1
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
2
|
Goda S, Hayakawa S, Karakawa S, Okada S, Kawaguchi H, Kobayashi M. Possible involvement of regulatory T cell abnormalities and variational usage of TCR repertoire in children with autoimmune neutropenia. Clin Exp Immunol 2020; 204:1-13. [PMID: 33289074 DOI: 10.1111/cei.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023] Open
Abstract
Autoimmune neutropenia (AIN) in childhood is characterized by chronic neutropenia and positivity for anti-neutrophil antibodies, resulting in the excessive destruction of neutrophils. In this study, we investigated the involvement of regulatory T cells (Tregs ) in the pathogenesis of AIN in childhood. Tregs have been classified into three subpopulations based on the expressions of CD45RA and forkhead box protein 3 (FoxP3): resting Tregs , activated Tregs and non-suppressive Tregs . The frequency of activated Tregs (CD4+ CD25+ FoxP3high CD45RA- T cells) as well as that of total Tregs (CD4+ CD25+ FoxP3+ T cells) in peripheral blood was significantly decreased in patients with AIN. Analysis of the T cell receptor (TCR)-Vβ repertoire of CD4+ T cells revealed skewed usages in patients with AIN compared with that observed in age-matched control subjects. Regarding T cell subsets, the use of four of 24 TCR-Vβ families in Tregs and one in conventional T cells were increased in patients with AIN. The number of patients with AIN who showed skewed usages of TCR-Vβ family in conventional and Tregs was significantly higher than that reported in control subjects. When the preference between Tregs and conventional T cells in each TCR-Vβ family was individually compared, different use was prominently observed in the TCR-Vβ 9 family in patients with AIN. These results suggest that the quantitative abnormalities of Tregs and the skew of the TCR-Vβ repertoire in CD4+ T cells, including Tregs and conventional T cells, may be related to autoantibody production through a human neutrophil antigen-reactive T cell clone.
Collapse
Affiliation(s)
- S Goda
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - H Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - M Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
3
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
4
|
Cui JH, Lin KR, Yuan SH, Jin YB, Chen XP, Su XK, Jiang J, Pan YM, Mao SL, Mao XF, Luo W. TCR Repertoire as a Novel Indicator for Immune Monitoring and Prognosis Assessment of Patients With Cervical Cancer. Front Immunol 2018; 9:2729. [PMID: 30524447 PMCID: PMC6262070 DOI: 10.3389/fimmu.2018.02729] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence that deep sequencing-based T cell repertoire can sever as a biomarker of immune response in cancer patients; however, the characteristics of T cell repertoire including diversity and similarity, as well as its prognostic significance in patients with cervical cancer (CC) remain unknown. In this study, we applied a high throughput T cell receptor (TCR) sequencing method to characterize the T cell repertoires of peripheral blood samples from 25 CC patients, 30 cervical intraepithelial neoplasia (CIN) patients and 20 healthy women for understanding the immune alterations during the cervix carcinogenesis. In addition, we also explored the signatures of TCR repertoires in the cervical tumor tissues and paired sentinel lymph nodes from 16 CC patients and their potential value in predicting the prognosis of patients. Our results revealed that the diversity of circulating TCR repertoire gradually decreased during the cervix carcinogenesis and progression, but the circulating TCR repertoires in CC patients were more similar to CIN patients than healthy women. Interestingly, several clonotypes uniquely detected in CC patients tended to share similar CDR3 motifs, which differed from those observed in CIN patients. In addition, the TCR repertoire diversity in sentinel lymphatic nodes from CC patients was higher than in tumor tissues. More importantly, less clonotypes in TCR repertoire of sentinel lymphatic node was associated with the poor prognosis of the patients. Overall, our findings suggested that TCR repertoire might be a potential indicator of immune monitoring and a biomarker for predicting the prognosis of CC patients. Although functional studies of T cell populations are clearly required, this study have expanded our understanding of T cell immunity during the development of CC and provided an experimental basis for further studies on its pathogenesis and immunotherapy.
