1
|
Dubey S, Jaiswal B, Gupta A. TIP60 acts as a regulator of genes involved in filopodia formation and cell migration during wound healing. J Biol Chem 2022; 298:102015. [PMID: 35525269 PMCID: PMC9249863 DOI: 10.1016/j.jbc.2022.102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex phenomenon that requires coordination of numerous molecular and cellular changes to facilitate timely and efficient repair of the damaged tissue. Although many of these molecular pathways have been detailed, others remain to be elucidated. In the present work, we show for the first time, roles for the acetyltransferase TIP60 and nuclear receptor transcription factor PXR in this process, participating in wound healing by altering actin dynamics and cellular motility. We found that in response to wound-injury, TIP60 induces rapid formation of filopodia at the wounded cell front, leading to enhanced cell migration and faster closure of the wound. Further, qPCR analysis revealed heightened expression of Cdc42 and ROCK1 genes, key regulators involved in filopodia formation and actin reorganization, exclusively in TIP60-PXR-expressing cells upon wound-induction. We also performed ChIP assays to confirm the context-specific binding of TIP60 on the ROCK1 promoter and demonstrated that the TIP60 chromodomain is essential for loading of the TIP60–PXR complex onto the chromatin. Results from immunoprecipitation assays revealed that during the wounded condition, TIP60 alters the chromatin microenvironment by specifically acetylating histones H2B and H4, thereby modulating the expression of target genes. Overall, findings of this study show that TIP60 is a novel regulator of the wound healing process by regulating the expression of wound repair-related genes.
Collapse
Affiliation(s)
- Shraddha Dubey
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Bharti Jaiswal
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India.
| |
Collapse
|
2
|
Alshehri S, Susapto HH, Hauser CAE. Scaffolds from Self-Assembling Tetrapeptides Support 3D Spreading, Osteogenic Differentiation, and Angiogenesis of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:2094-2106. [PMID: 33908763 PMCID: PMC8382244 DOI: 10.1021/acs.biomac.1c00205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Indexed: 01/01/2023]
Abstract
The apparent rise of bone disorders demands advanced treatment protocols involving tissue engineering. Here, we describe self-assembling tetrapeptide scaffolds for the growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs). The rationally designed peptides are synthetic amphiphilic self-assembling peptides composed of four amino acids that are nontoxic. These tetrapeptides can quickly solidify to nanofibrous hydrogels that resemble the extracellular matrix and provide a three-dimensional (3D) environment for cells with suitable mechanical properties. Furthermore, we can easily tune the stiffness of these peptide hydrogels by just increasing the peptide concentration, thus providing a wide range of peptide hydrogels with different stiffnesses for 3D cell culture applications. Since successful bone regeneration requires both osteogenesis and vascularization, our scaffold was found to be able to promote angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. The results presented suggest that ultrashort peptide hydrogels are promising candidates for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Salwa Alshehri
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hepi H. Susapto
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
4
|
Nguyen AV, Trompetto B, Tan XHM, Scott MB, Hu KHH, Deeds E, Butte MJ, Chiou PY, Rowat AC. Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cell Mol Bioeng 2020; 13:27-44. [PMID: 32030106 PMCID: PMC6981337 DOI: 10.1007/s12195-019-00603-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Metastasis is a fundamentally physical process in which cells deform through narrow gaps and generate forces to invade surrounding tissues. While it is commonly thought that increased cell deformability is an advantage for invading cells, we previously found that more invasive pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here we investigate potential mechanisms of the simultaneous increase in PDAC cell stiffness and invasion, focusing on the contributions of myosin II, Arp2/3, and formins. METHOD We measure cell invasion using a 3D scratch wound invasion assay and cell stiffness using atomic force microscopy (AFM). To determine the effects of actin- and myosin-mediated force generation on cell stiffness and invasion, we treat cells with pharmacologic inhibitors of myosin II (blebbistatin), Arp2/3 (CK-666), and formins (SMIFH2). RESULTS We find that the activity of myosin II, Arp2/3, and formins all contribute to the stiffness of PDAC cells. Interestingly, we find that the invasion of PDAC cell lines is differentially affected when the activity of myosin II, Arp2/3, or formins is inhibited, suggesting that despite having similar tissue origins, different PDAC cell lines may rely on different mechanisms for invasion. CONCLUSIONS These findings deepen our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incite further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit.
