1
|
de Toledo SM, Buonanno M, Harris AL, Azzam EI. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. Int J Radiat Biol 2017; 93:1182-1194. [DOI: 10.1080/09553002.2017.1334980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sonia M. de Toledo
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Manuela Buonanno
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Andrew L. Harris
- Pharmacology and Physiology and Neuroscience, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Edouard I. Azzam
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
- Pharmacology and Physiology and Neuroscience, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| |
Collapse
|
2
|
Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P. Connexin-dependent signaling in neuro-hormonal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1919-36. [PMID: 22001400 DOI: 10.1016/j.bbamem.2011.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
Abstract
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Ilaria Potolicchio
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
4
|
Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 2009; 18:428-39. [PMID: 19000992 PMCID: PMC2638800 DOI: 10.1093/hmg/ddn370] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with beta-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of beta-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the beta-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human beta-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing beta-cells, and contributes to control beta-cell function by modulating gene expression.
Collapse
Affiliation(s)
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Laurence Zulianello
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Anne Charollais
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Eric Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Benoit R. Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Giuseppe R. Diaferia
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Ben N. Giepmans
- Department of Cell Biology, University of Groningen, Groningen, The Netherlands
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Shaoping Deng
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Léo Buhler
- Surgical Research Unit, Department of Surgery
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Vincenzo Cirulli
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| |
Collapse
|
5
|
Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 2008; 60:943-50. [PMID: 18644187 DOI: 10.1211/jpp.60.8.0001] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The radiation-induced bystander effect represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation, in that extranuclear and extracellular events may also contribute to the final biological consequences of exposure to low doses of radiation. Although radiation-induced bystander effects have been well documented in a variety of biological systems, the mechanism is not known. It is likely that multiple pathways are involved in the bystander phenomenon, and different cell types respond differently to bystander signalling. Using cDNA microarrays, a number of cellular signalling genes, including cyclooxygenase-2 (COX-2), have been shown to be causally linked to the bystander phenomenon. The observation that inhibition of the phosphorylation of extracellular signal-related kinase (ERK) suppressed the bystander response further confirmed the important role of the mitogen-activated protein kinase (MAPK) signalling cascade in the bystander process. Furthermore, cells deficient in mitochondrial DNA showed a significantly reduced response to bystander signalling, suggesting a functional role of mitochondria in the signalling process. Inhibitors of nitric oxide (NO) synthase (NOS) and mitochondrial calcium uptake provided evidence that NO and calcium signalling are part of the signalling cascade. The bystander observations imply that the relevant target for various radiobiological endpoints is larger than an individual cell. A better understanding of the cellular and molecular mechanisms of the bystander phenomenon, together with evidence of their occurrence in-vivo, will allow us to formulate a more accurate model for assessing the health effects of low doses of ionizing radiation.
Collapse
Affiliation(s)
- Tom K Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metab 2007; 9 Suppl 2:118-32. [PMID: 17919186 DOI: 10.1111/j.1463-1326.2007.00780.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The emergence of pancreatic islets has necessitated the development of a signalling system for the intra- and inter-islet coordination of beta cells. With evolution, this system has evolved into a complex regulatory network of partially cross-talking pathways, whereby individual cells sense the state of activity of their neighbours and, accordingly, regulate their own level of functioning. A consistent feature of this network in vertebrates is the expression of connexin (Cx)-36-made cell-to-cell channels, which cluster at gap junction domains of the cell membrane, and which adjacent beta cells use to share cytoplasmic ions and small metabolites within individual islets. This chapter reviews what is known about Cx36, and the mechanism whereby this beta-cell connexin significantly regulates insulin secretion. It further outlines other less established functions of the protein and evaluates its potential relevance for the development of novel therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- S Bavamian
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Michon L, Nlend Nlend R, Bavamian S, Bischoff L, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P. Involvement of gap junctional communication in secretion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:82-101. [PMID: 16359942 DOI: 10.1016/j.bbamem.2005.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/26/2022]
Abstract
Glands were the first type of tissues in which the permissive role of gap junctions in the cell-to-cell transfer of membrane-impermeant molecules was shown. During the 40 years that have followed this seminal finding, gap junctions have been documented in all types of multicellular secretory systems, whether of the exocrine, endocrine or pheromonal nature. Also, compelling evidence now indicates that gap junction-mediated coupling, and/or the connexin proteins per se, play significant regulatory roles in various aspects of gland functions, ranging from the biosynthesis, storage and release of a variety of secretory products, to the control of the growth and differentiation of secretory cells, and to the regulation of gland morphogenesis. This review summarizes this evidence in the light of recent reports.
