1
|
Rahane CS, Kutzner A, Heese K. Establishing a human adrenocortical carcinoma (ACC)-specific gene mutation signature. Cancer Genet 2019; 230:1-12. [DOI: 10.1016/j.cancergen.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
|
2
|
Hematopoietic overexpression of FOG1 does not affect B-cells but reduces the number of circulating eosinophils. PLoS One 2014; 9:e92836. [PMID: 24747299 PMCID: PMC3991581 DOI: 10.1371/journal.pone.0092836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage.
Collapse
|
3
|
Shen Q, Huang X, Chen S, Yang L, Chen S, Li B, Wu X, Grabarczyk P, Przybylski GK, Schmidt CA, Li Y. BCL11B suppression does not influence CD34(+) cell differentiation and proliferation. ACTA ACUST UNITED AC 2013; 17:329-33. [PMID: 23168072 DOI: 10.1179/1024533212z.000000000145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The B-cell chronic lymphocytic leukemia (CLL)/lymphoma 11B (BCL11B) gene plays a critical role in T-cell differentiation and proliferation. However, little is understood about the role of BCL11B in human hematopoietic stem/progenitor cells. Small interfering RNA (siRNA)-mediated suppression of the BCL11B was shown to induce apoptosis in human T-cell acute lymphoblastic leukemia cells. To further characterize the role of BCL11B in hematopoietic stem/progenitor cells and assess the safety of siRNA-mediated targeted therapy, the in vitro differentiation and proliferation of CD34(+) cells after BCL11B-siRNA935 treatment were studied. CD34(+) cells were sorted from three cases of umbilical cord blood by the magnetic activated cell sorting technique, and the purity was identified by flow cytometry. BCL11B-siRNA935 was delivered into CD34(+) cells by nucleofection and the BCL11B expression level was analyzed by quantitative real-time polymerase chain reaction. Erythroid burst-forming units (BFU-E), granulocyte/macrophage colony-forming units (CFU-GM), and megakaryocyte colony-forming units (CFU-Meg) were assessed using BCL11B-siRNA935-treated CD34(+) cells by the methylcellulose semi-solid culture method. The BCL11B expression level in CD34(+) cells was significantly lower than that in Molt-4 cells and peripheral blood mononuclear cells from healthy individuals. An approximate one-fold reduction in the BCL11B mRNA level was observed 24 hours post-transfection with BCL11B-siRNA935. However, there was no significant difference on the colony formation ability of BFU-E, CFU-GM, and CFU-Meg for CD34(+) cells between the BCL11B-siRNA935-treated and mock-transfected groups (P > 0.05). BCL11B suppression by RNA interference had no significant influence on the differentiation and proliferation of CD34(+) cells. In conclusion, the BCL11B-siRNA935 used in this study may be safe, and BCL11B may be considered a new candidate for targeted gene therapy in T-cell malignancies.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Singer TM, Moll C, Groß-Hardt R. When Double is not Twice as Much. FRONTIERS IN PLANT SCIENCE 2011; 2:94. [PMID: 22645557 PMCID: PMC3355729 DOI: 10.3389/fpls.2011.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/22/2011] [Indexed: 06/01/2023]
Abstract
Gene and genome duplications provide a playground for various selective pressures and contribute significantly to genome complexity. It is assumed that the genomes of all major eukaryotic lineages possess duplicated regions that result from gene and genome duplication. There is evidence that the model plant Arabidopsis has been subjected to at least three whole-genome duplication events over the last 150-200 million years. As a result, many cellular processes are governed by redundantly acting gene families. Plants pass through two distinct life phases with a haploid gametophytic alternating with a diploid sporophytic generation. This ontogenetic difference in gene copy number has important implications for the outcome of deleterious mutations, which are masked by the second gene copy in diploid systems but expressed in a dominant fashion in haploid organisms. As a consequence, maintaining the activity of duplicated genes might be particularly advantageous during the haploid gametophytic generation. Here, we describe the distinctive features associated with the alteration of generations and discuss how activity profiles of duplicated genes might get modulated in a life phase dependent fashion.
