1
|
Houben T, Magro Dos Reis I, Oligschlaeger Y, Steinbusch H, Gijbels MJJ, Hendrikx T, Binder CJ, Cassiman D, Westerterp M, Prickaerts J, Shiri-Sverdlov R. Pneumococcal Immunization Reduces Neurological and Hepatic Symptoms in a Mouse Model for Niemann-Pick Type C1 Disease. Front Immunol 2019; 9:3089. [PMID: 30666257 PMCID: PMC6330339 DOI: 10.3389/fimmu.2018.03089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is caused by a deleterious mutation in the Npc1 gene, causing lysosomal accumulation of unesterified cholesterol and sphingolipids. Consequently, NPC1 disease patients suffer from severe neurovisceral symptoms which, in the absence of effective treatments, result in premature death. NPC1 disease patients display increased plasma levels of cholesterol oxidation products such as those enriched in oxidized low-density lipoprotein (oxLDL), a pro-inflammatory mediator. While it has been shown that inflammation precedes and exacerbates symptom severity in NPC1 disease, it is unclear whether oxLDL contributes to NPC1 disease progression. In this study, we investigated the effects of increasing anti-oxLDL IgM autoantibodies on systemic and neurological symptoms in an NPC1 disease mouse model. For this purpose, Npc1nih mice were immunized with heat-inactivated S. pneumoniae, an immunogen which elicits an IgM autoantibody-mediated immune response against oxLDL. Npc1nih mice injected with heat-inactivated pneumococci displayed an improved hepatic phenotype, including liver lipid accumulation and inflammation. In addition, regression of motor skills was delayed in immunized Npc1nih. In line with these results, brain analyses showed an improved cerebellar phenotype and neuroinflammation in comparison with control-treated subjects. This study highlights the potential of the pneumococcal immunization as a novel therapeutical approach in NPC1 disease. Future research should investigate whether implementation of this therapy can improve life span and quality of life of NPC1 disease patients.
Collapse
Affiliation(s)
- Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Inês Magro Dos Reis
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Hellen Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marion J J Gijbels
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - David Cassiman
- Liver Research Unit, University of Leuven, Leuven, Belgium.,Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Marit Westerterp
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Soh SY, Faveeuw C, Thiam CH, Khoo LHB, Yeo KP, Lim SY, Lim HY, Ng JX, Angeli V. NKT Cell Hyporesponsiveness Leads to Unrestrained Accumulation of Marginal Zone B Cells in Hypercholesterolemic Apolipoprotein E–Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3894-3904. [DOI: 10.4049/jimmunol.1500999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
|
3
|
Abstract
The immune reactions that regulate atherosclerotic plaque inflammation involve chemokines, lipid mediators and costimulatory molecules. Chemokines are a family of chemotactic cytokines that mediate immune cell recruitment and control cell homeostasis and activation of different immune cell types and subsets. Chemokine production and activation of chemokine receptors form a positive feedback mechanism to recruit monocytes, neutrophils and lymphocytes into the atherosclerotic plaque. In addition, chemokine signalling affects immune cell mobilization from the bone marrow. Targeting several of the chemokines and/or chemokine receptors reduces experimental atherosclerosis, whereas specific chemokine pathways appear to be involved in plaque regression. Leukotrienes are lipid mediators that are formed locally in atherosclerotic lesions from arachidonic acid. Leukotrienes mediate immune cell recruitment and activation within the plaque as well as smooth muscle cell proliferation and endothelial dysfunction. Antileukotrienes decrease experimental atherosclerosis, and recent observational data suggest beneficial clinical effects of leukotriene receptor antagonism in cardiovascular disease prevention. By contrast, other lipid mediators, such as lipoxins and metabolites of omega-3 fatty acids, have been associated with the resolution of inflammation. Costimulatory molecules play a central role in fine-tuning immunological reactions and mediate crosstalk between innate and adaptive immunity in atherosclerosis. Targeting these interactions is a promising approach for the treatment of atherosclerosis, but immunological side effects are still a concern. In summary, targeting chemokines, leukotriene receptors and costimulatory molecules could represent potential therapeutic strategies to control atherosclerotic plaque inflammation.