Collapse
Affiliation(s)
- Laetitia Michon
- Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim KY, Cho YJ, Jeon GA, Ryu PD, Myeong JN. Membrane-bound alkaline phosphatase gene induces antitumor effect by G2/M arrest in etoposide phosphate-treated cancer cells. Mol Cell Biochem 2004; 252:213-21. [PMID: 14577595 DOI: 10.1023/a:1025572815125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene therapy is used to induce immune responses, regulate tumor growth, or sensitize tumor cells to specific treatment. For sensitizing tumor cells to specific drug, we considered a prodrug-converting system using membrane-bound intestinal alkaline phosphatase (IAP) as the prodrug-activating genes. The IAP is capable of converting a relatively non-cytotoxic prodrug, etoposide phosphate (EP), into etoposide with a significant antitumor activity. We used the retroviral vector for transducing IAP gene into SNU638 gastric cancer cells and EP was prepared by phosphorylation of etoposide. To determine the chromosomal incorporation of membrane-bound IAP gene and AP activity in IAP gene-transduced cells (SNU638/IAP), we performed genomic PCR and AP activity analysis. In genomic DNA of SNU638/IAP cells, full cDNA fragment of a 2.5 kb IAP was detected, and AP activity was shown at most 15 approximately 18-fold increase compared with control cells. According to the in vitro cytotoxicity study, SNU638/IAP cells greatly enhanced the cytotoxic effect in proportion to the concentration of EP, while control cells didn't cause any cytotoxic effects after EPtreatment. Especially, the cell population of G2/M phase was increased in EP-treated SNU638/ IAP cells because P4 DNA unknotting activity of topoisomerase II was decreased by EP treatment such as the action mechanism of etoposide. Finally, a strong antitumor response was observed in SNU638/IAP cancer cells-bearing nude mice that were treated with EP. These results suggest that the prodrug-converting system by membrane-bound IAP gene and EP prodrug is useful as the strong strategy of gene therapy for cancer treatment.
Collapse
Affiliation(s)
- Kye Young Kim
- Department of Biomedical Sciences, National Institute of Health, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Connexin channels provide for a widespread mechanism of cell-to-cell cross-talk within primary tissues, which is mediated by intercellular exchanges of cytoplasmic ions and molecules. Experimental and clinical studies have recently provided evidence that these exchanges are most likely to play multiple roles, which are critical for the proper development and function of primary tissues. There is also increasing evidence that major clinical disorders may result when the formation and function of connexin channels are altered. Still, the physiological functions that the cell-to-cell communication mediated by connexin channels subserve in most primary tissues are still uncertain. Here, I review two approaches that may aid in identifying these specific functions.
Collapse
Affiliation(s)
- P Meda
- Department of Morphology, University of Geneva Medical School, 1, rue Michel Servet, Geneva 4, CH-1211, Switzerland.