Collapse
Affiliation(s)
- Angelyn V. Nguyen
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | - Brittany Trompetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | | | - Michael B. Scott
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
- Present Address: Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Biomedical Engineering, Northwestern McCormick School of Engineering, Evanston, USA
| | | | - Eric Deeds
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, USA
| | - Manish J. Butte
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | - Pei Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
5
|
Blockade of ROCK inhibits migration of human primary keratinocytes and malignant epithelial skin cells by regulating actomyosin contractility. Sci Rep 2019; 9:19930. [PMID: 31882703 PMCID: PMC6934852 DOI: 10.1038/s41598-019-56447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Actomyosin contractility, crucial for several physiological processes including migration, is controlled by the phosphorylation of myosin light chain (MLC). Rho-associated protein kinase (ROCK) and Myosin light chain kinase (MLCK) are predominant kinases that phosphorylate MLC. However, the distinct roles of these kinases in regulating actomyosin contractility and their subsequent impact on the migration of healthy and malignant skin cells is poorly understood. We observed that blockade of ROCK in healthy primary keratinocytes (HPKs) and epidermal carcinoma cell line (A-431 cells) resulted in loss of migration, contractility, focal adhesions, stress fibres, and changes in morphology due to reduction in phosphorylated MLC levels. In contrast, blockade of MLCK reduced migration, contractile dynamics, focal adhesions and phosphorylated MLC levels of HPKs alone and had no effect on A-431 cells due to the negligible MLCK expression. Using genetically modified A-431 cells expressing phosphomimetic mutant of p-MLC, we show that ROCK dependent phosphorylated MLC controls the migration, focal adhesion, stress fibre organization and the morphology of the cells. In conclusion, our data indicate that ROCK is the major kinase of MLC phosphorylation in both HPKs and A-431 cells, and regulates the contractility and migration of healthy as well as malignant skin epithelial cells.
Collapse
|
6
|
Ho WT, Chang JS, Chou SF, Hwang WL, Shih PJ, Chang SW, Yang MH, Jou TS, Wang IJ. Targeting non-muscle myosin II promotes corneal endothelial migration through regulating lamellipodial dynamics. J Mol Med (Berl) 2019; 97:1345-1357. [PMID: 31302714 DOI: 10.1007/s00109-019-01818-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/18/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Corneal endothelial cell (CEC) dysfunction causes corneal edema that may lead to blindness. In addition to corneal transplantation, simple descemetorhexis has been proposed to treat centrally located disease with adequate peripheral cell reserve, but promoting the centripetal migration of CECs is pivotal to this strategy. Here, we show that targeting non-muscle myosin II (NMII) activity by Y27632, a ROCK inhibitor, or blebbistatin, a selective NMII inhibitor, promotes directional migration of CECs and accelerates in vitro wound healing. The lamellipodial protrusion persistence is increased, and actin retrograde flow is decreased after NMII inhibition. Counteracting lamellipodial protrusion by actin-related protein 2/3 (ARP2/3) inhibitor abolishes this migration-promoting effect. Although both Y27632 and blebbistatin accelerate wound healing, cell junctional integrity and barrier function are better preserved after blebbistatin treatment, leading to more rapid corneal deturgescence in rabbit corneal endothelial wounding model. Our findings indicate that NMII is a promising therapeutic target in the treatment of CEC dysfunction. KEY MESSAGES: NMII inhibition promotes directional migration and wound healing of CECs in vitro. Lamellipodial protrusion persistence is increased after NMII inhibition. Selective NMII inhibitor preserves junctional integrity better than ROCK inhibitor. Selective NMII inhibitor accelerates corneal deturgescence after wounding in vivo.
Collapse
Affiliation(s)
- Wei-Ting Ho
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Shen Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - San-Fang Chou
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Jen Shih
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,College of Medicine, National Taiwan University, No. 7, Chung-Shan S. Rd., Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan. .,College of Medicine, National Taiwan University, No. 7, Chung-Shan S. Rd., Taipei, Taiwan. .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan. .,College of Medicine, National Taiwan University, No. 7, Chung-Shan S. Rd., Taipei, Taiwan.
| |
Collapse
|
7
|
Bankaitis ED, Bechard ME, Gu G, Magnuson MA, Wright CVE. ROCK-nmMyoII, Notch and Neurog3 gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development 2018; 145:dev.162115. [PMID: 30126902 DOI: 10.1242/dev.162115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
During mouse pancreas organogenesis, endocrine cells are born from progenitors residing in an epithelial plexus niche. After a period in a lineage-primed Neurog3LO state, progenitors become endocrine committed via upregulation of Neurog3 We find that the Neurog3LO to Neurog3HI transition is associated with distinct stages of an epithelial egression process: narrowing the apical surface of the cell, basalward cell movement and eventual cell-rear detachment from the apical lumen surface to allow clustering as nascent islets under the basement membrane. Apical narrowing, basalward movement and Neurog3 transcriptional upregulation still occur without Neurog3 protein, suggesting that morphogenetic cues deployed within the plexus initiate endocrine commitment upstream or independently of Neurog3. Neurog3 is required for cell-rear detachment and complete endocrine-cell birth. The ROCK-nmMyoII pathway coordinates epithelial-cell morphogenesis and the progression through Neurog3-expressing states. NmMyoII is necessary for apical narrowing, basalward cell displacement and Neurog3 upregulation, but all three are limited by ROCK activity. We propose that ROCK-nmMyoII activity, Neurog3 gene-dose and Notch signaling integrate endocrine fate allocation with epithelial plexus growth and morphogenesis, representing a feedback control circuit that coordinates morphogenesis with lineage diversification in the endocrine-birth niche.
