1
|
Motta C, Pellegrini A, Camaione S, Geoghegan J, Speziale P, Barbieri G, Pietrocola G. von Willebrand factor-binding protein (vWbp)-activated factor XIII and transglutaminase 2 (TG2) promote cross-linking between FnBPA from Staphylococcus aureus and fibrinogen. Sci Rep 2023; 13:11683. [PMID: 37468579 DOI: 10.1038/s41598-023-38972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
The secreted von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus interacts with the coagulation factors prothrombin and fibrinogen (Fbg), leading to the non-proteolytic transglutaminase activation of Factor XIII (FXIII). In this study we found that vWbp-activated FXIII catalyses the incorporation of amino-donor dansylcadaverine into region A of fibronectin-binding protein A (FnBPA). Incubation of Fbg with recombinant region A of S. aureus Fbg-binding proteins FnBPA, FnBPB, ClfA or ClfB in presence of vWbp-activated FXIII resulted in the formation of high molecular heteropolymers with FnBPA only, suggesting a specificity of the cross-linking reaction between fibrin(ogen) and the staphylococcal surface. As previously observed, cross-linking sites were mapped to the α-chain and the N1 subdomain of fibrin(ogen) and region A of FnBPA, respectively. Comparable results were obtained when tissue tranglutaminase-2 (TG2) was tested for cross-linking of FnBPA and Fbg. Of note, FnBPA-mediated covalent cross-linking promoted by vWbp-activated FXIII was also observed when bacteria were allowed to attach to fibrin(ogen). Together these findings suggest a novel pathogenetic mechanism by which the transglutaminase action of FXIII and/or TG2 contributes to entrapment and persistence of S. aureus in blood and host tissues.
Collapse
Affiliation(s)
- Chiara Motta
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Stefano Camaione
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Joan Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Pietro Speziale
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
2
|
Alfeo MJ, Pagotto A, Barbieri G, Foster TJ, Vanhoorelbeke K, De Filippis V, Speziale P, Pietrocola G. Staphylococcus aureus iron-regulated surface determinant B (IsdB) protein interacts with von Willebrand factor and promotes adherence to endothelial cells. Sci Rep 2021; 11:22799. [PMID: 34815454 PMCID: PMC8611056 DOI: 10.1038/s41598-021-02065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is the cause of a spectrum of diseases in humans and animals. The molecular basis of this pathogenicity lies in the expression of a variety of virulence factors, including proteins that mediate adherence to the host plasma and extracellular matrix proteins. In this study, we discovered that the iron-regulated surface determinant B (IsdB) protein, besides being involved in iron transport and vitronectin binding, interacts with von Willebrand Factor (vWF). IsdB-expressing bacteria bound to both soluble and immobilized vWF. The binding of recombinant IsdB to vWF was blocked by heparin and reduced at high ionic strength. Furthermore, treatment with ristocetin, an allosteric agent that promotes the exposure of the A1 domain of vWF, potentiates the binding of IsdB to vWF. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound recombinant A1 domain with KD values in the micromolar range. The binding of IsdB and adhesion of S. aureus expressing IsdB to monolayers of activated endothelial cells was significantly inhibited by a monoclonal antibody against the A1 domain and by IsdB reactive IgG from patients with staphylococcal endocarditis. This suggests the importance of IsdB in adherence of S. aureus to the endothelium colonization and as potential therapeutic target.
Collapse
Affiliation(s)
- Mariangela J Alfeo
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Anna Pagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Timothy J Foster
- Microbiology Department, Trinity College Dublin, Dublin, Ireland
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100, Pavia, Italy.