| |
Collapse
|
11
|
Meda P, Spray DC. Gap junction function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
12
|
Murakami A, Ohigashi H, Koshimizu K. Chemoprevention: Insights into biological mechanisms and promising food factors. FOOD REVIEWS INTERNATIONAL 1999. [DOI: 10.1080/87559129909541194] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Bosco D, Meda P. Reconstructing islet function in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:285-98. [PMID: 9544286 DOI: 10.1007/978-1-4899-1819-2_39] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Bosco
- Department of Morphology, University of Geneva, Switzerland
| | | |
Collapse
|
14
|
Hillis GS, Duthie LA, Brown PA, Simpson JG, MacLeod AM, Haites NE. Upregulation and co-localization of connexin43 and cellular adhesion molecules in inflammatory renal disease. J Pathol 1997; 182:373-9. [PMID: 9306956 DOI: 10.1002/(sici)1096-9896(199708)182:4<373::aid-path858>3.0.co;2-b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Connexin43 (Cx43) is a major component of gap junctions. These are widely distributed in the human kidney and are thought to be involved in the inflammatory response and in the regulation of cell growth. Cellular adhesion molecules (CAMs) are also thought to be important in these processes, where they possibly facilitate gap junction formation. The aims of the current study were to define for the first time the expression of Cx43 in inflammatory glomerulonephritis and to compare the localization of this connexin with that of the intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Human renal biopsies and control sections of normal human kidney were stained using the alkaline phosphatase/anti-alkaline phosphatase immunohistochemical technique, demonstrating that Cx43 was strongly expressed on inflammatory cells, on damaged tubular cells, and on interstitial cells. This pattern of expression was paralleled closely by that of ICAM-1 and, to a lesser extent, by that of VCAM-1. Cx43 is therefore primarily implicated in tubulointerstitial inflammation.
Collapse
Affiliation(s)
- G S Hillis
- Department of Medicine and Therapeutics, University of Aberdeen, U.K
| | | | | | | | | | | |
Collapse
|
15
|
Yule DI, Stuenkel E, Williams JA. Intercellular calcium waves in rat pancreatic acini: mechanism of transmission. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1285-94. [PMID: 8897836 DOI: 10.1152/ajpcell.1996.271.4.c1285] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Digital-imaging microfluorimetry, together with microinjection of marker/messenger molecules, was utilized to investigate intercellular Ca2+ signaling in rat pancreatic acinar cells. Stimulation of acini with low concentrations of secretagogues [< 100 pM cholecystokinin (CCK), < 1 microM carbachol (CCh)] resulted in asynchronous but coordinated increases in Ca2+ that appeared to pass in a "wavelike" fashion between cells. In contrast, at higher supermaximal concentrations of agonists (> 300 pM CCK, > 1 microM CCh), which induce a large "peak-and-plateau" intracellular Ca2+ signal, all cells in the acinus appeared to increase Ca2+ concentration ([Ca2+]) in synchrony. Microinjection of lissarhodamine, a marker of gap-junctional permeability, into cells previously loaded with fura 2 allowed the simultaneous measurement of gap-junctional coupling and [Ca2+]. Stimulation with supermaximal concentrations of agonists resulted in the attenuation of junctional permeability, whereas, during stimulation with physiological concentrations of agonist, junctional communication remained operable. Injection of inositol 1,4,5-triphosphate [Ins(1,4,5)P3] into one cell of an acinar cluster resulted in the generation of a Ca2+ signal in the injected cell and adjacent cells. In contrast, injection of CaCl2 itself did not result in propagation of the signal. When CaCl2 was injected into cells that had been previously stimulated with a threshold concentration of CCK, propagation of a signal was observed between cells. On the basis of these data, a model is proposed in which Ca2+ acts as coagonist with Ins(1,4,5)P3 to potentiate the Ca(2+)-releasing action of Ins(1,4,5)P3 and, by diffusion of the two molecules through gap junctions, underlies intercellular signaling in acinar cells. Gap-junctional communication may be an important factor in amplifying a threshold signal produced in one cell throughout the acinus, resulting in enhanced stimulated secretion in acinar preparations compared with preparations of isolated cells.