Collapse
Affiliation(s)
- Eric D Bankaitis
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew E Bechard
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Hikita T, Mirzapourshafiyi F, Barbacena P, Riddell M, Pasha A, Li M, Kawamura T, Brandes RP, Hirose T, Ohno S, Gerhardt H, Matsuda M, Franco CA, Nakayama M. PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow. EMBO Rep 2018; 19:embr.201745253. [PMID: 30018153 DOI: 10.15252/embr.201745253] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro-inflammatory, suggesting that the establishment of endothelial polarity elicits an anti-inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR-3, is an essential gatekeeper of GSK3β activity in response to laminar blood flow. We show that flow-induced spatial distribution of PAR-3/aPKCλ and aPKCλ/GSK3β complexes controls local GSK3β activity and thereby regulates endothelial planar polarity. The spatial information for GSK3β activation is essential for flow-dependent polarity to the flow axis, but is not necessary for flow-induced anti-inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Takao Hikita
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fatemeh Mirzapourshafiyi
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Meghan Riddell
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ayesha Pasha
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mengnan Li
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Takuji Kawamura
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Tomonori Hirose
- Department of Molecular Biology, Graduate School of Medical Science Yokohama City University, Yokohama, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science Yokohama City University, Yokohama, Japan
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
9
|
The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine Growth Factor Rev 2017; 37:29-45. [PMID: 28606734 DOI: 10.1016/j.cytogfr.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Abstract
Rho associated coiled-coil containing kinases (ROCKs) respond to defined extra- and intracellular stimuli to control cell migration, cell proliferation, and apoptosis. Histone deacetylases (HDACs) are epigenetic modifiers that regulate nuclear and cytoplasmic signaling through the deacetylation of histones and non-histone proteins. ROCK and HDAC functions are important compounds of basic and applied research interests. Recent evidence suggests a physiologically important interplay between HDACs and ROCKs in various cells and organisms. Here we summarize the crosstalk between these enzymatic families and its implications for cancer and neurodegeneration.
Collapse
|
10
|
A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep 2016; 6:26141. [PMID: 27241904 PMCID: PMC4886532 DOI: 10.1038/srep26141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Blebbistatin is a commonly used molecular tool for the specific inhibition of various myosin II isoforms both in vitro and in vivo. Despite its popularity, the use of blebbistatin is hindered by its poor water-solubility (below 10 micromolar in aqueous buffer) and blue-light sensitivity, resulting in the photoconversion of the molecule, causing severe cellular phototoxicity in addition to its cytotoxicity. Furthermore, blebbistatin forms insoluble aggregates in water-based media above 10 micromolar with extremely high fluorescence and also high adherence to different types of surfaces, which biases its experimental usage. Here, we report a highly soluble (440 micromolar in aqueous buffer), non-fluorescent and photostable C15 amino-substituted derivative of blebbistatin, called para-aminoblebbistatin. Importantly, it is neither photo- nor cytotoxic, as demonstrated on HeLa cells and zebrafish embryos. Additionally, para-aminoblebbistatin bears similar myosin II inhibitory properties to blebbistatin or para-nitroblebbistatin (not to be confused with the C7 substituted nitroblebbistatin), tested on rabbit skeletal muscle myosin S1 and on M2 and HeLa cells. Due to its drastically improved solubility and photochemical feature, as well as lack of photo- or cytotoxicity, para-aminoblebbistatin may become a feasible replacement for blebbistatin, especially at applications when high concentrations of the inhibitor or blue light irradiation is required.
Collapse
|
11
|
Özdemir A, Şimay YD, İbişoğlu B, Yaren B, Bülbül D, Ark M. Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines. Steroids 2016; 109:29-43. [PMID: 27017918 DOI: 10.1016/j.steroids.2016.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death.