Collapse
Affiliation(s)
- Jin-Huan Cui
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Kai-Rong Lin
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Song-Hua Yuan
- Department of Gynecology, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Ya-Bin Jin
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Xiang-Ping Chen
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Xi-Kang Su
- Department of Clinical Laboratory, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Jun Jiang
- Department of Abdominothoracic Radiotherapy, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Ying-Ming Pan
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Shao-Long Mao
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Xiao-Fan Mao
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of FoShan (Affiliated FoShan Hospital of Sun Yat-sen University), Foshan, China
| |
Collapse
|
5
|
Lin KR, Pang DM, Jin YB, Hu Q, Pan YM, Cui JH, Chen XP, Lin YX, Mao XF, Duan HB, Luo W. Circulating CD8 + T-cell repertoires reveal the biological characteristics of tumors and clinical responses to chemotherapy in breast cancer patients. Cancer Immunol Immunother 2018; 67:1743-1752. [PMID: 30167861 PMCID: PMC11028329 DOI: 10.1007/s00262-018-2213-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE CD8+ T cells are primarily cytotoxic cells that provide immunological protection against malignant cells. Considerable evidence suggests that the T-cell repertoire is closely associated with the host immune response and the development of cancer. In this study, we explored the characteristics of the circulating CD8+ T-cell repertoire and their potential value in predicting the clinical response of breast cancer patients to chemotherapy. EXPERIMENTAL DESIGN We applied a high-throughput TCR β-chain sequencing method to characterize the CD8+ T-cell repertoire of the peripheral blood from 26 breast cancer patients. In addition, changes in the circulating CD8+ T-cell repertoire during chemotherapy were analyzed. RESULTS We found that the HEC ratios of the CD8+ T-cell repertoires from HER2+ breast cancer patients were significantly higher than those of HER2- patients, suggesting that the HER2 protein is released into circulation where it is targeted by CD8+ T cells. Several Vβ and CDR3 motifs preferentially used in HER2+ patients were identified. Besides, we found that the circulating CD8+ T-cell repertoires evolved during chemotherapy and correlated with patient clinical responses to chemotherapy. Increased CD8+ T-cell repertoire heterogeneity during chemotherapy was associated with a better clinical response. CONCLUSIONS Although functional studies of clonally expanded CD8+ T-cell populations are clearly required, our results suggest that the circulating CD8+ T-cell repertoire reflects the characteristics of the tumor-associated biomolecules released into the blood and correlates with the clinical responses of the patients to chemotherapy which might assist in making treatment decisions.
Collapse
Affiliation(s)
- Kai-Rong Lin
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China
| | - Dan-Mei Pang
- Department of Breast Oncology, Cancer Center, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, 528000, Guangdong, China
| | - Ya-Bin Jin
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China
| | - Qian Hu
- Department of Breast Oncology, Cancer Center, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, 528000, Guangdong, China
| | - Ying-Ming Pan
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China
| | - Jin-Huan Cui
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China
| | - Xiang-Ping Chen
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China
| | - Yin-Xin Lin
- Department of Breast Oncology, Cancer Center, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, 528000, Guangdong, China
| | - Xiao-Fan Mao
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China
| | - Hai-Bo Duan
- Department of Breast Oncology, Cancer Center, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, 528000, Guangdong, China
| | - Wei Luo
- Clinical Research Institute, First People's Hospital of Foshan (Affiliated Foshan Hospital of Sun Yat-sen University), NO. 81 North of Lingnan Avenue, Foshan, 528000, Guangdong, China.
| |
Collapse
|
6
|
Jin YB, Luo W, Zhang GY, Lin KR, Cui JH, Chen XP, Pan YM, Mao XF, Tang J, Wang YJ. TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. Cancer Immunol Immunother 2018; 67:1719-1730. [PMID: 30155576 PMCID: PMC11028245 DOI: 10.1007/s00262-018-2237-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022]
Abstract
The T-cell immune responses in nasopharyngeal carcinoma patients have been extensively investigated recently for designing adoptive immunotherapy or immune checkpoint blockade therapy. However, the distribution characteristics of T cells associated with NPC pathogenesis are largely unknown. We performed deep sequencing for TCR repertoire profiling on matched tumor/adjacent normal tissue from 15 NPC patients and peripheral blood from 39 NPC patients, 39 patients with other nasopharyngeal diseases, and 33 healthy controls. We found that a lower diversity of TCR repertoire in tumors than paired tissues or a low similarity between the paired tissues was associated with a poor prognosis in NPC. A more diverse TCR repertoire was identified in the peripheral blood of NPC patients relative to the controls; this was related to a significant decrease in the proportion of high-frequency TCR clones in NPC. Higher diversity in peripheral blood of NPC patients was associated with a worse prognosis. Due to the peculiarity of the Vβ gene usage patterns in the peripheral blood of NPC patients, 15 Vβ genes were selected to distinguish NPC patients from controls by the least absolute shrinkage and selection operator analysis. We identified 11 clonotypes shared by tumors and peripheral blood samples from different NPC patients, defined as "NPC-associated" that might have value in adoptive immunotherapy. In conclusion, we here report the systematic and overall characteristics of the TCR repertoire in tumors, adjacent normal tissues, and peripheral blood of NPC patients. The data obtained may be relevant to future clinical studies in the setting of immunotherapy for NPC patients.