Collapse
Affiliation(s)
- Theresa Maria Singer
- Cell and Developmental Genetics, Center for Plant Molecular Biology, University of TuebingenTuebingen, Germany
| | - Cordula Moll
- Cell and Developmental Genetics, Center for Plant Molecular Biology, University of TuebingenTuebingen, Germany
| | - Rita Groß-Hardt
- Cell and Developmental Genetics, Center for Plant Molecular Biology, University of TuebingenTuebingen, Germany
| |
Collapse
|
5
|
Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood 2010; 117:2157-65. [PMID: 21163928 DOI: 10.1182/blood-2010-08-302711] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRs) play an important role in cell differentiation and maintenance of cell identity, but relatively little is known of their functional role in modulating human hematopoietic lineage differentiation. Human embryonic stem cells (hESCs) provide a model system to study early human hematopoiesis. We differentiated hESCs by embryoid body (EB) formation and compared the miR expression profile of undifferentiated hESCs to CD34(+) EB cells. miRs-126/126* were the most enriched of the 7 miRs that were up-regulated in CD34(+) cells, and their expression paralleled the kinetics of hematopoietic transcription factors RUNX1, SCL, and PU.1. To define the role of miRs-126/126* in hematopoiesis, we created hESCs overexpressing doxycycline-regulated miRs-126/126* and analyzed their hematopoietic differentiation. Induction of miRs-126/126* during both EB differentiation and colony formation reduced the number of erythroid colonies, suggesting an inhibitory role of miRs-126/126* in erythropoiesis. Protein tyrosine phosphatase, nonreceptor type 9 (PTPN9), a protein tyrosine phosphatase that is required for growth and expansion of erythroid cells, is one target of miR-126. PTPN9 restoration partially relieved the suppressed erythropoiesis caused by miRs-126/126*. Our results define an important function of miRs-126/126* in negative regulation of erythropoiesis, providing the first evidence for a role of miR in hematopoietic differentiation of hESCs.
Collapse
|
6
|
Yang HY, Jeong DK, Kim SH, Chung KJ, Cho EJ, Jin CH, Yang U, Lee SR, Lee DS, Lee TH. Gene expression profiling related to the enhanced erythropoiesis in mouse bone marrow cells. J Cell Biochem 2008; 104:295-303. [PMID: 17990289 DOI: 10.1002/jcb.21620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peroxiredoxin II knockout (Prdx II(-/-)) mice had a spontaneous phenotype of hemolytic anemia. In this study, we found that Ter-119(+)CD71(+) cells increased in Prdx II(-/-) mice bone marrow (BM) at 8 weeks of age. We examined the differential expression profiles to bone marrow cells (BMCs) between Prdx II(+/+) and Prdx II(-/-) mice using a cDNA microarray. We identified the 136 candidates were differentially expressed a greater twofold increase or decrease than EPO receptor. In this study, we focused on the up-regulated NBPs during erythropoietic differentiation. According to cDNA microarray results, six NBPs except zfp-127 were up-regulated during erythropoiesis in Prdx II(-/-) mice. Among the six candidates, eIF3-p44, hnRNPH1, G3bp, and Zfpm-1 were dramatically increased at day 7 of the in vitro erythropoietic differentiation of human CD34(+) cells. However, DJ-1 and Rbm3 were slightly increased only at day 12. Our results suggest that up-regulated NBPs might be involved during erythropoietic differentiation.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Molecular Medicine, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Differential context-dependent effects of friend of GATA-1 (FOG-1) on mast-cell development and differentiation. Blood 2007; 111:1924-32. [PMID: 18063754 DOI: 10.1182/blood-2007-08-104489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Friend of GATA-1 (FOG-1) is a binding partner of GATA-1, a zinc finger transcription factor with crucial roles in erythroid, megakaryocytic, and mast-cell differentiation. FOG-1 is indispensable for the function of GATA-1 during erythro/megakaryopoiesis, but FOG-1 is not expressed in mast cells. Here, we analyzed the role of FOG-1 in mast-cell differentiation using a combined experimental system with conditional gene expression and in vitro hematopoietic induction of mouse embryonic stem cells. Expression of FOG-1 during the progenitor period inhibited the differentiation of mast cells and enhanced the differentiation of neutrophils. Analysis using a mutant of PU.1, a transcription factor that positively or negatively cooperates with GATA-1, revealed that this lineage skewing was caused by disrupted binding between GATA-1 and PU.1, which is a prerequisite for mast-cell differentiation. However, FOG-1 expression in mature mast cells brought approximately a reversible loss of the mast-cell phenotype. In contrast to the lineage skewing, the loss of the mast-cell phenotype was caused by down-regulation of MITF, a basic helix-loop-helix transcription factor required for mast-cell differentiation and maturation. These results indicate that FOG-1 inhibits mast-cell differentiation in a differentiation stage-dependent manner, and its effects are produced via different molecular mechanisms.