Collapse
Affiliation(s)
- Aysun Özdemir
- Department of Pharmacology, Gazi University, Faculty of Pharmacy, 06330, Turkey
| | - Yaprak Dilber Şimay
- Department of Pharmacology, Gazi University, Faculty of Pharmacy, 06330, Turkey
| | - Burçin İbişoğlu
- Department of Pharmacology, Gazi University, Faculty of Pharmacy, 06330, Turkey
| | - Biljana Yaren
- Department of Pharmacology, Gazi University, Faculty of Pharmacy, 06330, Turkey
| | - Döne Bülbül
- Department of Pharmacology, Gazi University, Faculty of Pharmacy, 06330, Turkey
| | - Mustafa Ark
- Department of Pharmacology, Gazi University, Faculty of Pharmacy, 06330, Turkey.
| |
Collapse
|
12
|
McKean JS, Murray F, Gibson G, Shewan DA, Tucker SJ, Nixon GF. The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP. Cardiovasc Res 2015; 107:546-55. [PMID: 26092100 PMCID: PMC4540143 DOI: 10.1093/cvr/cvv176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/12/2015] [Indexed: 02/05/2023] Open
Abstract
Aims During restenosis, vascular smooth muscle cells (VSMCs) migrate from the vascular media to the developing neointima. Preventing VSMC migration is therefore a therapeutic target for restenosis. Drugs, such as prostacyclin analogues, that increase the intracellular concentration of cyclic adenosine monophosphate (cAMP) can inhibit VSMC migration, but the mechanisms via which this occurs are unknown. Two main downstream mediators of cAMP are protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). This study has examined the effects of the prostacyclin analogue beraprost on VSMC migration and investigated the intracellular pathways involved. Methods and results In a chemotaxis chamber, human saphenous vein VSMC migrated towards a platelet-derived growth-factor-BB (PDGF) chemogradient. Incubation with therapeutically relevant concentrations of cAMP-producing agonist beraprost significantly decreased PDGF-induced migration. Direct activation of either PKA or Epac inhibited migration whereas inhibition of PKA did not prevent the anti-migratory effect of beraprost. Direct activation of Epac also prevented hyperplasia in ex vivo serum-treated human veins. Using fluorescence resonance energy transfer, we demonstrated that beraprost activated Epac but not PKA. The mechanisms of this Epac-mediated effect involved activation of Rap1 with subsequent inhibition of RhoA. Cytoskeletal rearrangement at the leading edge of the cell was consequently inhibited. Interestingly, Epac1 was localized to the leading edge of migrating VSMC. Conclusions These results indicate that therapeutically relevant concentrations of beraprost can inhibit VSMC migration via a previously unknown mechanism involving the cAMP mediator Epac. This may provide a novel target that could blunt neointimal formation.
Collapse
Affiliation(s)
- Jenny S McKean
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Fiona Murray
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - George Gibson
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Derryck A Shewan
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Steven J Tucker
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
13
|
Akagi EM, Lavorato-Rocha AM, Maia BDM, Rodrigues IS, Carvalho KC, Stiepcich MM, Baiocchi G, Sato-Kuwabara Y, Rogatto SR, Soares FA, Rocha RM. ROCK1 as a novel prognostic marker in vulvar cancer. BMC Cancer 2014; 14:822. [PMID: 25380619 PMCID: PMC4232714 DOI: 10.1186/1471-2407-14-822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Background Vulvar carcinoma is an infrequent tumour, accounting for fewer than 3% of all malignant tumours that affect women, but its incidence is rising in the past few decades. In young women, the manifestation of the vulvar carcinoma is often linked to risk factors such as smoking and HPV infection, but most cases develop in women aged over 50 years through poorly understood genetic mechanisms. Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) has been implicated in many cellular processes, but its function in vulvar cancer has never been examined. In this study, we aimed to determine the prognostic value of ROCK1 gene and protein analysis in vulvar squamous cell carcinoma (VSCC). Methods ROCK1 expression levels were measured in 16 vulvar tumour samples and adjacent normal tissue by qRT-PCR. Further, 96 VSCC samples were examined by immunohistochemistry (IHC) to confirm the involvement of ROCK1 in the disease. The molecular and pathological results were correlated with the clinical data of the patients. Sixteen fresh VSCC samples were analyzed by array-based comparative genomic hybridization (aCGH). Results In each pair of samples, ROCK1 levels were higher by qRT-PCR in normal tissue compared with the tumour samples (p = 0.016). By IHC, 100% of invasive front areas of the tumour and 95.8% of central tumour areas were positive for ROCK1. Greater expression of ROCK1 was associated with the absence of lymph node metastasis (p = 0.022) and a lower depth of invasion (p = 0.002). In addition, higher ROCK1 levels correlated with greater recurrence-free survival (p = 0.001). Loss of ROCK1 was independently linked to worse cancer-specific survival (p = 0.0054) by multivariate analysis. This finding was validated by IHC, which demonstrated enhanced protein expression in normal versus tumour tissue (p < 0.001). By aCGH, 42.9% of samples showed a gain in copy number of the ROCK1 gene. Conclusions ROCK1 is lower expressed in tumour tissue when compared with adjacent normal vulvar epithelia. In an independent sample set of VSCCs, lower expression levels of ROCK1 correlated with worse survival rates and a poor prognosis. These findings provide important information for the clinical management of vulvar cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rafael M Rocha
- Molecular Morphology Laboratory, Investigative Pathology, AC Camargo Cancer Center, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Ishida S, Tanaka R, Yamaguchi N, Ogata G, Mizutani T, Kawabata K, Haga H. Epithelial sheet folding induces lumen formation by Madin-Darby canine kidney cells in a collagen gel. PLoS One 2014; 9:e99655. [PMID: 25170757 PMCID: PMC4149355 DOI: 10.1371/journal.pone.0099655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement.