| |
Collapse
|
3
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Brignoli T, Manetti AGO, Rosini R, Haag AF, Scarlato V, Bagnoli F, Delany I. Absence of Protein A Expression Is Associated With Higher Capsule Production in Staphylococcal Isolates. Front Microbiol 2019; 10:863. [PMID: 31133995 PMCID: PMC6523524 DOI: 10.3389/fmicb.2019.00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, and a leading cause of soft tissue and blood stream infections. One of the causes of its success as a pathogen is the peculiar array of immune evasion factors through which the bacterium avoids host defenses, where the staphylococcal protein A (SpA) plays a major role thanks to its IgG binding activities. Moreover, SpA has recently been proposed as a promising vaccine antigen. In this study, we evaluated the expression of SpA in a collection of staphylococcal strains, about 7% of which did not express SpA (SpA- strains), despite the presence of the gene. By a comparative genomic analysis, we identified that a mutation in the spa 5′ UTR sequence affecting the RBS is responsible for the loss of SpA in a subset of SpA- strains. Using a high-throughput qRT-PCR approach on a selected panel of virulence-related genes, we identified that the SpA- phenotype is associated with lower spa transcript levels and increased expression and production of capsule as well as other changes in the transcription of several key virulence factors. Our data suggest that the SpA- phenotype has occurred in geographically distinct strains through different molecular mechanisms including both mutation, leading likely to translation alterations, and transcriptional deregulation. Furthermore, we provide evidence that SpA- strains are highly susceptible to phagocytic uptake mediated by anti-capsule antibodies. These data suggest that S. aureus may alter its virulence factor expression pattern as an adaptation to the host or environment. Vaccination strategies targeting both SpA and capsule could therefore result in broader coverage against staphylococcal isolates than SpA alone.
Collapse
Affiliation(s)
- Tarcisio Brignoli
- GSK Vaccines, Siena, Italy.,Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | - Andreas F Haag
- GSK Vaccines, Siena, Italy.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
5
|
Carmona IT, Diz Dios P, Scully C. Efficacy of Antibiotic Prophylactic Regimens for the Prevention of Bacterial Endocarditis of Oral Origin. J Dent Res 2016; 86:1142-59. [DOI: 10.1177/154405910708601203] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite the controversy about the risk of individuals developing bacterial endocarditis of oral origin, numerous Expert Committees in different countries continue to publish prophylactic regimens for the prevention of bacterial endocarditis secondary to dental procedures. In this paper, we analyze the efficacy of antibiotic prophylaxis in the prevention of bacteremia following dental manipulations and in the prevention of bacterial endocarditis (in both animal models and human studies). Antibiotic prophylaxis guidelines remain consensus-based, and there is scientific evidence of the efficacy of amoxicillin in the prevention of bacteremia following dental procedures, although the results reported do not confirm the efficacy of other recommended antibiotics. The majority of studies on experimental models of bacterial endocarditis have verified the efficacy of antibiotics administered after the induction of bacteremia, confirming the efficacy of antibiotic prophylaxis in later stages in the development of bacterial endocarditis. There is no scientific evidence that prophylaxis with penicillin is effective in reducing bacterial endocarditis secondary to dental procedures in patients considered to be "at risk". It has been suggested that there is a high risk of severe allergic reactions secondary to prophylactically administered penicillins, but, in reality, very few cases have been reported in the literature. It has been demonstrated that antibiotic prophylaxis could contribute to the development of bacterial resistance, but only after the administration of several consecutive doses. Future research on bacterial endocarditis prophylactic protocols should involve the re-evaluation of the time and route of administration of antibiotic prophylaxis, and a search for alternative antimicrobials.
Collapse
Affiliation(s)
- I. Tomás Carmona
- Special Needs Unit, School of Medicine and Dentistry, Santiago de Compostela University -Spain-; and
- Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, UK
| | - P. Diz Dios
- Special Needs Unit, School of Medicine and Dentistry, Santiago de Compostela University -Spain-; and
- Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, UK
| | - C. Scully
- Special Needs Unit, School of Medicine and Dentistry, Santiago de Compostela University -Spain-; and
- Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, UK
| |
Collapse
|
6
|
Veloso TR, Mancini S, Giddey M, Vouillamoz J, Que YA, Moreillon P, Entenza JM. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA. Vaccine 2015; 33:3512-7. [DOI: 10.1016/j.vaccine.2015.05.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 11/26/2022]
|
7
|
Yi SQ, Zhang XY, Yang YL, Yang Y, Liu SL, Fu L, Yu CM, Chen W. Immunity induced by Staphylococcus aureus surface protein A was protective against lethal challenge of Staphylococcus aureus in BALB/c mice. Microbiol Immunol 2012; 56:406-10. [PMID: 22420921 DOI: 10.1111/j.1348-0421.2012.00451.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus is the most common cause of hospital-acquired bacteremia. Due to emergence of antibiotic-resistant strains, these infections present a serious public health threat. In this study, to develop a broadly protective vaccine, we tested whether immune responses induced by several proteins associated with S. aureus toxicity could protect mice from lethal challenge with human clinical S. aureus isolate USA300. We found that the surface protein A (SasA) of S. aureus could protect mice from lethal challenge of the bacteria.
