenge dose was extended to 24h and when crabs were held in HH seawater throughout the experiment. Neither the time interval between the pre-challenge and the challenge dose nor exposure to HH altered the pattern of intact bacterial clearance in blue crabs. These results demonstrate that prior exposure to bacteria does not increase the susceptibility of C. sapidus to a second, sublethal dose of V. campbellii. In fact, a recent exposure to V. campbellii enhances the ability of blue crabs to render bacteria non-culturable and the immune mechanisms/effectors responsible for this are short lived and appear to be sensitive to low dissolved oxygen and high carbon dioxide concentrations in the environment.
Collapse
Affiliation(s)
- Brett M Macey
- Grice Marine Laboratory, College of Charleston and Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | | | | | | | | |
Collapse
|
11
|
Wu F, Wilson JX. Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction. Cardiovasc Res 2008; 81:38-45. [PMID: 18791203 PMCID: PMC2605194 DOI: 10.1093/cvr/cvn246] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aims We investigated the mechanism by which proinflammatory stimulation induces microvascular endothelial barrier dysfunction. Since protein phosphatase type 2A (PP2A) can mediate paracellular leak and can be inactivated by tyrosine phosphorylation in its catalytic subunit (PP2Ac), we hypothesized that microvascular endothelial cells exposed to proinflammatory stimulation produce peroxynitrite that nitrates PP2Ac, and this nitration inhibits tyrosine phosphorylation of PP2Ac and thereby increases PP2A activity to mediate endothelial barrier dysfunction. Methods and results Exposure of mouse skeletal muscle microvascular endothelial cell monolayers to a proinflammatory stimulus [lipopolysaccharide (LPS) + interferon (IFN)γ] increased permeability to albumin, and this barrier dysfunction was attenuated by PP2A inhibitor okadaic acid or by siRNA (small interfering ribonucleic acid) against PP2Ac. LPS + IFNγ increased synthesis of peroxynitrite precursors nitric oxide (NO) and superoxide by inducible NO synthase (iNOS) and NADPH oxidase, respectively. PP2Ac immunoprecipitates isolated from LPS + IFNγ- or peroxynitrite-treated cells showed increased tyrosine nitration, decreased tyrosine phosphorylation and increased phosphatase activity. 3-Nitrotyrosine immunoprecipitates from LPS + IFNγ-stimulated cells also exhibited increased PP2A activity. Further, iNOS inhibitor 1400W, iNOS deficiency, NADPH oxidase inhibitor apocynin, or p47phox deficiency prevented the increase in PP2A activity and preserved barrier function. Conclusion LPS + IFNγ stimulates endothelial cells to produce iNOS-derived NO and NADPH oxidase-derived superoxide, which form peroxynitrite that nitrates tyrosine residues in PP2Ac and inhibits their phosphorylation. This nitration in PP2Ac is correlated with PP2A activation that mediates endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Feng Wu
- Department of Exercise and Nutrition Sciences, University at Buffalo, 3435 Main Street, G10 Farber Hall, Buffalo, NY 14214-8028, USA.
| | | |
Collapse
|
12
|
Wakamoto S, Fujihara M, Sakagawa H, Takahashi D, Niwa K, Morioka M, Sato S, Kato T, Azuma H, Ikeda H. Endothelial permeability is increased by the supernatant of peripheral blood mononuclear cells stimulated with HLA Class II antibody. Transfusion 2008; 48:2060-8. [PMID: 18564388 DOI: 10.1111/j.1537-2995.2008.01809.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The generation of inflammatory mediators from monocytes activated by HLA Class II antibodies is thought to play important roles in the etiology of nonhemolytic transfusion reactions. Increased permeability of endothelial cells contributes to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema, which are symptoms of transfusion reactions. STUDY DESIGN AND METHODS We investigated whether inflammatory mediators released from monocytes upon stimulation by HLA Class II antibodies could increase endothelial permeability. Human endothelial cell monolayers were incubated with cell-free supernatants of peripheral blood mononuclear cells (PBMNCs) stimulated with HLA Class II antibody-containing plasma (anti-HLA-DR plasma), which has been implicated in severe nonhemolytic transfusion reactions. The permeability of endothelial cells to dextran was measured. RESULTS The supernatants of PBMNCs stimulated with the anti-HLA-DR plasma in corresponding antigen-antibody combinations were able to increase endothelial permeability. At least 3 hours of exposure of PBMNCs to anti-HLA-DR plasma was required to produce a supernatant that could induce a significant increase in permeability. Simultaneous addition of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) neutralizing antibodies to the activated PBMNC supernatant significantly reduced the increase in permeability. Treatment of the endothelial cells with an inhibitor of nuclear factor kappaB (NF-kappaB), but not inhibitors of apoptosis, significantly prevented the increase in permeability. CONCLUSION Both TNF-alpha and IL-1 beta, generated from PBMNCs by anti-HLA-DR plasma in a corresponding antigen-antibody-dependent manner, led to an increase in endothelial permeability. The activation of monocytes by the HLA-DR antibodies and the resultant inflammatory mediators could contribute to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema after transfusion.
Collapse
Affiliation(s)
- Shinobu Wakamoto
- Hokkaido Red Cross Blood Center and Aiiku Hospital, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Effects of lipopolysaccharide and Mannheimia haemolytica leukotoxin on bovine lung microvascular endothelial cells and alveolar epithelial cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:338-47. [PMID: 18032592 DOI: 10.1128/cvi.00344-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bovine respiratory disease resulting from infection with Mannheimia haemolytica commonly results in extensive vascular leakage into the alveoli. M. haemolytica produces two substances, lipopolysaccharide (LPS) and leukotoxin (LKT), that are known to be important in inducing some of the pathological changes. In the present study, we examined bovine pulmonary epithelial (BPE) cell and bovine lung microvascular endothelial cell monolayer permeability, as measured by trans-well endothelial and epithelial cell electrical resistance (TEER), after incubation with LPS, LKT, or LPS-activated neutrophils. Endothelial cell monolayers exposed to LPS exhibited significant decreases in TEER that corresponded with increased levels of proinflammatory cytokines, apoptosis, and morphological changes. In contrast, BPE cells exposed to LPS increased the levels of production of inflammatory cytokines but displayed no changes in TEER, apoptosis, or visible morphological changes. Both cell types appeared to express relatively equal levels of the LPS ligand Toll-like receptor 4. However, TEER in BPE cell monolayers was decreased when the cells were incubated with LPS-activated neutrophils. Although the incubation of BPE cells with LKT decreased TEER, this was not reduced by the incubation of LKT with a neutralizing antibody and was reversed when LKT was preincubated with the LPS-neutralizing compound polymyxin B. Because BPE cells did not express the LKT receptor CD11a/CD18, we infer that contaminating LPS was responsible for the decreased TEER. In conclusion, LPS triggered changes in endothelial cells that would be consistent with vascular leakage, but neither LPS nor LKT caused similar changes in epithelial cells, unless neutrophils were also present.
Collapse
|