Collapse
Affiliation(s)
- Sumire Ishida
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryosuke Tanaka
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoya Yamaguchi
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Genki Ogata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takeomi Mizutani
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazushige Kawabata
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Machiyama H, Hirata H, Loh XK, Kanchi MM, Fujita H, Tan SH, Kawauchi K, Sawada Y. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration. J Cell Sci 2014; 127:3440-50. [PMID: 24928898 DOI: 10.1242/jcs.143438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton.
Collapse
Affiliation(s)
- Hiroaki Machiyama
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Xia Kun Loh
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Madhu Mathi Kanchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Hideaki Fujita
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871 Japan
| | - Song Hui Tan
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Keiko Kawauchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yasuhiro Sawada
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Chiba, 277-0032 Japan
| |
Collapse
|
16
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
17
|
Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2014; 256:222-39. [PMID: 24117824 DOI: 10.1111/imr.12118] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are best known for their protective search and destroy functions against invading microorganisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin-rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation-promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures.
Collapse
Affiliation(s)
- Pablo Rougerie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
18
|
Willis AL, Sabeh F, Li XY, Weiss SJ. Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J Microsc 2014; 251:250-60. [PMID: 23924043 DOI: 10.1111/jmi.12064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
During development, wound repair and disease-related processes, such as cancer, normal, or neoplastic cell types traffic through the extracellular matrix (ECM), the complex composite of collagens, elastin, glycoproteins, proteoglycans, and glycosaminoglycans that dictate tissue architecture. Current evidence suggests that tissue-invasive processes may proceed by protease-dependent or protease-independent strategies whose selection is not only governed by the characteristics of the motile cell population, but also by the structural properties of the intervening ECM. Herein, we review the mechanisms by which ECM dimensionality, elasticity, crosslinking, and pore size impact patterns of cell invasion. This summary should prove useful when designing new experimental approaches for interrogating invasion programs as well as identifying potential cellular targets for next-generation therapeutics.
Collapse
Affiliation(s)
- A L Willis
- Division of Molecular Medicine & Genetics, Department of Internal Medicine, and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
19
|
Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 2013; 43:1357-67. [PMID: 24042317 DOI: 10.3892/ijo.2013.2100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
Abstract
The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of TM with subsequent increase in outflow facility and, thereby, decrease intraocular pressure (IOP). ROCK inhibitors also serve as potent anti‑scarring agents via inhibition of transdifferentiation of tenon fibroblasts into myofibroblasts. Furthermore, the RhoA/ROCK pathway is involved in optic nerve neuroprotection. Inactivation of Rho/ROCK signaling increase ocular blood flow, improve retinal ganglion cell (RGC) survival and promote RGC axon regeneration. Considering the IOP modulation, potent bleb anti-scarring effect and neuroprotective properties of ROCK inhibitors, the Rho/ROCK pathway is an attractive target for anti-glaucoma therapy, and it may be used for human therapy in the near future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | |
Collapse
|
20
|
Hsu JC, Koo H, Harunaga JS, Matsumoto K, Doyle AD, Yamada KM. Region-specific epithelial cell dynamics during branching morphogenesis. Dev Dyn 2013; 242:1066-77. [PMID: 23780688 DOI: 10.1002/dvdy.24000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Epithelial cells of developing embryonic organs, such as salivary glands, can display substantial motility during branching morphogenesis. Their dynamic movements and molecules involved in their migration are not fully characterized. RESULTS We generated transgenic mice expressing photo-convertible KikGR and tracked the movements of individual cells highlighted by red fluorescence in different regions of developing salivary glands. Motility was highest for outer bud epithelial cells adjacent to the basement membrane, lower in inner bud cells, and lowest in duct cells. The highly motile outer cells contacting the basement membrane were pleomorphic, whereas inner cells were rounded. Peripheral cell motility was disrupted by antibodies inhibiting α6+β1 integrins and the nonmuscle myosin II inhibitor blebbistatin. Inner bud cell migration was unaffected by these inhibitors, but their rate of migration was stimulated by inhibiting E-cadherin. CONCLUSIONS Cell motility in developing salivary glands was highest in cells in contact with the basement membrane. The basement membrane-associated motility of these outer bud cells depended on integrins and myosin II, but not E-cadherin. In contrast, motility of inner bud cells was restrained by E-cadherin. These findings identify the importance of integrin-dependent basement membrane association for the morphology, tissue organization, and lateral motility of morphogenetic epithelial cells.