Collapse
Affiliation(s)
- Ya-Bin Jin
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Wei Luo
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
| | - Guo-Yi Zhang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Cancer Center, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China
| | - Kai-Rong Lin
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Jin-Huan Cui
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Xiang-Ping Chen
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Ying-Ming Pan
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Xiao-Fan Mao
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Jun Tang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Otolaryngology Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China
| | - Yue-Jian Wang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
- Otolaryngology Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
7
|
Caso F, Costa L, Nucera V, Barilaro G, Masala IF, Talotta R, Caso P, Scarpa R, Sarzi-Puttini P, Atzeni F. From autoinflammation to autoimmunity: old and recent findings. Clin Rheumatol 2018; 37:2305-2321. [PMID: 30014358 DOI: 10.1007/s10067-018-4209-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases and autoinflammatory diseases have a number of similar etiopathogenetic and clinical characteristics, including genetic predisposition and recurrent systemic inflammatory flares. The first phase of ADs involves innate immunity: by means of TLRs, autoantigen presentation, B and T cell recruitment and autoantibody synthesis. The second phase involves adaptive immunity, a self-sustaining process in which immune complexes containing nucleic acids and autoantibodies activate self-directed inflammation. The link between autoimmunity and autoinflammation is IL-1ß, which is crucial in connecting the innate immune response due to NLR activation and the adaptive immune responses of T and B cells. In conclusion, although ADs are still considered adaptive immunity-mediated disorders, there is increasing evidence that innate immunity and inflammasomes are also involved. The aim of this review is to highlight the link between the innate and adaptive immune mechanisms involved in autoimmune diseases.
Collapse
Affiliation(s)
- Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Valeria Nucera
- Rheumatology Unit, University of Messina, Messina, Italy
| | - Giuseppe Barilaro
- Department of Internal Medicine, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Rossella Talotta
- Rheumatology Unit, ASST Fatebenefratelli Sacco Buzzi, Milan, Italy
| | - Paolo Caso
- Geriatric Unit, Faculty of Medicine and Psychology, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Via Sergio Pansini, 5, Naples, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Lin KR, Deng FW, Jin YB, Chen XP, Pan YM, Cui JH, You ZX, Chen HW, Luo W. T cell receptor repertoire profiling predicts the prognosis of HBV-associated hepatocellular carcinoma. Cancer Med 2018; 7:3755-3762. [PMID: 29947152 PMCID: PMC6089190 DOI: 10.1002/cam4.1610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/28/2023] Open
Abstract
Tumor‐infiltrating T cell repertoire has been demonstrated to be closely associated with anti‐tumor immune response. However, the relationship between T cell repertoire in tumor tissue and prognosis has never been reported in Hepatocellular carcinoma (HCC). We performed the high‐throughput T cell receptor (TCR) sequencing to systematically characterize the infiltrating T cell repertoires of tumor and matched adjacent normal tissues from 23 HBV‐associated HCC patients. Significant differences on usage frequencies of some Vβ, Jβ, and Vβ‐Jβ paired genes have been found between the 2 groups of tissue samples, but no significant difference of TCR repertoire diversity could be found. Interestingly, the similarity of TCR repertoires between paired samples or the TNM stage alone could not be helpful to evaluate the prognosis of patients very well, but their combination could serve as an efficient prognostic indicator that the patients with early stage and high similarity showed a better prognosis. This is the first attempt to assess the potential value of TCR repertoire in HCC prognosis, and our findings could serve as a complement for the characterization of TCR repertoire in HCC.
Collapse
Affiliation(s)
- Kai-Rong Lin
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Fei-Wen Deng
- Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Ya-Bin Jin
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Xiang-Ping Chen
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Ying-Ming Pan
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Jin-Huan Cui
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | | | - Huan-Wei Chen
- Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Wei Luo
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| |
Collapse
|
9
|
Liu X, Wu J. History, applications, and challenges of immune repertoire research. Cell Biol Toxicol 2018; 34:441-457. [PMID: 29484527 DOI: 10.1007/s10565-018-9426-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
The diversity of T and B cells in terms of their receptor sequences is huge in the vertebrate's immune system and provides broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that makes the organism's adaptive immune system. Before the emergence of high-throughput sequencing, the studies on immune repertoire were limited by the underdeveloped methodologies, since it was impossible to capture the whole picture by the low-throughput tools. The massive paralleled sequencing technology suits perfectly the researches on immune repertoire. In this article, we review the history of immune repertoire studies, in terms of technologies and research applications. Particularly, we discuss several aspects of challenges in this field and highlight the efforts to develop potential solutions, in the era of high-throughput sequencing of the immune repertoire.
Collapse
Affiliation(s)
- Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | | |
Collapse
|
10
|
Wang C, Li S, Jia H, Chen G, Fang Y, Zeng S, He X, Yao W, Jin Q, Cheng W, Feng Y, Yin H, Jing Z. Monoclonal and oligoclonal TCR AV and BV gene usage in CD4 + T cells from pigs immunised with C-strain CSFV vaccine. Sci Rep 2018; 8:1655. [PMID: 29374266 PMCID: PMC5786037 DOI: 10.1038/s41598-018-19974-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022] Open
Abstract
The classical swine fever virus C-strain vaccine (C-strain vaccine) plays a vital role in preventing and controlling the spread of classical swine fever (CSF). However, the protective mechanisms of C-strain vaccine and cellular immunity conferred by T cell receptors (TCRs) are less well defined. We aimed to analyse the association between the complementarity determining region 3 (CDR3) spectratype of αβTCR in CD4+ T cells and C-strain vaccine; and to find conserved CDR3 amino acid motifs in specific TCR α- and β-chains. We found that the CDR3 spectratype showed dynamic changes correlating with C-strain vaccine immunisation and that TCR AV5S/8–3S/8–4S/14/38 and BV4S/6S/7S/15S/30 gene families showed clonal expansion in immunised pigs. The sequences of CDR3 from these clonally expanded T cells indicated a high frequency of the ‘KLX’ motif in the TCR α chain and the ‘GGX’ motif in β chain, and Jα39, Jα43, Jβ2.5 and Jβ2.3 genes were also found in high frequency. To the best of our knowledge, this is the first report describing the dynamic changes of αβTCRs and conserved CDR3 amino acid motifs in CD4+ T cells from C-strain vaccine-immunised pigs, which will provide a basis for the development of high-efficiency epitope vaccines.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Shoujie Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Wenjuan Yao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.
