1
|
Delghandi PS, Soleimani V, Fazly Bazzaz BS, Hosseinzadeh H. A review on oxidant and antioxidant effects of antibacterial agents: impacts on bacterial cell death and division and therapeutic effects or adverse reactions in humans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2667-2686. [PMID: 37083711 DOI: 10.1007/s00210-023-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the mitochondrial respiratory pathway and cellular metabolism. They are responsible for creating oxidative stress and lipid peroxidation. In living organisms, there is a balance between oxidative stress and the antioxidant system, but some factors such as medicines disturb the balance and cause many problems. These effects can impact bacterial death and division and also in humans can induce therapeutic or adverse reactions. Web of Science and Pubmed databases were used for searching. This review focuses on the oxidant and antioxidant effects of different classes of antibacterial agents and the mechanisms of oxidative stress. Some of these agents have beneficial effects on killing bacteria due to their antioxidant or oxidant effects. However, some of their side effects may be due to their oxidative effects. Based on the results of this review, minocycline is an antioxidant, but aminoglycosides, chloramphenicol, glycopeptides, antituberculosis drugs, fluoroquinolones, and sulfamethoxazole agents have oxidant effects. Furthermore, cephalosporins, penicillins, metronidazole, and macrolides have both oxidant and antioxidant effects in different studies. It is concluded that some antibacterial agents have oxidant and other antioxidant effects. These activities may affect their therapeutic effects or side effects. Some antioxidants can prevent the adverse effects of antibacterial agents. Clarifying the exact oxidant and antioxidant effects of some antimicrobial agents needs more research projects.
Collapse
Affiliation(s)
| | - Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Science, Mashhad, IR, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
2
|
Amaldoss MJN, Najar IA, Kumar J, Sharma A. Therapeutic efficacy of rifaximin loaded tamarind gum polysaccharide nanoparticles in TNBS induced IBD model Wistar rats. Rep Pract Oncol Radiother 2021; 26:712-729. [PMID: 34760306 DOI: 10.5603/rpor.a2021.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Rifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model rats. Materials and methods The experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported. Results The study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of -26.44 mV and other parameters such as TEM and drug release studies were also reported. Conclusions The therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Swift School of Pharmacy Rajpura, Punjab, India
| | | | | | | |
Collapse
|
3
|
Akinshina AI, Smirnova DV, Zagainova AV, Makarov VV, Yudin SM. Prospects of Using Microbiota Correction Methods in the Treatment of Inflammatory Bowel Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2019; 29:12-22. [DOI: 10.22416/1382-4376-2019-29-2-12-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. The present article examines key methods of microbiota correction (antibiotic therapy; pro-, pre- and metabiotic therapy; faecal microbiota transplantation) used in treating inflammatory bowel disease, as well as compares the clinical trial results of these methods.Key findings. Inflammatory bowel disease (IBD) is an umbrella term used to describe a group of chronic diseases of unknown aetiology. In the past, bacteriological methods based on the isolation of a pure bacterial culture were used to determine the microbiota composition. However, such methods did not provide complete information on the microbiota composition. In recent years, preference has been given to more accurate and faster molecular genetic methods allowing a more detailed study of the key mechanisms by which microbiota affects the intestine in Crohn’s disease (CD) and ulcerative colitis (UC), as well as of the effect of microbial metabolites on their pathogenesis. The article provides an overview of main microbiota metabolites and their role in regulating the intestinal barrier function. One of the current issues consists in the development of personalised approaches to therapy and remission maintenance in IBD, including via methods for correcting the microbial composition: probiotic, prebiotic and metabiotic therapy, as well as faecal microbiota transplantation.Conclusion. The use of probiotics, prebiotics, and metabiotics can enhance the effectiveness of therapeutic regimens and significantly improve the quality of life of patients with chronic IBD. The use of antibiotics and faecal microbiota transplantation in treating IBD is the subject of extensive discussion and debate. The safety of these methods has not been confirmed so far; therefore, it is vital to continue studying their influence on the clinical condition of patients.