Collapse
Affiliation(s)
- Jeff C Hsu
- Cell Biology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
21
|
Subramanian N, Navaneethakrishnan S, Biswas J, Kanwar RK, Kanwar JR, Krishnakumar S. RNAi mediated Tiam1 gene knockdown inhibits invasion of retinoblastoma. PLoS One 2013; 8:e70422. [PMID: 23950931 PMCID: PMC3737373 DOI: 10.1371/journal.pone.0070422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022] Open
Abstract
T lymphoma invasion and metastasis protein (Tiam1) is up-regulated in variety of cancers and its expression level is related to metastatic potential of the type of cancer. Earlier, Tiam1 was shown to be overexpressed in retinoblastoma (RB) and we hypothesized that it was involved in invasiveness of RB. This was tested by silencing Tiam1 in RB cell lines (Y79 and Weri-Rb1) using siRNA pool, targeting different regions of Tiam1 mRNA. The cDNA microarray of Tiam1 silenced cells showed gene regulations altered by Tiam1 were predominantly on the actin cytoskeleton interacting proteins, apoptotic initiators and tumorogenic potential targets. The silenced phenotype resulted in decreased growth and increased apoptosis with non-invasive characteristics. Transfection of full length and N-terminal truncated construct (C1199) clearly revealed membrane localization of Tiam1 and not in the case of C580 construct. F-actin staining showed the interaction of Tiam1 with actin in the membrane edges that leads to ruffling, and also imparts varying invasive potential to the cell. The results obtained from our study show for the first time that Tiam1 modulates the cell invasion, mediated by actin cytoskeleton remodeling in RB.
Collapse
Affiliation(s)
- Nithya Subramanian
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (N-LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong Technology Precinct (GTP), Geelong, Victoria, Australia
| | - Saranya Navaneethakrishnan
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Jyotirmay Biswas
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rupinder K. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (N-LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong Technology Precinct (GTP), Geelong, Victoria, Australia
| | - Jagat R. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (N-LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong Technology Precinct (GTP), Geelong, Victoria, Australia
- * E-mail: (SK); (JRK)
| | - Subramanian Krishnakumar
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- * E-mail: (SK); (JRK)
| |
Collapse
|
22
|
Tozluoğlu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 2013; 15:751-62. [PMID: 23792690 DOI: 10.1038/ncb2775] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/01/2013] [Indexed: 12/15/2022]
Abstract
The molecular requirements and morphology of migrating cells can vary depending on matrix geometry; therefore, predicting the optimal migration strategy or the effect of experimental perturbation is difficult. We present a model of cell motility that encompasses actin-polymerization-based protrusions, actomyosin contractility, variable actin-plasma membrane linkage leading to membrane blebbing, cell-extracellular-matrix adhesion and varying extracellular matrix geometries. This is used to explore the theoretical requirements for rapid migration in different matrix geometries. Confined matrix geometries cause profound shifts in the relationship of adhesion and contractility to cell velocity; indeed, cell-matrix adhesion is dispensable for migration in discontinuous confined environments. The model is challenged to predict the effect of different combinations of kinase inhibitors and integrin depletion in vivo, and in confined matrices based on in vitro two-dimensional measurements. Intravital imaging is used to verify bleb-driven migration at tumour margins, and the predicted response to single and combinatorial manipulations.