| |
Collapse
|
11
|
Yu J, Shi B, Ma L, Liu C, Sun S, Ma R, Qiu Y, Yao X. Case report for recurrent and new-onset SLE patients treated by high-dose glucocorticoid therapy: Characteristics of peripheral TCR beta chain CDR3 repertoires. Medicine (Baltimore) 2017; 96:e9022. [PMID: 29245286 PMCID: PMC5728901 DOI: 10.1097/md.0000000000009022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE High-dose glucocorticoid therapy has been widely applied in clinical practice in systemic lupus erythematosus (SLE)patients, but less is known about the changes of T cells, especially the T cell receptor (TCR) repertoires, during the treatment. The aim of this paper is to describe the changes of TCR that recurrent and new-onset SLE patients treated by high-dose glucocorticoid therapy. PATIENT CONCERNS Drugs of clinical treatment of SLE mainly include glucocorticoid, immunosuppressive agents, nonsteroidal anti-inflammatory drugs and B cell targeted drugs, etc, but the clinical symptoms were in remission and recurrent of onset patients with SLE. DIAGNOSES Refer to the diagnostic criteria for SLE in 2011 by the American society of rheumatology. INTERVENTIONS All patients were treated with High-dose glucocorticoid therapy and surveyed the TCR repertoires at 3 monitoring moments (before treatment, one month after treatment, and 3 months after treatment) to analyze the relationship between the characteristics of TCR repertoire and the highdose glucocorticoid therapy. OUTCOMES We found that high-dose glucocorticoid therapy resulted in clinical symptom remission, as well as change of diversity, highly expanded clones (HEC), usage of TCR beta chain variable gene (TRBV)/TCR beta chain joining gene (TRBJ), and overlapped sequences of TCR beta chain complementarity determining region 3 (CDR3) repertoires. This suggests that the effect of high-dose glucocorticoids on TCR repertoires is closely related to individual autoimmune T cells. LESSONS In this study, we have shown that we could evaluate the effect of therapy, the pathogenesis, and the prognosis for the patients with SLE by monitoring the TCR CDR3 repertoires. It could afford a new method to find the therapeutic target of SLE.
Collapse
MESH Headings
- Complementarity Determining Regions/drug effects
- Complementarity Determining Regions/metabolism
- Dose-Response Relationship, Drug
- Glucocorticoids/administration & dosage
- Glucocorticoids/pharmacology
- Glucocorticoids/therapeutic use
- Humans
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Receptors, Antigen, T-Cell/drug effects
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/drug effects
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Jiang Yu
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University
- Cell Engineering Laboratory, The first Affiliated Hospital of ZunYi Medical University
| | - Bin Shi
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University
- Department of Laboratory Medicine, Zunyi Medical University
| | - Long Ma
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University
| | | | - Suhong Sun
- Department of Breast Surgery, The first Affiliated Hospital of ZunYi Medical University, Zunyi
| | - Rui Ma
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University
| | - Yuehong Qiu
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, China
| | - Xinsheng Yao
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University
| |
Collapse
|
12
|
Ostmeyer J, Christley S, Rounds WH, Toby I, Greenberg BM, Monson NL, Cowell LG. Statistical classifiers for diagnosing disease from immune repertoires: a case study using multiple sclerosis. BMC Bioinformatics 2017; 18:401. [PMID: 28882107 PMCID: PMC5588725 DOI: 10.1186/s12859-017-1814-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Background Deep sequencing of lymphocyte receptor repertoires has made it possible to comprehensively profile the clonal composition of lymphocyte populations. This opens the door for novel approaches to diagnose and prognosticate diseases with a driving immune component by identifying repertoire sequence patterns associated with clinical phenotypes. Indeed, recent studies support the feasibility of this, demonstrating an association between repertoire-level summary statistics (e.g., diversity) and patient outcomes for several diseases. In our own prior work, we have shown that six codons in VH4-containing genes in B cells from the cerebrospinal fluid of patients with relapsing remitting multiple sclerosis (RRMS) have higher replacement mutation frequencies than observed in healthy controls or patients with other neurological diseases. However, prior methods to date have been limited to focusing on repertoire-level summary statistics, ignoring the vast amounts of information in the millions of individual immune receptors comprising a repertoire. We have developed a novel method that addresses this limitation by using innovative approaches for accommodating the extraordinary sequence diversity of immune receptors and widely used machine learning approaches. We applied our method to RRMS, an autoimmune disease that is notoriously difficult to diagnose. Results We use the biochemical features encoded by the complementarity determining region 3 of each B cell receptor heavy chain in every patient repertoire as input to a detector function, which is fit to give the correct diagnosis for each patient using maximum likelihood optimization methods. The resulting statistical classifier assigns patients to one of two diagnosis categories, RRMS or other neurological disease, with 87% accuracy by leave-one-out cross-validation on training data (N = 23) and 72% accuracy on unused data from a separate study (N = 102). Conclusions Our method is the first to apply statistical learning to immune repertoires to aid disease diagnosis, learning repertoire-level labels from the set of individual immune repertoire sequences. This method produced a repertoire-based statistical classifier for diagnosing RRMS that provides a high degree of diagnostic capability, rivaling the accuracy of diagnosis by a clinical expert. Additionally, this method points to a diagnostic biochemical motif in the antibodies of RRMS patients, which may offer insight into the disease process. Electronic supplementary material The online version of this article (10.1186/s12859-017-1814-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - William H Rounds
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Inimary Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9036, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9036, USA
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA.