Collapse
Affiliation(s)
- M Bäck
- Translational Cardiology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - C Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - E Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Steinmetz M, Ponnuswamy P, Laurans L, Esposito B, Tedgui A, Mallat Z. The intravenous injection of oxidized LDL- or Apolipoprotein B100--Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E--Deficient mice. Biochem Biophys Res Commun 2015; 464:306-11. [PMID: 26116775 DOI: 10.1016/j.bbrc.2015.06.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. METHODS AND RESULTS OTII-transgenic mice that were treated with a single dose of 5 × 10(7) OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, "atherosclerosis-associated" antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E - deficient (ApoE-/-) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE-/- mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE-/- mice. CONCLUSION Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen-coupled splenocytes in its present form already impacts the immune responses and deserves further exploration.
Collapse
Affiliation(s)
- Martin Steinmetz
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France; Internal Medicine II, University Hospital Bonn, 53105 Bonn, Germany.
| | | | - Ludivine Laurans
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Bruno Esposito
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Alain Tedgui
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Ziad Mallat
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| |
Collapse
|
5
|
Investigation of serum oxidized low-density lipoprotein IgG levels in patients with angiographically defined coronary artery disease. Int J Vasc Med 2014; 2014:845960. [PMID: 24639897 PMCID: PMC3930021 DOI: 10.1155/2014/845960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/22/2013] [Accepted: 10/06/2013] [Indexed: 11/17/2022] Open
Abstract
It has been suggested that antioxidized low-density lipoprotein (anti-oxLDL) antibodies play a role in the pathogenesis of atherosclerosis. The aim of this study was to measure serum ox-LDL IgG levels in 31 patients with angiographically defined coronary artery disease (CAD) (≥50% stenosis in at least one major coronary artery; CAD+ group) and compare these levels with those of 32 subjects with <50% coronary stenosis (CAD− group) and 24 healthy age- and sex-matched controls using ELISA. We did not find any significant difference between CAD+, CAD−, and control groups in regard to oxLDL IgG levels (P = 0.83). Serum oxLDL IgG levels did not differ between 1VD (one vessel disease), 2VD (2 vessels disease), and 3VD (3 vessels disease) subgroups of CAD+ patients (P = 0.20). Serum anti-oxLDL titers were only significantly correlated with LDL-C in the CAD+ group (P < 0.05) and waist and hip circumference (P < 0.05 and P < 0.01, resp.) in the CAD− group. In stepwise regression analysis, none of the conventional cardiovascular risk factors was associated with serum ox-LDL IgG levels. The present results suggest that serum levels of ox-LDL IgG are neither associated with the presence and severity of CAD nor with the conventional cardiovascular risk factors.
Collapse
|
6
|
Su L, Zhang Q, Bao H, Li W, Miao Y, Yan Z, Chen D. Effect of dalteparin on atherosclerotic lesion formation in apolipoprotein E-deficient mice. Clin Appl Thromb Hemost 2013; 21:266-72. [PMID: 23965336 DOI: 10.1177/1076029613499818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate whether prolonged treatment with dalteparin could inhibit plaque progression. With C57BL/6J mice as the control, genetically deficient apolipoprotein E (apo E) male mice of C57BL/6J strain (apo E(-/-)) were randomly divided into 3 groups. The model group received no dalteparin, while the other 2 groups received dalteparin at 100 and 200 U/kg d, respectively. The aorta was harvested for hematoxylin and eosin staining to observe plaque formation and for immunohistochemical staining to detect the expression of oxidized low-density lipoprotein receptor 1 (LOX-1). The expression of LOX-1 messenger RNA was detected by reverse transcription polymerase chain reaction, while the expression of LOX-1 protein was detected by Western blotting. Dalteparin decreased aortic plaque volume and inhibited aortic LOX-1 protein expression in apo E(-/-) mice. The effect persisted 4 weeks after dalteparin treatment was discontinued. Dalteparin may inhibit atherosclerotic lesions by downregulating the expression of LOX-1 protein.