Collapse
Affiliation(s)
- Melda Tozluoğlu
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
23
|
Woods TC. Dysregulation of the Mammalian Target of Rapamycin and p27Kip1 Promotes Intimal Hyperplasia in Diabetes Mellitus. Pharmaceuticals (Basel) 2013; 6:716-27. [PMID: 24276258 PMCID: PMC3816729 DOI: 10.3390/ph6060716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) in the intima of an artery, known as intimal hyperplasia, is an important component of cardiovascular diseases. This is seen most clearly in the case of in-stent restenosis, where drug eluting stents are used to deliver agents that prevent VSMC proliferation and migration. One class of agents that are highly effective in the prevention of in-stent restenosis is the mammalian Target of Rapamycin (mTOR) inhibitors. Inhibition of mTOR blocks protein synthesis, cell cycle progression, and cell migration. Key to the effects on cell cycle progression and cell migration is the inhibition of mTOR-mediated degradation of p27Kip1 protein. p27Kip1 is a cyclin dependent kinase inhibitor that is elevated in quiescent VSMCs and inhibits the G1 to S phase transition and cell migration. Under normal conditions, vascular injury promotes degradation of p27Kip1 protein in an mTOR dependent manner. Recent reports from our lab suggest that in the presence of diabetes mellitus, elevation of extracellular signal response kinase activity may promote decreased p27Kip1 mRNA and produce a relative resistance to mTOR inhibition. Here we review these findings and their relevance to designing treatments for cardiovascular disease in the presence of diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Cooper Woods
- Tulane Heart and Vascular Institute and the Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, SL-48, New Orleans, LA 70112, USA.
| |
Collapse
|
24
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
25
|
Volpato FZ, Führmann T, Migliaresi C, Hutmacher DW, Dalton PD. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials 2013; 34:4945-55. [PMID: 23597407 DOI: 10.1016/j.biomaterials.2013.03.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
Regeneration within the mammalian central nervous system (CNS) is limited, and traumatic injury often leads to permanent functional motor and sensory loss. The lack of regeneration following spinal cord injury (SCI) is mainly caused by the presence of glial scarring, cystic cavitation and a hostile environment to axonal growth at the lesion site. The more prominent experimental treatment strategies focus mainly on drug and cell therapies, however recent interest in biomaterial-based strategies are increasing in number and breadth. Outside the spinal cord, approaches that utilize the extracellular matrix (ECM) to promote tissue repair show tremendous potential for various application including vascular, skin, bone, cartilage, liver, lung, heart and peripheral nerve tissue engineering (TE). Experimentally, it is unknown if these approaches can be successfully translated to the CNS, either alone or in combination with synthetic biomaterial scaffolds. In this review we outline the first attempts to apply the potential of ECM-based biomaterials and combining cell-derived ECM with synthetic scaffolds.
Collapse
Affiliation(s)
- Fabio Zomer Volpato
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove 4059, Australia
| | | | | | | | | |
Collapse
|
26
|
Martinsen A, Yerna X, Rath G, Gomez EL, Dessy C, Morel N. Different effect of Rho kinase inhibition on calcium signaling in rat isolated large and small arteries. J Vasc Res 2012; 49:522-33. [PMID: 22948674 DOI: 10.1159/000341230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022] Open
Abstract
In addition to its role in the regulation of artery contraction, Rho kinase (ROCK) was reported to be involved in the cytosolic calcium response to vasoconstrictor agonists in rat aorta and superior mesenteric artery (SMA). However, it remains to be determined whether ROCK also contributes to calcium signaling in resistance arteries, which play a major role in blood pressure regulation. The investigation of the effect of ROCK inhibition on the calcium and contractile responses of rat resistance mesenteric artery (RMA), in comparison with aorta and SMA, indicated that the calcium response to noradrenaline was inhibited by the ROCK inhibitor Y-27632 in aorta and SMA but not in RMA. The effect of Y-27632 on the calcium signal was unaffected by cytochalasin-D. ROCK activation in noradrenaline-stimulated arteries was confirmed by the inhibition of myosin light chain phosphorylation by Y-27632. Moreover, noradrenaline-induced calcium signaling was similarly inhibited by nimodipine in aorta, SMA and RMA, but nimodipine sensitivity of the contraction increased from the aorta to the RMA, suggesting that the contraction was controlled by different sources of calcium. In pressurized RMA, Y-27632 and H-1152 depressed pressure-induced calcium responses and abolished myogenic contraction. These results stress the important differences in calcium signaling between conductance and resistance arteries.