Collapse
Affiliation(s)
- D I Yule
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48105, USA
| | | | | |
Collapse
|
16
|
Abstract
Most cells communicate with their immediate neighbors through the exchange of cytosolic molecules such as ions, second messengers and small metabolites. This activity is made possible by clusters of intercellular channels called gap junctions, which connect adjacent cells. In terms of molecular architecture, intercellular channels consist of two channels, called connexons, which interact to span the plasma membranes of two adjacent cells and directly join the cytoplasm of one cell to another. Connexons are made of structural proteins named connexins, which compose a multigene family. Connexin channels participate in the regulation of signaling between developing and differentiated cell types, and recently there have been some unexpected findings. First, unique ionic- and size-selectivities are determined by each connexin; second, the establishment of intercellular communication is defined by the expression of compatible connexins; third, the discovery of connexin mutations associated with human diseases and the study of knockout mice have illustrated the vital role of cell-cell communication in a diverse array of tissue functions.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
17
|
Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:1-27. [PMID: 8665925 DOI: 10.1111/j.1432-1033.1996.0001q.x] [Citation(s) in RCA: 951] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
18
|
Bertuzzi F, Zacchetti D, Berra C, Socci C, Pozza G, Pontiroli AE, Grohovaz F. Intercellular Ca2+ waves sustain coordinate insulin secretion in pig islets of Langerhans. FEBS Lett 1996; 379:21-5. [PMID: 8566222 DOI: 10.1016/0014-5793(95)01422-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insulin release was investigated in parallel with changes in cytosolic calcium concentration, [Ca2+]i, in pig islets stimulated by glucose. After two days in culture, glucose stimulation failed to induce insulin release, and caused limited [Ca2+]i changes in few cells. After ten days, insulin response was partially restored and [Ca2+]i recordings revealed a slow oscillatory activity of the whole islet. Slow oscillations appeared to be due to the average [Ca2+]i variations resulting from the spreading of waves throughout the islet. These waves demonstrate the reestablishment of functional cell coupling, which appears to play a critical role in insulin release.
Collapse
Affiliation(s)
- F Bertuzzi
- Medicine Department, DIBIT, San Raffaele Scientific Inst., Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
White TW, Bruzzone R, Paul DL. The connexin family of intercellular channel forming proteins. Kidney Int 1995; 48:1148-57. [PMID: 8569076 DOI: 10.1038/ki.1995.398] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T W White
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
20
|
Bruzzone R, White TW, Yoshizaki G, Patiño R, Paul DL. Intercellular channels in teleosts: functional characterization of two connexins from Atlantic croaker. FEBS Lett 1995; 358:301-4. [PMID: 7531161 DOI: 10.1016/0014-5793(94)01457-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gap junction channels, composed of protein subunits termed connexins, are believed to play a critical role in the process of oocyte differentiation and maturation. We have used the paired Xenopus oocyte assay to characterize functionally two connexin genes, connexin-32.2 and connexin-32.7, recently cloned from the ovary of the Atlantic croaker (Micropogonia undulatus), a species that has emerged as a useful model to study the process of maturation of the ovarian follicle. We have found that, while both connexin proteins were expressed at comparable levels in Xenopus oocytes, only one, connexin-32.2, was functionally competent to induce the formation of intercellular channels. Connexin-32.2 channels exhibited voltage-dependent closure that was similar to, but distinct from that of previously characterized mammalian connexins. In addition, the silent connexin-32.7 was unable to functionally interact with connexin-32.2, either in heterotypic channels or as dominant negative inhibitor. Because connexin-32.2 expression is strikingly regulated during oocyte maturation, these data provide further evidence for a role of intercellular channels in the control of oocyte-follicular cell interactions.
Collapse
Affiliation(s)
- R Bruzzone
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
21
|
Bastide B, Hervé JC, Cronier L, Délèze J. Rapid onset and calcium independence of the gap junction uncoupling induced by heptanol in cultured heart cells. Pflugers Arch 1995; 429:386-93. [PMID: 7761262 DOI: 10.1007/bf00374154] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The kinetics of the reversible interruption of gap junction communication by the aliphatic alcohol heptanol and the possible mediation of an increase of the cytosolic Ca2+ concentration have been investigated in pairs of myocytes dissociated from neonatal rat ventricles and cultured for 2-3 days. Junctional communication was estimated by measuring either the cell-to-cell electrical conductance with a double whole-cell voltage-clamp method, or the rate constant of dye diffusion with the fluorescence recovery after photo-bleaching (gap FRAP) technique. Electrical coupling was seen to be abruptly interrupted (in less than 0.5 s) by heptanol (1-3 mM). The cytosolic Ca2+ concentration was not affected, even at a saturating heptanol concentration. Heptanol removal allowed a gradual re-opening of gap junctional channels, as shown by the recovery curve of the cell-to-cell conductance, which is 90% complete within 90 s. These data are consistent with a direct interaction of heptanol with channel proteins or with their lipid environment.