Collapse
Affiliation(s)
- A. I. Akinshina
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - D. V. Smirnova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - A. V. Zagainova
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - V. V. Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks
| | - S. M. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks
| |
Collapse
|
4
|
Кovalenko ІV, Оnufrovych ОK, Vorobets NM, Меlnyk ОV, Vorobets ZD. Аrginase/NO-synthase system сharacteristics in blood lymphocytes under effect of fluoroquinolones. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Antibiotics of the fluoroquinolone series are highly effective synthetic drugs of a wide range of antimicrobial activity. They have a specific mechanism of action on bacterial cells to inhibit the DNA-gyrase enzyme of mostly gram-negative and the topoisomerase IV of gram-positive bacterial cells, which leads to a decrease in the activity of enzymes, disruption of DNA and RNA biosyntheses, and the impossibility of chromosome superspilarization, as a result of which its division is broken and the cell dies. Fluoroquinolones also have an immunomodulatory effect, which is very important in terms of the pathogenesis of many infectious and inflammatory diseases. We assume that fluoroquinolones also act on cells of the body of patients, in particular on such regulatory mechanisms as the arginase-NO-synthase system. In this regard, peripheral blood lymphocytes can be a convenient and adequate model for studying the mechanism of the effect of fluoroquinolones. It is shown that under the influence of various generations of fluoroquinolones, arginase activity increases, depending on the dose, in the following sequence: control → ciprofloxacin → levofloxacin → moxifloxacin. The highest activity is observed under the effects of moxifloxacin, belonging to generation IV. The increase in arginase activity in blood lymphocytes under the influence of fluoroquinolones occurs due to the growth of turnover number of the enzymes (Vmax increases), although the affinity of enzyme to the substrate decreases (KL-arg increases). At the same time, all fluoroquinolones reduce the activity of the constitutive isoforms of NO-synthase, depending on the dose. It has been established that a slight activity of iNOS of blood lymphocytes in practically healthy women was detected, almost on the verge of error. When studying the influence of fluoroquinolones on the activation of iNOS lymphocytes isolated from the blood of practically healthy women, we did not observe its activity, and the inhibitive effect could not be determined due to its low activity. Oxidative stress was used to induce iNOS activity in blood lymphocytes, with H2O2 lymphocytes preincubation. The preincubation of lymphocytes with 0.2 mM H2O2 leads to increase of iNOS activity by 31.30 times. By activation of iNOS with hydrogen peroxide, 10–5 M concentration of ciprofloxin leads to inhibition of enzyme activity by 1.22 times, levofloxacin by 1.45 and moxifloxacin by 2.34 times. The obtained kinetic parameters suggest that in the blood lymphocytes under the influence of fluoroquinolones, the synthesis of NO with the participation of cNOS is inhibited, and the hyperproduction of NO is inhibited by the activation of iNOS, which is characteristic for pathological conditions.
Collapse
|
5
|
Abstract
Despite the revolution in inflammatory bowel disease (IBD) treatment over the past two decades with the advent of biological therapies, there remains a substantial proportion of patients with inadequate or unsustained response to existent therapies. The overwhelming focus of IBD therapeutics has been targeting mucosal immunity, however with the developing evidence base pointing to the role of gut microbes in the inflammatory process, renewed focus should be placed on the impact of manipulating the microbiome in IBD management. This review provides an overview of the evidence implicating bacteria in the pathogenesis of gut inflammation in IBD and provides an overview of the evidence of antibiotics in IBD treatment. We also suggest a potential role of antibiotics in clinical practice based on available evidence and clinical experience.
Collapse
Affiliation(s)
- Oren Ledder
- Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Ledder O, Turner D. Antibiotics in IBD: Still a Role in the Biological Era? Inflamm Bowel Dis 2018; 24:1676-1688. [PMID: 29722812 DOI: 10.1093/ibd/izy067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Despite compelling evidence pointing to a critical role of gut microflora in inflammatory bowel disease (IBD) pathogenesis, the role of antibiotics in clinical practice remains limited, largely due to heterogeneous trials with often conflicting evidence. In this review, we revisit previous randomized controlled trials and high-quality uncontrolled studies in an effort to better elucidate the role of antibiotics in contemporary treatment algorithms. The most established role of antibiotics is in perianal Crohn's disease (CD), utilizing ciprofloxacin with or without metronidazole often as an adjunct to biological therapy. Evidence also points to a likely modest role of various antibiotic classes in mild to moderate luminal CD, including ciprofloxacin, metronidazole, azithromycin, and rifaximin. The benefit of metronidazole in preventing postoperative recurrence in CD is well reported; however, the long-term benefit of this intervention remains uncertain. The use of antibiotics in ulcerative colitis (UC) is even more controversial, but studies using broad-spectrum oral antibiotic cocktails have reported a possible role in acute severe colitis and chronic persistent UC. Similarly, the role of oral vancomycin and gentamicin in very early-onset IBD has interesting preliminary results. Adverse events of antibiotics, the resulting alterations in the microbiome with its associated unknown long-term sequela, and the emergence of antibiotic-resistant strains must be carefully balanced. Therefore, although antibiotics may be underused in the treatment of IBD, their integration into clinical practice must be approached judiciously and individually.