Collapse
Affiliation(s)
- Shao-Qiong Yi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Johansson D, Shannon O, Rasmussen M. Platelet and neutrophil responses to Gram positive pathogens in patients with bacteremic infection. PLoS One 2011; 6:e26928. [PMID: 22140434 PMCID: PMC3226579 DOI: 10.1371/journal.pone.0026928] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many Gram-positive pathogens aggregate and activate platelets in vitro and this has been proposed to contribute to virulence. Platelets can also form complexes with neutrophils but little is however known about platelet and platelet-neutrophil responses in bacterial infection. METHODOLOGY/PRINCIPAL FINDINGS We added isolates of Gram-positive bacteria from 38 patients with a bacteremic infection to blood drawn from the same patient. Aggregometry and flow cytometry were used to assess platelet aggregation and to quantify activation of platelets, neutrophils, and platelet-neutrophils complexes (PNCs) induced by the bacteria. Fifteen healthy persons served as controls. Most isolates of Staphylococcus aureus, beta hemolytic streptococci, and Enterococcus faecalis induced aggregation of platelets from their respective hosts, whereas pneumococci failed to do so. S. aureus isolates induced platelet aggregation more rapidly in patients than in controls, whereas platelet activation by S. aureus was lower in patients than in controls. PNCs were more abundant in baseline samples from patients than in healthy controls and most bacterial isolates induced additional PNC formation and neutrophil activation. CONCLUSION/SIGNIFICANCE We have demonstrated for the first time that bacteria isolated from patients with Gram-positive bacteremia can induce platelet activation and aggregation, PNC formation, and neutrophil activation in the same infected host. This underlines the significance of these interactions during infection, which could be a target for future therapies in sepsis.
Collapse
Affiliation(s)
- Daniel Johansson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus Rasmussen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
9
|
Nienaber JJC, Sharma Kuinkel BK, Clarke-Pearson M, Lamlertthon S, Park L, Rude TH, Barriere S, Woods CW, Chu VH, Marín M, Bukovski S, Garcia P, Corey GR, Korman T, Doco-Lecompte T, Murdoch DR, Reller LB, Fowler VG. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J Infect Dis 2011; 204:704-13. [PMID: 21844296 DOI: 10.1093/infdis/jir389] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. METHODS IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. RESULTS 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). CONCLUSIONS MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.
Collapse
Affiliation(s)
- Juhsien J C Nienaber
- Duke University Medical Center Division of Infectious Diseases and International Health, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sabbadini PS, Genovez MRN, Silva CFD, Adelino TLN, Santos CSD, Pereira GA, Nagao PE, Dias AADSDO, Mattos-Guaraldi AL, Hirata Júnior R. Fibrinogen binds to nontoxigenic and toxigenic Corynebacterium diphtheriae strains. Mem Inst Oswaldo Cruz 2010; 105:706-11. [DOI: 10.1590/s0074-02762010000500018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022] Open
|
11
|
Holtfreter S, Kolata J, Bröker BM. Towards the immune proteome of Staphylococcus aureus – The anti-S. aureus antibody response. Int J Med Microbiol 2010; 300:176-92. [PMID: 19889576 DOI: 10.1016/j.ijmm.2009.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Silva Holtfreter
- Institut für Immunologie und Transfusionsmedizin, Ernst-Moritz-Arndt-Universität Greifswald, Sauerbruchstrasse, Neubau P, D-17475 Greifswald, Germany
| | | | | |
Collapse
|
12
|
Loughman A, Sweeney T, Keane FM, Pietrocola G, Speziale P, Foster TJ. Sequence diversity in the A domain of Staphylococcus aureus fibronectin-binding protein A. BMC Microbiol 2008; 8:74. [PMID: 18466610 PMCID: PMC2390562 DOI: 10.1186/1471-2180-8-74] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/08/2008] [Indexed: 11/21/2022] Open
Abstract