| |
Collapse
|
13
|
Wang CY, Fang YX, Chen GH, Jia HJ, Zeng S, He XB, Feng Y, Li SJ, Jin QW, Cheng WY, Jing ZZ. Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes. Mol Med Rep 2017; 16:75-86. [PMID: 28534993 PMCID: PMC5482108 DOI: 10.3892/mmr.2017.6601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for recognizing processed antigen peptides. Immunoscope spectratyping is a simple technique for analyzing CDR3 polymorphisms and sequence length diversity, in order to investigate T cell function and the pattern of TCR utilization. The present study employed this technique to analyze CDR3 polymorphisms and the sequence length diversity of TCR α and β chains in porcine CD4+ and CD8+ T cells. Polymerase chain reaction products of 19 TCR α variable regions (AV) and 20 TCR β variable regions (BV) gene families obtained from the CD4+ and CD8+ T cells revealed a clear band following separation by 1.5% agarose gel electrophoresis, and each family exhibited >8 bands following separation by 6% sequencing gel electrophoresis. CDR3 spectratyping of all identified TCR AV and BV gene families in the sorted CD4+ and CD8+ T cells by GeneScan, demonstrated a standard Gaussian distribution with >8 peaks. CDR3 in CD4+ and CD8+ T cells demonstrated different expression patterns. The majority of CDR3 recombined in frame and the results revealed that there were 10 and 14 amino acid discrepancies between the longest and shortest CDR3 lengths in specific TCR AV and TCR BV gene families, respectively. The results demonstrated that CDR3 polymorphism and length diversity demonstrated different expression and utilization patterns in CD4+ and CD8+ T cells. These results may facilitate future research investigating the porcine TCR CDR3 gene repertoire as well as the functional complexity and specificity of the TCR molecule.
Collapse
Affiliation(s)
- Chun-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Yong-Xiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Shou-Jie Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qi-Wang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
14
|
Zhou CY, Wen Q, Chen XJ, Wang RN, He WT, Zhang SM, Du XL, Ma L. Human CD8(+) T cells transduced with an additional receptor bispecific for both Mycobacterium tuberculosis and HIV-1 recognize both epitopes. J Cell Mol Med 2016; 20:1984-98. [PMID: 27113787 PMCID: PMC5020620 DOI: 10.1111/jcmm.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV-1) infection are closely intertwined, with one-quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8(+) T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV-1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8(+) T cells is an appealing strategy to impose improved anti-MTB/HIV-1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross-reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV-1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199-207 peptide and HIV-1 Env120-128 peptide was screened out from peripheral blood mononuclear cells of a HLA-A*0201(+) healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8(+) T cells using a recombinant retroviral vector. The bispecificity of the TCR gene-modified CD8(+) T cells was demonstrated by elevated secretion of interferon-γ, tumour necrosis factor-α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199-207 or Env120-128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV-1 simultaneously by transfecting CD8(+) T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV-1 coinfected individuals.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cytotoxicity, Immunologic
- Epitopes/immunology
- Genetic Vectors/metabolism
- HIV-1/immunology
- Humans
- Interferon-gamma/metabolism
- Lectins, C-Type/metabolism
- Mycobacterium tuberculosis/immunology
- Peptides/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Transduction, Genetic
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Jie Chen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui-Ning Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting He
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xia-Lin Du
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Arruda LCM, Clave E, Moins-Teisserenc H, Douay C, Farge D, Toubert A. Resetting the immune response after autologous hematopoietic stem cell transplantation for autoimmune diseases. Curr Res Transl Med 2016; 64:107-13. [PMID: 27316394 DOI: 10.1016/j.retram.2016.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) is currently investigated as treatment for severe and refractory autoimmune diseases, such as multiple sclerosis (MS), systemic sclerosis (SSc), Crohn's disease (CD) and systemic lupus erythematosus. Randomized clinical trials in MS, SSc and CD have shown the efficacy of AHSCT to promote control of disease activity and progression, when compared to conventional treatment. The use of high dose immunosuppressive conditioning is essential to eliminate the autoimmune repertoire, and the re-infusion of autologous hematopoietic stem cells avoids long-term leucopenia by reconstitution of both immune and hematological systems. Recent studies showed that AHSCT is able to deplete the autoimmune compartment and further promote the formation of a new auto-tolerant immune repertoire, reducing the inflammatory milieu and leading to long-term clinical remission without any complementary post-graft treatment. Deep knowledge about the mechanisms of action related to AHSCT-induced remission is required for the management of possible post-AHSCT relapse and improvement of clinical protocols. This paper will review the mechanisms enrolled in the immune response resetting promoted by AHSCT in patients with autoimmune diseases.