Collapse
Affiliation(s)
- Oren Ledder
- Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Turner
- Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Dey S, Bishayi B. Effect of iNOS inhibitor LNMMA along with antibiotics Chloramphenicol or Ofloxacin in murine peritoneal macrophages regulates S.aureus infection as well as inflammation: An in vitro study. Microb Pathog 2017; 105:307-320. [PMID: 28242423 DOI: 10.1016/j.micpath.2017.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Death due to sepsis by S. aureus is rapidly increasing because of their potent weaponries against macrophage mediated killing. Macrophages serve as intracellular reservoirs of S. aureus. Although significant resources have been invested during the last decade in new treatments for sepsis, only antibiotic therapy has failed to improve outcomes. Moreover the host pathogen interaction resulted in host cell death triggering inflammation. So, successful therapy requires amalgamation of therapies to delineate pathogen along with providing protection to host cell. With this idea, LNMMA, the iNOS inhibitor is used along with antibiotics Ofloxacin or Chloramphenicol on S. aureus infected mouse peritoneal macrophage. ROS like H2O2, O2- production has been measured. NO inhibition by iNOS inhibitor and antioxidant levels has been analysed. COX2, TLR2 and iNOS expression along with proinflammatory cytokine level was studied. It was found that the use of iNOS inhibitor LNMMA along with antibiotics not only enhances bacterial clearance but also decreases proinflammatory responses in Staphylococcus aureus infected macrophages. Inhibition of TLR2 as well as COX2 has also been found in combined treatment groups. The use of iNOS inhibitor LNMMA plus Ofloxacin or Chloramphenicol pretreatment enhanced bacterial clearance by increasing ROS. Decreases in NO protect the cell from harmful peroxynitril as well as inflammatory damage by changes in iNOS, COX2 activity along with reduced proinflammatory cytokines like TNFα, IFNγ, IL1-β etc. Changes in antioxidant level has been found. This in-vitro realm of augmented bacterial clearance and regulated inflammation may be considered as a novel and important therapeutic intervention.
Collapse
Affiliation(s)
- Somrita Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 A.P.C. Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 A.P.C. Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
8
|
Resveratrol modulates cytokine-induced Jak/STAT activation more efficiently than 5-aminosalicylic acid: an in vitro approach. PLoS One 2014; 9:e109048. [PMID: 25271420 PMCID: PMC4182878 DOI: 10.1371/journal.pone.0109048] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/03/2014] [Indexed: 12/21/2022] Open
Abstract
Background Many advances have been recently made focused on the valuable help of dietary polyphenols in chronic inflammatory diseases. On the other hand, current treatment options for intestinal bowel disease patients are unsatisfying and, for this reason, it is estimated that many patients use dietary supplements to achieve extra benefits. Aim The aim of this work was to analyze under a mechanistic perspective the anti-inflammatory potential of resveratrol, a natural polyphenolic compound, and to compare it with a pharmaceutical agent, 5-aminosalicylic acid, using the intestinal HT-29 cell line, as a cellular model. Methodology and Principal Findings In the present study, HT-29 colon epithelial cells were pre-treated with 25 µM resveratrol and/or 500 µM 5-aminosalicylic acid and then exposed to a combination of cytokines (IL-1α, TNF-α, IFN-γ) for a certain period of time. Our data showed that resveratrol, used in a concentration 20 times lower than 5-aminosalicylic acid, was able to significantly reduce NO and PGE2 production, iNOS and COX-2 expression and reactive oxidant species formation induced by the cytokine challenge. However, as already verified with 5-aminosalicylic acid, in spite of not exhibiting any effect on IkB-α degradation, resveratrol down-regulated JAK-STAT pathway, decreasing the levels of activated STAT1 in the nucleus. Additionally, resveratrol decreased the cytokine-stimulated activation of SAPK/JNK pathway but did not counteract the cytokine-triggered negative feedback mechanism of STAT1, through p38 MAPK. Conclusion/Significance Taken together, our results show that resveratrol may be considered a future nutraceutical approach, promoting remission periods, limiting the inflammatory process and preventing colorectal cancer, which is common in these patients.