Collapse
|
8
|
Muratoglu S, Hough B, Mon ST, Fossett N. The GATA factor Serpent cross-regulates lozenge and u-shaped expression during Drosophila blood cell development. Dev Biol 2007; 311:636-49. [PMID: 17869239 PMCID: PMC2132443 DOI: 10.1016/j.ydbio.2007.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
The Drosophila GATA factor Serpent interacts with the RUNX factor Lozenge to activate the crystal cell program, whereas SerpentNC binds the Friend of GATA protein U-shaped to limit crystal cell production. Here, we identified a lozenge minimal hematopoietic cis-regulatory module and showed that lozenge-lacZ reporter-gene expression was autoregulated by Serpent and Lozenge. We also showed that upregulation of u-shaped was delayed until after lozenge activation, consistent with our previous results that showed u-shaped expression in the crystal cell lineage is dependent on both Serpent and Lozenge. Together, these observations describe a feed forward regulatory motif, which controls the temporal expression of u-shaped. Finally, we showed that lozenge reporter-gene activity increased in a u-shaped mutant background and that forced expression of SerpentNC with U-shaped blocked lozenge- and u-shaped-lacZ reporter-gene activity. This is the first demonstration of GATA:FOG regulation of Runx and Fog gene expression. Moreover, these results identify components of a Serpent cross-regulatory sub-circuit that can modulate lozenge expression. Based on the sub-circuit design and the combinatorial control of crystal cell production, we present a model for the specification of a dynamic bi-potential regulatory state that contributes to the selection between a Lozenge-positive and Lozenge-negative state.
Collapse
Affiliation(s)
- Selen Muratoglu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Barry Hough
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Soe T. Mon
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
9
|
Yang HY, Jeong DK, Kim SH, Chung KJ, Cho EJ, Yang U, Lee SR, Lee TH. The role of peroxiredoxin III on late stage of proerythrocyte differentiation. Biochem Biophys Res Commun 2007; 359:1030-6. [PMID: 17574212 DOI: 10.1016/j.bbrc.2007.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 11/24/2022]
Abstract
Peroxiredoxin III (Prdx III), the mitochondrial peroxidase, was preferentially expressed in murine erythroleukemia (MEL) cells. However, the mechanisms by which Prdx III regulates erythroid differentiation are unknown. In this study, K562 cells were differentiated by Ara-C treatment, and Prdx III was dramatically increased until day 5. We also investigated Prdx III expression pattern on in vitro erythropoiesis of human CD34(+) cells. When human CD34(+) cells became proerythrocyte on day 7, Prdx III was diminished, and then augmented on day 12. We established the stable sublines of Prdx III overexpression (O/E), and dominant-negative (D/N). The intracellular ROS level of Prdx III O/E cell line was lower than D/N stable cell lines. Moreover, Prdx III O/E cell line was placed in G1-arrest, but not D/N cell lines. Finally, the expression level of beta-globin and GATA-1 was dramatically increased in Prdx III O/E cell line.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Molecular Medicine, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang HY, Kim SH, Kim SH, Kim DJ, Kim SU, Yu DY, Yeom YI, Lee DS, Kim YJ, Park BJ, Lee TH. The suppression of zfpm-1 accelerates the erythropoietic differentiation of human CD34+ cells. Biochem Biophys Res Commun 2006; 353:978-84. [PMID: 17207461 DOI: 10.1016/j.bbrc.2006.12.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/17/2006] [Indexed: 11/24/2022]
Abstract
Erythropoiesis is a complex multistage process for the differentiation of mature erythrocytes from hematopoietic stem cells. The function of several transcription factors has been reported in hematopoietic stem cell differentiation. However, the molecular basis governing its functional behavior is unclear. In this study, we characterized the role of Zfpm-1 during the erythropoietic differentiation of human hematopoietic stem cells. To verify the function of Zfpm-1 during erythropoietic differentiation, we established human CD34+ cell culture system by using human umbilical cord blood. At day 7 of the human CD34+ cell differentiation process to proerythocytes, Zfpm-1 was initially up-regulated and then dramatically down-regulated at day 9. The Zfpm-1 siRNA transfected HSCs contained 20% more GPA+ cells than the mock transfected cells, and showed repressed expression of the hematopoietic transcription factors, c-myc and c-myb, but increased expression of GATA-1. In contrast, the Zfpm-1 gain-of-function is the opposite of loss-of-function results above.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Molecular Medicine, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ohtsu N, Nobuhisa I, Mochita M, Taga T. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mesonephros hematopoiesis. Exp Cell Res 2006; 313:88-97. [PMID: 17064687 DOI: 10.1016/j.yexcr.2006.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/16/2006] [Accepted: 09/20/2006] [Indexed: 12/26/2022]
Abstract
Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. Our previous studies revealed that STAT3, a gp130 downstream transcription factor, is required for AGM hematopoiesis and that homeodomain-interacting protein kinase 2 (HIPK2) phosphorylates serine-727 of STAT3. HIPK2 is a serine/threonine kinase known to be involved in transcriptional repression and apoptosis. In the present study, we examined the role of HIPK2 in hematopoiesis in mouse embryo. HIPK2 transcripts were found in fetal hematopoietic tissues such as the mouse AGM region and fetal liver. In cultured AGM cells, HIPK2 protein was detected in adherent cells. Functional analyses of HIPK2 were carried out by introducing wild-type and mutant HIPK2 constructs into AGM cultures. Production of CD45(+) hematopoietic cells was suppressed by forced expression of HIPK2 in AGM cultures. This suppression required the kinase domain and nuclear localization signals of HIPK2, but the kinase activity was dispensable. HIPK2-overexpressing AGM-derived nonadherent cells did not form cobblestone-like colonies in cultures with stromal cells. Furthermore, overexpression of HIPK2 in AGM cultures impeded the expansion of CD45(low)c-Kit(+) cells, which exhibit the immature hematopoietic progenitor phenotype. These data indicate that HIPK2 plays a negative regulatory role in AGM hematopoiesis in the mouse embryo.