Collapse
Affiliation(s)
- L C M Arruda
- Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - E Clave
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; INSERM UMR1160, Paris, France; Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - H Moins-Teisserenc
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; INSERM UMR1160, Paris, France; Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - C Douay
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; INSERM UMR1160, Paris, France; Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - D Farge
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; INSERM UMR1160, Paris, France; Unité Clinique de Médecine Interne, Maladies Autoimmunes et Pathologie Vasculaire, UF 04, Hôpital Saint-Louis, AP-HP, Assistance Publique des Hôpitaux de Paris, 75010 Paris, France
| | - A Toubert
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; INSERM UMR1160, Paris, France; Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| |
Collapse
|
16
|
WANG CHUNYAN, YU PEIFA, HE XIAOBING, FANG YONGXIANG, CHENG WENYU, JING ZHIZHONG. αβ T-cell receptor bias in disease and therapy (Review). Int J Oncol 2016; 48:2247-56. [DOI: 10.3892/ijo.2016.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
|
17
|
Thapa DR, Tonikian R, Sun C, Liu M, Dearth A, Petri M, Pepin F, Emerson RO, Ranger A. Longitudinal analysis of peripheral blood T cell receptor diversity in patients with systemic lupus erythematosus by next-generation sequencing. Arthritis Res Ther 2015; 17:132. [PMID: 26001779 PMCID: PMC4458014 DOI: 10.1186/s13075-015-0655-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/14/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION T cells play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Clonal expansion of T cells correlating with disease activity has been observed in peripheral blood (PB) of SLE subjects. Recently, next-generation sequencing (NGS) of the T cell receptor (TCR) β loci has emerged as a sensitive way to measure the T cell repertoire. In this study, we utilized NGS to assess whether changes in T cell repertoire diversity in PB of SLE patients correlate with or predict changes in disease activity. METHODS Total RNA was isolated from the PB of 11 SLE patients. Each subject had three samples, collected at periods of clinical quiescence and at a flare. Twelve age-matched healthy controls (HC) were used for reference. NGS was used to profile the complementarity-determining region 3 (CDR3) of the rearranged TCR β loci. RESULTS Relative to the HC, SLE patients (at quiescence) demonstrated a 2.2-fold reduction in repertoire diversity in a given PB volume (P <0.0002), a more uneven distribution of the repertoire (Gini coefficient, HC vs SLE, P = 0.015), and a trend toward increased percentage of expanded clones in the repertoire (clone size >1.0%, HC vs SLE, P = 0.078). No significant correlation between the overall repertoire diversity and clinical disease activity was observed for most SLE patients with only two of eleven SLE patients showing a decreasing trend in repertoire diversity approaching the flare time point. We did not observe any overlap of CDR3 amino acid sequences or a preferential Vβ or Jβ gene usage among the top 100 expanded clones from all SLE patients. In both HC and SLE, the majority of the expanded clones were remarkably stable over time (HC = 5.5 ±0.5 months, SLE = 7.2 ±2.4 months). CONCLUSIONS A significant decrease in T cell repertoire diversity was observed in PB of SLE patients compared to HC. However, in most SLE patients, repertoire diversity did not change significantly with increases in disease activity to a flare. Thus, without a priori knowledge of disease-specific clones, monitoring TCR repertoire in PB from SLE patients is not likely to be useful to predict changes in disease activity.
Collapse
Affiliation(s)
| | - Raffi Tonikian
- Biogen, 250 Binney Street, Cambridge, MA, 02142, USA. .,Novartis Pharmaceuticals Canada Inc, 385 Bouchard Boulevard, Dorval, QC, H9S 1A9, Canada.
| | - Chao Sun
- Biogen, 250 Binney Street, Cambridge, MA, 02142, USA.
| | - Mei Liu
- Biogen, 250 Binney Street, Cambridge, MA, 02142, USA.
| | - Andrea Dearth
- Biogen, 250 Binney Street, Cambridge, MA, 02142, USA.
| | - Michelle Petri
- Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21205, USA.
| | - Francois Pepin
- Adaptive Biotechnologies, 1551 Eastlake Avenue East, Seattle, WA, 98102, USA.
| | - Ryan O Emerson
- Adaptive Biotechnologies, 1551 Eastlake Avenue East, Seattle, WA, 98102, USA.