Collapse
|
9
|
Sarker P, Mily A, Mamun AA, Jalal S, Bergman P, Raqib R, Gudmundsson GH, Agerberth B. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia. Antibiotics (Basel) 2014; 3:353-74. [PMID: 27025750 PMCID: PMC4790365 DOI: 10.3390/antibiotics3030353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022] Open
Abstract
Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs), e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea.
Collapse
Affiliation(s)
- Protim Sarker
- Centre for Vaccine Science, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh.
| | - Akhirunnesa Mily
- Centre for Vaccine Science, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh.
| | - Abdullah Al Mamun
- Centre for Vaccine Science, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh.
| | - Shah Jalal
- Department of Laboratory Medicine, Division of Clinical Microbiology (F68), Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology (F68), Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Rubhana Raqib
- Centre for Vaccine Science, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh.
| | | | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology (F68), Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| |
Collapse
|
10
|
Fouka E, Lamprianidou E, Arvanitidis K, Filidou E, Kolios G, Miltiades P, Paraskakis E, Antoniadis A, Kotsianidis I, Bouros D. Low-Dose Clarithromycin Therapy Modulates Th17 Response In Non-Cystic Fibrosis Bronchiectasis Patients. Lung 2014; 192:849-55. [DOI: 10.1007/s00408-014-9619-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/22/2014] [Indexed: 12/27/2022]
|
11
|
Fiorino G, Danese S. Commentary: Adjunct antibiotic combination therapy for ulcerative colitis--is it time to investigate Fusobacterium varium? Aliment Pharmacol Ther 2014; 39:1333. [PMID: 24803247 DOI: 10.1111/apt.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/21/2022]
Affiliation(s)
- G Fiorino
- Department of Gastroenterology, IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | |
Collapse
|
12
|
Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: comparison with 5-aminosalicylic acid. PLoS One 2013; 8:e73001. [PMID: 24039842 PMCID: PMC3765207 DOI: 10.1371/journal.pone.0073001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
The potential use of polyphenols in the prevention and treatment of chronic inflammatory diseases has been extensively investigated although the mechanisms involved in cellular signaling need to be further elucidated. Cyanidin-3-glucoside is a typical anthocyanin of many pigmented fruits and vegetables widespread in the human diet. In the present study, the protection afforded by cyanidin-3-glucoside against cytokine-triggered inflammatory response was evaluated in the human intestinal HT-29 cell line, in comparison with 5-aminosalicylic acid, a well-established anti-inflammatory drug, used in inflammatory bowel disease. For this purpose, some key inflammatory mediators and inflammatory enzymes were examined. Our data showed that cyanidin-3-glucoside reduced cytokine-induced inflammation in intestinal cells, in terms of NO, PGE2 and IL-8 production and of iNOS and COX-2 expressions, at a much lower concentration than 5-aminosalicylic acid, suggesting a higher anti-inflammatory efficiency. Interestingly, cyanidin-3-glucoside and 5-aminosalicylic acid neither prevented IkB-α degradation nor the activation of NF-kB, but significantly reduced cytokine-induced levels of activated STAT1 accumulated in the cell nucleus. In addition, we established that phosphorylated p38 MAPK was not involved in the protective effect of cyanidin-3-glucoside or 5-aminosalicylic acid. Taking into account the high concentrations of dietary anthocyanins potentially reached in the gastrointestinal tract, cyanidin-3-glucoside may be envisaged as a promising nutraceutical giving complementary benefits in the context of inflammatory bowel disease.