Collapse
Affiliation(s)
- Naoki Ohtsu
- Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | |
Collapse
|
12
|
Kitajima K, Zheng J, Yen H, Sugiyama D, Nakano T. Multipotential differentiation ability of GATA-1-null erythroid-committed cells. Genes Dev 2006; 20:654-9. [PMID: 16543218 PMCID: PMC1413282 DOI: 10.1101/gad.1378206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GATA-1, a zinc finger transcription factor, has been believed to be indispensable for the survival of proerythroblasts. However, we found that GATA-1-null proerythroblasts could survive and proliferate on OP9 stroma cells in the presence of erythropoietin. Furthermore, myeloid and mast cells were induced from the GATA-1-null proerythroblasts by the stimulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), respectively, but lymphoid differentiation was not achieved by in vivo transfer. Thus, without activity of the transcription factor required for terminal differentiation, even relatively mature and committed cells proliferate continuously with the differentiation capacity to other lineages. Our data suggest that GATA-1 is a critical transcription factor to fix erythroid progenitors to the erythroid lineage.
Collapse
Affiliation(s)
- Kenji Kitajima
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
13
|
Kitajima K, Tanaka M, Zheng J, Yen H, Sato A, Sugiyama D, Umehara H, Sakai E, Nakano T. Redirecting differentiation of hematopoietic progenitors by a transcription factor, GATA-2. Blood 2006; 107:1857-63. [PMID: 16254139 DOI: 10.1182/blood-2005-06-2527] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
GATA-2 is a zinc finger transcription factor essential for differentiation of immature hematopoietic cells. We analyzed the function of GATA-2 by a combined method of tetracycline-dependent conditional gene expression and in vitro hematopoietic differentiation from mouse embryonic stem (ES) cells using OP9 stroma cells (OP9 system). In the presence of macrophage colony-stimulating factor (M-CSF), the OP9 system induced macrophage differentiation. GATA-2 expression in this system inhibited macrophage differentiation and redirected the fate of hematopoietic differentiation to other hematopoietic lineages. GATA-2 expression commencing at day 5 or day 6 induced megakaryocytic or erythroid differentiation, respectively. Expression levels of PU.1, a hematopoietic transcription factor that interferes with GATA-2, appeared to play a critical role in differentiation to megakaryocytic or erythroid lineages. Transcription of PU.1 was affected by histone acetylation induced by binding of GATA-2 to the PU.1 promoter region. This study demonstrates that the function of GATA-2 is modified in a context-dependent manner by expression of PU.1, which in turn is regulated by GATA-2.
Collapse
Affiliation(s)
- Kenji Kitajima
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Olsen AL, Stachura DL, Weiss MJ. Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood 2005; 107:1265-75. [PMID: 16254136 PMCID: PMC1895404 DOI: 10.1182/blood-2005-09-3621] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.
Collapse
Affiliation(s)
- Abby L Olsen
- Division of Hematology, 3615 Civic Center Blvd, Abramson Research Center, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Zheng J, Kitajima K, Sakai E, Kimura T, Minegishi N, Yamamoto M, Nakano T. Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells. Blood 2005; 107:520-7. [PMID: 16174764 DOI: 10.1182/blood-2005-04-1385] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zinc finger transcription factor GATA-1 is essential for both primitive (embryonic) and definitive (adult) erythropoiesis. To define the roles of GATA-1 in the production and differentiation of primitive and definitive erythrocytes, we established GATA-1-null embryonic stem cell lines in which GATA-1 was able to be conditionally expressed by using the tetracycline conditional gene expression system. The cells were subjected to hematopoietic differentiation by coculturing on OP9 stroma cells. We expressed GATA-1 in the course of primitive and definitive erythropoiesis and analyzed the ability of GATA-1 to rescue the defective erythropoiesis caused by the GATA-1 null mutation. Our results show that GATA-1 functions in the proliferation and maturation of erythrocytes in a distinctive manner. The early-stage expression of GATA-1 during both primitive and definitive erythropoiesis was sufficient to promote the proliferation of red blood cells. In contrast, the late-stage expression of GATA-1 was indispensable to the terminal differentiation of primitive and definitive erythrocytes. Thus, GATA-1 affects the proliferation and differentiation of erythrocytes by different mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|