Background Fibronectin-binding protein A (FnBPA) mediates adhesion of Staphylococcus aureus to fibronectin, fibrinogen and elastin. We previously reported that S. aureus strain P1 encodes an FnBPA protein where the fibrinogen/elastin-binding domain (A domain) is substantially divergent in amino acid sequence from the archetypal FnBPA of S. aureus NCTC8325, and that these variations created differences in antigenicity. In this study strains from multilocus sequence types (MLST) that spanned the genetic diversity of S.aureus were examined to determine the extent of FnBPA A domain variation within the S. aureus population and its effect on ligand binding and immuno-crossreactivity. Results Seven different isotype forms (I – VII) of the FnBPA A domain were identified which were between 66 to 76% identical in amino acid sequence in any pair-wise alignment. The fnbA allelic variants in strains of different multilocus sequence type were identified by DNA hybridization using probes specific for sequences encoding the highly divergent N3 sub-domain of different isotypes. Several isotypes were not restricted to specific clones or clonal complexes but were more widely distributed. It is highly likely that certain fnbA genes have been transferred horizontally. Residues lining the putative ligand-binding trench were conserved, which is consistent with the ability of each A domain isotype to bind immobilized fibrinogen and elastin by the dock-latch-lock mechanism. Variant amino acid residues were mapped on a three-dimensional model of the FnBPA A domain and were predicted to be surface-exposed. Polyclonal antibodies raised against the recombinant isotype I A domain bound that protein with a 4 – 7 fold higher apparent affinity compared to the A domains of isotypes II – VII, while some monoclonal antibodies generated against the isotype I A domain showed reduced or no binding to the other isotypes. Conclusion The FnBPA A domain occurs in at least 7 different isotypes which differ antigenically and exhibit limited immuno-crossreactivity, yet retain their ligand-binding functions. Antigenic variation of the FnBPA A domain may aid S. aureus to evade the host's immune responses. These findings have implications for the development of vaccines or immunotherapeutics that target FnBPA.
Collapse
Affiliation(s)
- Anthony Loughman
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
13
|
The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines. Infect Immun 2008; 76:2164-8. [PMID: 18332207 DOI: 10.1128/iai.01699-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.
Collapse
|
14
|
Staphylococcal Presence Alters Thrombus Formation Under Physiological Shear Conditions in Whole Blood Studies. Ann Biomed Eng 2008; 36:349-55. [DOI: 10.1007/s10439-007-9434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
|
15
|
Meenan NAG, Visai L, Valtulina V, Schwarz-Linek U, Norris NC, Gurusiddappa S, Höök M, Speziale P, Potts JR. The tandem beta-zipper model defines high affinity fibronectin-binding repeats within Staphylococcus aureus FnBPA. J Biol Chem 2007; 282:25893-902. [PMID: 17606607 DOI: 10.1074/jbc.m703063200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of the fibronectin-binding protein FnBPA from Staphylococcus aureus to the human protein fibronectin has previously been implicated in the development of infective endocarditis, specifically in the processes of platelet activation and invasion of the endothelium. We recently proposed a model for binding of fibronectin to FnBPA in which the bacterial protein contains 11 potential binding sites (FnBPA-1 to FnBPA-11), each composed of motifs that bind to consecutive fibronectin type 1 modules in the N-terminal domain of fibronectin. Here we show that six of the 11 sites bind with dissociation constants in the nanomolar range; other sites bind more weakly. The high affinity binding sites include FnBPA-1, the sequence of which had previously been thought to be encompassed by the fibrinogen-binding A domain of FnBPA. Both the number and sequence conservation of the type-1 module binding motifs appears to be important for high affinity binding. The in vivo relevance of the in vitro binding studies is confirmed by the presence of antibodies in patients with S. aureus infections that specifically recognize complexes of these six high affinity repeats with fibronectin.
Collapse
Affiliation(s)
- Nicola A G Meenan
- Department of Biology, University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|