Collapse
|
13
|
Manousou P, Kolios G, Drygiannakis I, Koulentaki M, Pyrovolaki K, Voumvouraki A, Notas G, Bourikas L, Papadaki HA, Kouroumalis E. CXCR3 axis in patients with primary biliary cirrhosis: a possible novel mechanism of the effect of ursodeoxycholic acid. Clin Exp Immunol 2013; 172:9-15. [PMID: 23480180 DOI: 10.1111/cei.12032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 12/28/2022] Open
Abstract
The CXC chemokines, monokine induced by interferon (IFN)-gamma (MIG) (CXCL9), IFN-gamma-induced protein 10 (IP-10) (CXCL10) and IFN-inducible T cell alpha chemoattractant (I-TAC) (CXCL11), are known to attract CXCR3- (CXCR3A and CXCR3B) T lymphocytes. We investigated MIG, IP-10 and I-TAC mRNAs expression by semi-quantitative multiplex reverse transcription-polymerase chain reaction (RT-PCR) in liver biopsies obtained from patients with a first diagnosis of primary biliary cirrhosis [(PBC) = 20] compared to patients with normal liver biopsy [normal controls (NCs) = 20]. Chemokine production was assessed by enzyme-linked immunosorbent assay (ELISA) in serum. Measurements were repeated 6 months after ursodeoxycholic acid (UDCA) treatment in PBC patients. CXCR3A and CXCR3B mRNAs expression was examined in immunomagnetically sorted CD3(+) peripheral blood lymphocytes (PBL) pre- and post-treatment by RT-PCR. Flow cytometry was used to evaluate the expression of CXCR3(+) PBLs of NCs and PBC patients. A marked mRNA expression of MIG and IP-10 was found in PBC patients. I-TAC mRNA was not detected. In serum of PBC patients there was a significant increase of MIG and IP-10 compared to NCs. Interestingly, there was a significant reduction of these proteins in patients' serum after UDCA treatment. I-TAC was not statistically different between groups. CXCR3A mRNA expression was found in PBLs from PBC patients as well as in NCs. CXCR3B mRNA was expressed in four of 20 (19%) NCs and 20 of 20 PBC patients. Flow cytometry revealed a significantly lower CXCR3 expression in NCs (13·5%) than in PBC (37·2%), which was reduced (28·1%, P < 0·01) after UDCA administration. These data suggest a possible role for CXCR3-binding chemokines and their receptor in the aetiopathogenetic recruitment of lymphocytes in PBC and a new mechanism of action for UDCA.
Collapse
Affiliation(s)
- P Manousou
- Department of Gastroenterology and Hepatology, Liver Research Laboratory, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Labro MT. Immunomodulatory effects of antimicrobial agents. Part I: antibacterial and antiviral agents. Expert Rev Anti Infect Ther 2012; 10:319-40. [PMID: 22397566 DOI: 10.1586/eri.12.11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite impressive therapeutic progresses in the battle against infections, microorganisms are still a threat to mankind. With hundreds of antibacterial molecules, major concerns remain about the emergence of resistant and multidrug-resistant pathogens. On the other hand, the antiviral drug armamentarium is comprised of only a few dozens of compounds which are highly pathogen specific, and resistance is also a concern. According to Arturo Casadevall (Albert Einstein College of Medicine, NY, USA), we have now entered the third era of anti-infective strategy, which intends to favor the interplay between active molecules and the immune system. The first part of this review focuses on the potential immunomodulating properties of anti-infective agents, beginning with antibacterial and antiviral agents.
Collapse
Affiliation(s)
- Marie-Thérèse Labro
- Inserm SC14 Centre d'Expertise Collective, Université Paris Diderot Paris, 7 Faculté de Médecine Site Bichat, 16 rue Henri Huchard, 75890, Paris Cedex 18, France.