| | - Ann Ranger
- Biogen, 250 Binney Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
18
|
Jiang ZM, Luo W, Wen Q, Liu SD, Hao PP, Zhou CY, Zhou MQ, Ma L. Development of genetically engineered iNKT cells expressing TCRs specific for the M. tuberculosis 38-kDa antigen. J Transl Med 2015; 13:141. [PMID: 25943357 PMCID: PMC4428004 DOI: 10.1186/s12967-015-0502-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction The invariant natural killer T (iNKT) cell has been shown to play a central role in early stages immune responses against Mycobacterium tuberculosis (Mtb) infection, which become nonresponsive (anergic) and fails to control the growth of Mtb in patients with active tuberculosis. Enhancement of iNKT cell responses to Mtb antigens can help to resist infection. Study design and methods In the present study, an Mtb 38-kDa antigen-specific T cell receptor (TCR) was isolated from human CD8+ T cells stimulated by 38-kDa antigen in vitro, and then transduced into primary iNKT cells by retrovirus vector. Results The TCR gene-modified iNKT cells are endowed with new features to behave as a conventional MHC class I restricted CD8+ T lymphocyte by displaying specific antigen recognition and anti-Mtb antigen activity in vitro. At the same time, the engineered iNKT cells retaining its original capacity to be stimulated proliferation by non-protein antigens α-Gal-Cer. Conclusions This work is the first attempt to engineer iNKT cells by exogenous TCR genes and demonstrated that iNKT cell, as well as CD4+ and CD8+ T cells, can be genetically engineered to confer them a defined and alternative specificity, which provides new insights into TCR gene therapy for tuberculosis patients, especially those infected with drug-resistant Mtb.
Collapse
Affiliation(s)
- Zhen-Min Jiang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Pei-Pei Hao
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Ming-Qian Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Wright GP, Ehrenstein MR, Stauss HJ. Regulatory T-cell adoptive immunotherapy: potential for treatment of autoimmunity. Expert Rev Clin Immunol 2014; 7:213-25. [DOI: 10.1586/eci.10.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Tzifi F, Kanariou M, Tzanoudaki M, Mihas C, Paschali E, Chrousos G, Kanaka-Gantenbein C. Flow cytometric analysis of the CD4+ TCR Vβ repertoire in the peripheral blood of children with type 1 diabetes mellitus, systemic lupus erythematosus and age-matched healthy controls. BMC Immunol 2013; 14:33. [PMID: 23915345 PMCID: PMC3750582 DOI: 10.1186/1471-2172-14-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Data regarding the quantitative expression of TCR Vβ subpopulations in children with autoimmune diseases provided interesting and sometimes conflicting results. The aim of the present study was to assess by comparative flow cytometric analysis the peripheral blood CD4+ TCR Vβ repertoire of children with an organ-specific autoimmune disorder, such as type 1 diabetes mellitus (T1DM), in comparison to children with a systemic autoimmune disease, such as Systemic Lupus Erythematosus (SLE) in comparison to healthy age-matched controls of the same ethnic origin. The CD4+ TCR Vβ repertoire was analysed by flow cytometry in three groups of participants: a) fifteen newly diagnosed children with T1DM (mean age: 9.2 ± 4.78 years old), b) nine newly diagnosed children with SLE, positive for ANA and anti-dsDNA, prior to treatment (mean age: 12.8 ±1.76 years old) and c) 31 healthy age-matched controls (mean age: 6.58 ± 3.65 years old), all of Hellenic origin. RESULTS CD4 + TCR Vβ abnormalities (± 3SD of controls) were observed mainly in SLE patients. Statistical analysis revealed that the CD4 + Vβ4 chain was significantly increased in patients with T1DM (p < 0.001), whereas CD4 + Vβ16 one was significantly increased in SLE patients (p < 0.001) compared to controls. CONCLUSIONS CD4 + Vβ4 and CD4 + Vβ16 chains could be possibly involved in the cascade of events precipitating the pathogenesis of T1DM and SLE in children, respectively.
Collapse
|
21
|
Antigenic stimulation induces recombination activating gene 1 and terminal deoxynucleotidyl transferase expression in a murine T-cell hybridoma. Cell Immunol 2012; 274:19-25. [PMID: 22464913 DOI: 10.1016/j.cellimm.2012.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Secondary rearrangements of the T cell receptor (TCR) represent a genetic correction mechanism which changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. Murine T-cell hybridoma A1.1 was employed to investigate whether antigenic stimulation induced re-expression of recombinase genes and altered TCR Vβ expression. Following repeated antigenic stimulation, A1.1 cells were induced to re-express recombination activating gene (RAG)1 and terminal deoxynucleotidyl transferase (TdT) which are generally considered prerequisite to TCR gene rearrangement. Accompanied with the significant changes in TCR mRNA levels over time, it is suggested that secondary rearrangements may be induced in A1.1 cells, which represent a mature T cell clone capable of re-expressing RAG genes and possesses the prerequisite for secondary V(D)J rearrangement.