Collapse
Affiliation(s)
- B Bastide
- Laboratoire de Physiologie Cellulaire, Unité de Recherche Associée au CNRS no. 1869, Poitiers, France
| | | | | | | |
Collapse
|
22
|
Zhang LX, Acevedo P, Guo H, Bertram JS. Upregulation of gap junctional communication and connexin43 gene expression by carotenoids in human dermal fibroblasts but not in human keratinocytes. Mol Carcinog 1995; 12:50-8. [PMID: 7818764 DOI: 10.1002/mc.2940120108] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Consumption of dietary carotenoids has been statistically associated with decreased risk of cancer at several anatomic sites. In a model murine system of carcinogenesis (the 10T1/2 assay), we have previously shown that carotenoids can inhibit chemically and physically induced neoplastic transformation. This action is strongly correlated with the ability of carotenoids to increase gap-junctional communication (GJC) by induction of connexin43 (Cx43) gene expression. Here we extend these studies to human foreskin-derived dermal fibroblasts and keratinocytes. In fibroblasts, beta-carotene and canthaxanthin at concentrations between 10(-5) and 3 x 10(-6) M were found to strongly enhance GJC in a dose- and time-dependent manner. This was accompanied by an increase in the number of immunofluorescent junctional plaques recognized by an anti-Cx43 antibody and by an increase in Cx43 protein level as determined by western blot analysis. No decrease in proliferation rates was detected by [H3]thymidine labeling. Human keratinocytes grown in monolayer culture did not respond to carotenoids in terms of GJC as measured by dye transfer, immunofluorescent analysis of Cx43 distribution, or Cx43 levels as measured by western blotting. Both cell types accumulated high levels of carotenoids. Because canthaxanthin, which has no known provitamin A activity in mammals, is as active in fibroblasts as is beta-carotene, the carotenoid with the highest provitamin A activity, the induction of GJC and Cx43 expression by carotenoids in human dermal fibroblasts seems unrelated to their provitamin A status. The lack of response of keratinocytes suggests differences in regulation of Cx43 expression or in carotenoid processing.
Collapse
Affiliation(s)
- L X Zhang
- Molecular Oncology Unit, Cancer Research Center of Hawaii, University of Hawaii, Honolulu 96813
| | | | | | | |
Collapse
|
23
|
Abstract
In 10T1/2 cells several dietary carotenoids have been shown to be capable of inhibiting carcinogen-induced neoplastic transformation. Their action appears qualitatively similar to the previously documented action of retinoids in this cell system; however, higher concentrations (10-1000-fold) are required. Both types of compound were found to strongly upregulate gap junctional intercellular communication, and these activities were statistically correlated. Upregulation of gap junctional intercellular communication was caused by the increased expression of connexin 43, a structural protein of the gap junction. Increased junctional communication has been proposed to be mechanistically linked to inhibition of transformation in 10T1/2 cells. In this model the gap junction serves as a conduit for growth regulatory signals from normal to initiated cells. These putative signals act to suppress transformation of the carcinogen-initiated cell.
Collapse
Affiliation(s)
- J S Bertram
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu 96813
| |
Collapse
|
24
|
Bertram JS. Inhibition of chemically induced neoplastic transformation by carotenoids. Mechanistic studies. Ann N Y Acad Sci 1993; 686:161-75; discussion 175-6. [PMID: 8390212 DOI: 10.1111/j.1749-6632.1993.tb39170.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 10T1/2 cells several dietary carotenoids have been shown to be capable of inhibiting carcinogen-induced neoplastic transformation. Their action appears qualitatively similar to the previously documented action of retinoids in this cell system. However, higher concentrations (10-1000-fold) are required. Both types of compound were found to strongly upregulate gap junctional intercellular communication at concentrations which inhibit transformation. Upregulation of gap junctional intercellular communication was caused by the increased expression of connexin 43, a junctional protein. This activity of carotenoids and retinoids is highly correlated with, and has been proposed to be mechanistically linked to, inhibition of transformation in 10T1/2 cells. In this model the gap junction serves as a conduit for growth regulatory signals from normal to initiated cells. These putative signals act to suppress transformation of the initiated cell.