| |
Collapse
|
15
|
Rieder F, Karrasch T, Ben-Horin S, Schirbel A, Ehehalt R, Wehkamp J, de Haar C, Velin D, Latella G, Scaldaferri F, Rogler G, Higgins P, Sans M. Results of the 2nd scientific workshop of the ECCO (III): basic mechanisms of intestinal healing. J Crohns Colitis 2012; 6:373-85. [PMID: 22405177 DOI: 10.1016/j.crohns.2011.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 11/13/2011] [Indexed: 02/08/2023]
Abstract
The second scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of intestinal healing for the disease course of inflammatory bowel disease (IBD). The objective was to better understand basic mechanisms, markers for disease prediction, detection and monitoring of intestinal healing, impact of intestinal healing on the disease course of IBD as well as therapeutic strategies. The results of this workshop are presented in four separate manuscripts. This section describes basic mechanisms of intestinal healing, identifies open questions in the field and provides a framework for future studies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology & Hepatology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Loron G, Olivier P, See H, Le Saché N, Angulo L, Biran V, Brunelle N, Besson-Lescure B, Kitzis MD, Pansiot J, Bingen E, Gressens P, Bonacorsi S, Baud O. Ciprofloxacin prevents myelination delay in neonatal rats subjected to E. coli sepsis. Ann Neurol 2010; 69:341-51. [PMID: 21387379 DOI: 10.1002/ana.22190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/17/2010] [Accepted: 07/30/2010] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Perinatal infections and the systemic inflammatory response to them are critical contributors to white matter disease (WMD) in the developing brain despite the use of highly active antibiotics. Fluoroquinolones including ciprofloxacin (CIP) have intrinsic anti-inflammatory effects. We hypothesized that CIP, in addition to its antibacterial activity, could exert a neuroprotective effect by modulating white matter inflammation in response to sepsis. METHODS We adapted an Escherichia coli sepsis model to 5-day-old rat pups (P5), to induce white matter inflammation without bacterial meningitis. We then compared the ability of CIP to modulate inflammatory-induced brain damage compared with cefotaxime (CTX) (treatment of reference). RESULTS Compared with CTX, CIP was associated with reduced microglial activation and inducible nitric oxide synthase (iNOS) expression in the developing white matter in rat pups subjected to E. coli sepsis. In addition to reducing microglial activation, CIP was able to prevent myelination delay induced by E. coli sepsis and to promote oligodendroglial survival and maturation. We found that E. coli sepsis altered the transcription of the guidance molecules semaphorin 3A and 3F; CIP treatment was capable of reducing semaphorin 3A and 3F transcription levels to those seen in uninfected controls. Finally, in a noninfectious white matter inflammation model, CIP was associated with significantly reduced microglial activation and prevented WMD when compared to CTX. INTERPRETATION These data strongly suggest that CIP exerts a beneficial effect in a model of E. coli sepsis-induced WMD in rat pups that is independent of its antibacterial activity but likely related to iNOS expression modulation.
Collapse
Affiliation(s)
- Gauthier Loron
- Institut National de la Santé et de la Recherche Médicale AVENIR, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taylor K. Clinical veterinarian’s perspective of non-human primate (NHP) use in drug safety studies. J Immunotoxicol 2010. [DOI: 10.3109/15476910903213539] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Bourikas LA, Kolios G, Valatas V, Notas G, Drygiannakis I, Pelagiadis I, Manousou P, Klironomos S, Mouzas IA, Kouroumalis E. Ciprofloxacin decreases survival in HT-29 cells via the induction of TGF-beta1 secretion and enhances the anti-proliferative effect of 5-fluorouracil. Br J Pharmacol 2009; 157:362-70. [PMID: 19371339 DOI: 10.1111/j.1476-5381.2009.00161.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fluoroquinolones are potent anti-microbial agents with multiple effects on host cells and tissues. Previous studies have highlighted their pro-apoptotic effect on human cancer cells and an immunoregulatory role in animal models of inflammatory bowel disease. We examined the effect of ciprofloxacin on proliferation, cell cycle and apoptosis of HT-29 cells, a human colonic epithelial cell line sensitive to transforming growth factor (TGF)-beta1-mediated growth inhibition and its role in TGF-beta1 production. We also examined the effect of ciprofloxacin on proliferation of HT-29 cells in combination with 5-fluorouracil (5-FU), a well-established pro-apoptotic agent. EXPERIMENTAL APPROACH Using subconfluent cultures of HT-29 and Caco-2 cells, we studied the effect of ciprofloxacin, TGF-beta1 and 5-FU on proliferation, apoptosis, necrosis and cell cycle. The effect of ciprofloxacin on TGF-beta1 mRNA expression and production was studied in RNA extracts and cell culture supernatants respectively, using confluent cultures. KEY RESULTS Ciprofloxacin decreased proliferation of HT-29 cells in a concentration- and time-dependent manner. This was mediated by accumulation of HT-29 cells into the S-phase but without any effect on apoptosis or necrosis. Additionally, ciprofloxacin enhanced the antiproliferative effect of 5-FU. Interestingly, ciprofloxacin was found to up-regulate TGF-beta1 production by HT-29 cells and its anti-proliferative effect was abolished when TGF-beta1 was blocked. Confirming this mechanism further, ciprofloxacin had no effect on Caco-2, a human colonic epithelial cell line that lacks functional TGF-beta1 receptors. CONCLUSIONS AND IMPLICATIONS We demonstrate a novel anti-proliferative and immunoregulatory effect of ciprofloxacin on human intestinal epithelial cells mediated via TGF-beta1.