Collapse
|
22
|
Luo W, Zhang XB, Huang YT, Hao PP, Jiang ZM, Wen Q, Zhou MQ, Jin Q, Ma L. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med (Berl) 2011; 89:903-13. [PMID: 21556811 DOI: 10.1007/s00109-011-0760-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/16/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
Cell-mediated immunity is critical to the clearance of Mycobacterium tuberculosis due to the primarily intracellular niche of this pathogen. Adoptive transfer of M. tuberculosis-specific effector T cells has been shown to confer immunity to M. tuberculosis-infected recipients resulting in M. tuberculosis clearance. However, it is difficult to generate sufficient numbers of M. tuberculosis antigen-specific T cells in a short time. Recent studies have developed T cell receptor (TCR) gene-modified T cells that allow for the rapid generation of large numbers of antigen-specific T cells. Many TCRs that target various tumor and viral antigens have now been isolated and shown to have functional activity. Nevertheless, TCRs specific for intracellular bacterial antigens (including M. tuberculosis antigens) have yet to be isolated and their functionality confirmed. We isolated M. tuberculosis 38-kDa antigen-specific HLA class I and class II-restricted TCRs and modified the TCR gene C regions by substituting nine amino acids with their murine TCR homologs (minimal murinization). Results showed that both wild-type and minimal murinized TCR genes were successfully cloned into retroviral vectors and transduced into primary CD4(+) and CD8(+) T cells and displayed anti-M. tuberculosis activity. As expected, minimal murinized TCRs displayed higher cell surface expression levels and stronger anti-M. tuberculosis activity than wild-type TCRs. To the best of our knowledge, this is the first report describing TCRs targeting M. tuberculosis antigens and this investigation provides the basis for future TCR gene-based immunotherapies that can be designed for the treatment of immunocompromised M. tuberculosis-infected patients.
Collapse
Affiliation(s)
- Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luo W, Liao WJ, Huang YT, Shi M, Zhang Y, Wen Q, Zhou MQ, Ma L. Normalization of T cell receptor repertoire diversity in patients with advanced colorectal cancer who responded to chemotherapy. Cancer Sci 2011; 102:706-12. [DOI: 10.1111/j.1349-7006.2011.01868.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Luo W, Liao WJ, Huang YT, Shi M, Zhang Y, Wen Q, Zhou MQ, Ma L. Cancer of the gastrointestinal tract results in a restricted T-cell repertoire dependent upon tumor differentiation. Cell Immunol 2011; 270:47-52. [DOI: 10.1016/j.cellimm.2011.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/19/2011] [Accepted: 03/24/2011] [Indexed: 01/10/2023]
|
25
|
Luo W, Liao WJ, Ma L, Huang YT, Shi M, Wen Q, Wang XN. Dynamic monitoring the TCR CDR3 spectratypes in patients with metastatic CRC treated with a combination of bevacizumab, irinotecan, fluorouracil, and leucovorin. Cancer Immunol Immunother 2010; 59:247-56. [PMID: 19652968 PMCID: PMC11030754 DOI: 10.1007/s00262-009-0745-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
Abstract
In the present study, either modified IFL regimen (modified irinotecan, fluorouracil and leucovorin, mIFL) alone or in combination with bevacizumab was used to treat patients with metastatic colorectal cancer (CRC). Treatment efficacy was assessed using coupled tomography imaging diagnosis. The toxicity accompany with treatment was evaluated, as well as T cell receptor (TCR) repertoire before and several cycles after therapy was dynamically monitored by analyzing the complementarity-determining region 3 (CDR3) length distribution within CD4(+) and CD8(+) T cell subsets. The degrees of normalization of the T cell repertoire in CRC patients treated with the two methods were compared. The results showed that mIFL combined with bevacizumab was more effective in treating patients with metastatic CRC, and was accompanied by an increase in side effects such as proteinuria and hematuria. An even more restricted CDR3 profile in patients with metastatic CRC compared with healthy control has been detected. A prominent usage of TCR beta chain variable (BV) gene BV12 and BV16 families within the CD4(+) T cell subset and BV19 and BV21 families within the CD8(+) T cell subset have been found before treatment. Moreover, CD8(+) T cells showed more restricted patterns than CD4(+) T cells, especially in patients before treatment. For patients with stable disease (SD) or partial remission (PR) after treatment, a less restricted CDR3 profile in post-treatment compared with pre-treatment has been found, but the opposite result was observed for patients with progressive disease (PD). The less restricted CDR3 pattern suggested a trend toward normalization of the TCR repertoire. The normalization of TCR repertoire significantly increased in patients treated with mIFL in combination with bevacizumab, but slightly in patients treated with mIFL alone. The results demonstrate a positive correlation between post-therapy TCR repertoire normalization and remission of metastatic CRC.
Collapse
Affiliation(s)
- Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Wang-Jun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Yong-Ta Huang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Xiao-Ning Wang
- School of Biosciences & Bioengineering, South China University of Technology, Guangzhou, 510641 China
| |
Collapse
|