Collapse
Affiliation(s)
- J S Bertram
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu 96813
| |
Collapse
|
25
|
Abstract
Acinar cells are one of the best studied models of exocytotic secretion. A number of different hormones and neurotransmitters interact with specific membrane receptors, and it is commonly held that pancreatic secretagogues stimulate enzyme release via the elevation of either cytosolic free Ca2+ or cellular cyclic adenosine monophosphate. The discovery of the pivotal role played by phospholipid metabolism in the chain of events leading to secretion, together with the introduction of sensitive techniques to monitor cytosolic free Ca2+, has generated a series of studies that have challenged this classical model. Thus, several observations in pancreatic acini as well as other cell types have argued against the notion that a generalized increase in cytosolic free Ca2+ represents a sufficient and necessary stimulus for exocytosis in nonexcitable cells. Furthermore, the demonstration that a single agonist activates multiple transduction pathways has served to refute the schematic view that receptor agonists activate only one second messenger system. The aim of this article is to review the recent advances in understanding the molecular and cellular mechanisms of signal transduction, with particular emphasis on the inositol lipid pathway, and to integrate this information into a new working model of enzyme secretion from acinar cells.
Collapse
Affiliation(s)
- R Bruzzone
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Meda P, Bosco D, Chanson M, Giordano E, Vallar L, Wollheim C, Orci L. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 1990; 86:759-68. [PMID: 1697604 PMCID: PMC296790 DOI: 10.1172/jci114772] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To determine whether insulin secretion is affected by a blockage of gap junctions between B cells, we have studied the secretion of rat pancreatic islets of Langerhans, primary dispersed islet cells, and cells of the RINm5F line, during short-term exposure to heptanol. Within minutes, this alkanol blocked gap junctions between the B cells of intact islets and abolished their normal secretory response to glucose. These two changes were rapidly and fully reversible after return of the islets to control medium. We further found that heptanol had no significant effect on the glucose-stimulated secretion of single B cells but inhibited that of B cell pairs. In the clone of RINm5F cells, whose junctional coupling and D-glyceraldehyde-induced stimulation of insulin release by aggregated cells were also inhibited by heptanol, this alkanol did not perturb intracellular pH and Ca2+ and the most distal steps of the secretion pathway. In summary, a gap junction blocker affected the secretion of insulin-producing cells by a mechanism which is dependent on cell contact and is not associated with detectable pleiotropic perturbations of the cell secretory machinery. The data provide evidence for the involvement of junctional coupling in the control of insulin secretion.
Collapse
Affiliation(s)
- P Meda
- Department of Morphology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Chanson M, Meda P, Bruzzone R. Increase in pancreatic exocrine secretion during uncoupling: evidence for a protein kinase C-independent effect. Exp Cell Res 1989; 182:349-57. [PMID: 2470604 DOI: 10.1016/0014-4827(89)90240-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been demonstrated that blockade of the normal communication between pancreatic acinar cells leads to an increase in amylase release. Although the physiological mechanisms that regulate the gating of gap junction channels are unknown, the involvement of protein kinase C (PKC) in the inhibition of cell coupling has been reported in various cell lines. Since the activation of PKC also stimulates amylase secretion of pancreatic acinar cells, we sought to determine whether blockers of gap junctions and activators of PKC modify basal secretion by a similar mechanism. Thus, we have studied the effects of heptanol and of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the subcellular distribution of PKC, dye coupling, and amylase release of dispersed pancreatic acini. The data show that TPA activates PKC and stimulates amylase secretion without affecting the extensive dye coupling of acinar cells. By contrast, heptanol inhibits cell-to-cell coupling and increases enzyme output without altering the subcellular distribution of PKC. Heptanol also enhances significantly the secretion evoked by TPA. These results indicate that the stimulation of amylase release caused by uncoupling of acinar cells occurs by a mechanism(s) that does not involve the activation of PKC.
Collapse
Affiliation(s)
- M Chanson
- Institut d'Histologie et d'Embryologie, University of Geneva, Switzerland
| | | | | |
Collapse
|