Collapse
|
19
|
Macfarlane S, Steed H, Macfarlane GT. Intestinal bacteria and inflammatory bowel disease. Crit Rev Clin Lab Sci 2009; 46:25-54. [PMID: 19107650 DOI: 10.1080/10408360802485792] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two principal forms of inflammatory bowel disease (IBD). Animal studies show that bacteria are involved in the etiology of IBD, and much is now known about the inflammatory processes associated with CD and UC, as well as the underlying genetic, environmental, and lifestyle issues that can affect an individual's predisposition to these diseases. However, while a number of candidate microorganisms have been put forward as causative factors in IBD, the primary etiologic agents are unknown. This review discusses the potential role of luminal and mucosal microbial communities in the etiology of IBD, and outlines studies that have been made using a variety of biotherapeutic therapies, involving the use of antibiotics, probiotics, prebiotics, and synbiotics.
Collapse
Affiliation(s)
- Sandra Macfarlane
- Microbiology and Gut Biology Group, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
20
|
Damaskos D, Kolios G. Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'. Br J Clin Pharmacol 2008; 65:453-67. [PMID: 18279467 DOI: 10.1111/j.1365-2125.2008.03096.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intestinal microflora is a large bacterial community that colonizes the gut, with a metabolic activity equal to an organ and various functions that affect the physiology and pathology of the host's mucosal immune system. Intestinal bacteria are useful in promotion of human health, but certain components of microflora, in genetically susceptible individuals, contribute to various pathological disorders, including inflammatory bowel disease. Clinical and experimental observations indicate an imbalance in protective and harmful microflora components in these disorders. Manipulation of gut flora to enhance its protective and beneficial role represents a promising field of new therapeutic strategies of inflammatory bowel disease. In this review, we discuss the implication of gut flora in the intestinal inflammation that justifies the role of probiotics and prebiotics in the prevention and treatment of inflammatory bowel disease and we address the evidence for therapeutic benefits from their use in experimental models of colitis and clinical trials.
Collapse
Affiliation(s)
- Dimitrios Damaskos
- Second Department of Surgery, General Hospital of Nikea, Piraeus, Greece [corrected]
| | | |
Collapse
|
21
|
Wada T, Kida T, Inoue T, Tokushige H, Naka H, Sakaki H. Immunomodulatory effect of gatifloxacin on mouse peritoneal macrophages in vitro and in models of endotoxin-induced rat conjunctivitis and rabbit bacterial keratitis. Ophthalmic Res 2008; 40:54-60. [PMID: 18223298 DOI: 10.1159/000113883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/30/2007] [Indexed: 11/19/2022]
Abstract
AIM To determine the anti-inflammatory activity of gatifloxacin in ophthalmic use. METHODS The following 3 experiments were carried out. (1) Rabbits were inoculated intracorneally with methicillin-resistant Staphylococcus aureus and topically treated with gatifloxacin or levofloxacin. The severity of infection and viable bacterial count were assessed. (2) Thioglycollate-elicited mouse peritoneal macrophages were stimulated by Pseudomonas lipopolysaccharides (LPS) in the presence of graded concentrations of fluoroquinolones, and macrophage-derived tumor necrosis factor alpha (TNF-alpha) was assessed. (3) The effects of fluoroquinolones on TNF-alpha production were compared in an LPS-induced rat conjunctivitis model. RESULTS In the rabbit keratitis model, the ocular inflammation was significantly reduced by gatifloxacin as compared to levofloxacin but there was no significant difference between the groups in the number of viable bacteria. Gatifloxacin and levofloxacin suppressed TNF-alpha production in mouse macrophages in a concentration-dependent manner, and the effect of gatifloxacin was more potent than that of levofloxacin. Moxifloxacin exhibited no effect in this condition. In the rat conjunctivitis model, the tissue TNF-alpha level was significantly reduced only in the group instilled with gatifloxacin ophthalmic solution. CONCLUSION These results indicate that gatifloxacin has not only antibacterial activity but an anti-inflammatory action caused by at least inhibiting TNF-alpha production at the doses used in topical ophthalmic therapy.
Collapse
Affiliation(s)
- Tomoyuki Wada
- Research Laboratories, Senju Pharmaceutical Co., Ltd., Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- K Riesbeck
- Lund University, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|