Collapse
Affiliation(s)
- Lin Su
- Department of Geriatrics, Peking University People's Hospital, Beijing, China
| | - Qingwen Zhang
- Department of Geriatrics, Peking University People's Hospital, Beijing, China
| | - Hui Bao
- Department of Geriatrics, Peking University People's Hospital, Beijing, China
| | - Wei Li
- Department of Geriatrics, Peking University People's Hospital, Beijing, China
| | - Yide Miao
- Department of Geriatrics, Peking University People's Hospital, Beijing, China
| | - Zheng Yan
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Dingbao Chen
- Department of Pathology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
van Leeuwen M, Kemna MJ, de Winther MPJ, Boon L, Duijvestijn AM, Henatsch D, Bos NA, Gijbels MJJ, Tervaert JWC. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PLoS One 2013; 8:e68039. [PMID: 23874490 PMCID: PMC3713002 DOI: 10.1371/journal.pone.0068039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
Aims New strategies to overcome complications of cardiovascular diseases are needed. Since it has been demonstrated that atherosclerosis is an inflammatory disease, modulation of the immune system may be a promising approach. Previously, it was suggested that antibodies may confer protective effects on the development of atherosclerosis. In this study, we hypothesised that passive immunization with anti-oxLDL IgM antibodies specific for hypochlorite (HOCl) may be athero-protective in mice. Methods and Results Monoclonal mouse IgM antibodies were produced and the antibody with specificity for hypochlorite-oxLDL (HOCl-oxLDL) (Moab A7S8) was selected. VH sequence determination revealed that Moab A7S8 is a natural IgM antibody. Atherosclerosis in LDLr−/− mice was induced by a perivascular collar placement around the right carotid artery in combination with feeding a high-fat diet. Subsequently, the mice were treated every six days with 500 µg Moab A7S8, non-relevant IgM or with PBS and the carotid arteries and aortic roots were studied for atherosclerosis. Passive immunization with this Moab A7S8 resulted in a significant reduced plaque volume formation in LDLr−/− mice when compared with PBS treatment (P = 0.002 and P = 0.035). Cholesterol levels decreased by 20% when mice were treated with Moab A7S8 compared to PBS. Furthermore, anti-oxLDL specific IgM and IgG antibody production increased significantly in the Moab A7S8 treated mice in comparison with PBS treated mice. Conclusion Our data show that passive immunization with a natural IgM antibody, directed to HOCl-oxLDL, can reduce atherosclerotic plaque development. We postulate that specific antibody therapy may be developed for use in human cardiovascular diseases.
Collapse
Affiliation(s)
- Marcella van Leeuwen
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michael J. Kemna
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Menno P. J. de Winther
- Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Adriaan M. Duijvestijn
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Darius Henatsch
- Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nico A. Bos
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marion J. J. Gijbels
- Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Willem Cohen Tervaert
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Immunology Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Vale AM, Kapoor P, Skibinski GA, Elgavish A, Mahmoud TI, Zemlin C, Zemlin M, Burrows PD, Nobrega A, Kearney JF, Briles DE, Schroeder HW. The link between antibodies to OxLDL and natural protection against pneumococci depends on D(H) gene conservation. ACTA ACUST UNITED AC 2013; 210:875-90. [PMID: 23589567 PMCID: PMC3646500 DOI: 10.1084/jem.20121861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Germline DH sequences are required for the generation of natural antibodies reactive to bacterial phosphorylcholine but not for those reactive to self-antigen. Selection and physiological production of protective natural antibodies (NAbs) have been associated with exposure to endogenous antigens. The extent to which this association depends on germline NAb sequence is uncertain. Here we show that alterations in germline DH sequence can sever the association between the production of self-reactive NAbs and NAbs that afford protection against a pathogen. In unmanipulated hosts, the availability of the evolutionarily conserved DFL16.1 gene segment sequence profoundly affected the serum levels of NAbs against bacterial phosphorylcholine but not oxidized low-density lipoprotein. Mice with partially altered DFL16.1 sequence could use N nucleotides to recreate the amino acid sequence associated with the classical protective T15 idiotype–positive NAbs, whereas those without DFL16.1 could not. DFL16.1 gene–deficient mice proved more susceptible to challenge with live Streptococcus pneumoniae. Our findings indicate that although production of self-reactive NAbs can be independent of germline DH sequence, their capacity to provide protection against pathogens cannot. The potential relevance of these findings for the rational design of vaccines is discussed.
Collapse
Affiliation(s)
- Andre M Vale
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mallavia B, Oguiza A, Lopez-Franco O, Recio C, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, Egido J, Gomez-Guerrero C. Gene Deficiency in Activating Fcγ Receptors Influences the Macrophage Phenotypic Balance and Reduces Atherosclerosis in Mice. PLoS One 2013; 8:e66754. [PMID: 23805273 PMCID: PMC3689671 DOI: 10.1371/journal.pone.0066754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/10/2013] [Indexed: 01/18/2023] Open
Abstract
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.
Collapse
Affiliation(s)
- Beñat Mallavia
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Ainhoa Oguiza
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Oscar Lopez-Franco
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlota Recio
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Guadalupe Ortiz-Muñoz
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Iolanda Lazaro
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Virginia Lopez-Parra
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Jesus Egido
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- * E-mail:
| |
Collapse
|