Collapse
Affiliation(s)
- Anneloes Martinsen
- Department of Cellular Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Profirovic J, Strekalova E, Urao N, Krbanjevic A, Andreeva AV, Varadarajan S, Fukai T, Hen R, Ushio-Fukai M, Voyno-Yasenetskaya TA. A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor. Angiogenesis 2012; 16:15-28. [PMID: 22903372 DOI: 10.1007/s10456-012-9296-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 08/07/2012] [Indexed: 01/09/2023]
Abstract
The 5-hydroxytryptamine type 4 receptor (5-HT(4)R) regulates many physiological processes, including learning and memory, cognition, and gastrointestinal motility. Little is known about its role in angiogenesis. Using mouse hindlimb ischemia model of angiogenesis, we observed a significant reduction of limb blood flow recovery 14 days after ischemia and a decrease in density of CD31-positive vessels in adductor muscles in 5-HT(4)R(-/-) mice compared to wild type littermates. Our in vitro data indicated that 5-HT(4)R endogenously expressed in endothelial cells (ECs) may promote angiogenesis. Inhibition of the receptor with 5-HT(4)R antagonist RS 39604 reduced EC capillary tube formation in the reconstituted basement membrane. Using Boyden chamber migration assay and wound healing "scratch" assay, we demonstrated that RS 39604 treatment significantly suppressed EC migration. Transendothelial resistance measurement and immunofluorescence analysis showed that a 5-HT(4)R agonist RS 67333 led to an increase in endothelial permeability, actin stress fiber and interendothelial gap formation. Importantly, we provided the evidence that 5-HT(4)R-regulated EC migration may be mediated by Gα13 and RhoA. Our results suggest a prominent role of 5-HT(4)R in promoting angiogenesis and identify 5-HT(4)R as a potential therapeutic target for modulating angiogenesis under pathological conditions.
Collapse
Affiliation(s)
- Jasmina Profirovic
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Matsumoto A, Manthey HD, Marsh SA, Fassett RG, de Haan JB, Rolfe BE, Coombes JS. Effects of exercise training and RhoA/ROCK inhibition on plaque in ApoE-/- mice. Int J Cardiol 2012; 167:1282-8. [PMID: 22525349 DOI: 10.1016/j.ijcard.2012.03.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 03/22/2012] [Accepted: 03/30/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The molecular mechanisms of exercise-induced cardioprotection are poorly understood. We recently reported that exercise training down-regulated gene expression of the Ras homolog gene family member A (RhoA). RhoA and its first effectors, the Rho-kinases (ROCK), have already been implicated in the pathogenesis of cardiovascular disease. The aim of this study was to compare the effects of a RhoA/ROCK inhibitor (fasudil) and exercise in the Apolipoprotein E knockout (ApoE(-/-)) mouse model of atherosclerosis. METHODS Four groups of 14 week old ApoE(-/-) mice were randomised as follows (n=12/group): i) sedentary controls (Cont); ii) fasudil (Fas) treatment (100mg/kg bodyweight/day) for 8 weeks; iii) exercise intervention (Ex:free access to running wheel for 8 weeks) and iv) exercise intervention and fasudil treatment (ExFas) for 8 weeks. RESULTS Phosphorylation of myosin light chain was significantly reduced in the brachiocephalic artery of all treatment groups compared with sedentary controls, implying an inhibitory effect of exercise and fasudil on the RhoA/ROCK pathway. Furthermore, atherosclerotic lesions were significantly smaller in all treatment and intervention groups compared with the control group (Fas: 34.7%, Ex: 48.3%, ExFas: 40.9% less than Control). The intima:media ratio was reduced by both exercise intervention and fasudil treatment alone or in combination (Fas: 23.6%, Ex: 35.5%, ExFas: 43.9% less than Control). Exercise alone and fasudil treatment alone also showed similar effects on plaque composition, increasing both smooth muscle cell and macrophage density. CONCLUSION These results suggest that the protective effects of exercise on atherogenesis are similar to the inhibitory effects on the RhoA/ROCK signalling pathway.
Collapse
Affiliation(s)
- Aya Matsumoto
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wiedemann D, Kocher A, Bonaros N, Semsroth S, Laufer G, Grimm M, Schachner T. Perivascular administration of drugs and genes as a means of reducing vein graft failure. Curr Opin Pharmacol 2012; 12:203-16. [DOI: 10.1016/j.coph.2012.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 01/21/2023]
|
30
|
Tondeleir D, Lambrechts A, Müller M, Jonckheere V, Doll T, Vandamme D, Bakkali K, Waterschoot D, Lemaistre M, Debeir O, Decaestecker C, Hinz B, Staes A, Timmerman E, Colaert N, Gevaert K, Vandekerckhove J, Ampe C. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics 2012; 11:255-71. [PMID: 22448045 DOI: 10.1074/mcp.m111.015099] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic β- and γ-actin. Because of the presence and localized translation of β-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates β-actin in gene regulation. Cell migration without β-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking β-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, β-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of β-actin knockout cells. This also explains why reintroducing β-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in β-actin knockout cells based on increased Rho-ROCK signaling and increased TGFβ production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of β-actin knockout cells indicating that other actins compensate for β-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but β-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation.
Collapse
|
31
|
Ruiz-Loredo AY, López-Colomé AM. New insights into the regulation of myosin light chain phosphorylation in retinal pigment epithelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:85-121. [PMID: 22251559 DOI: 10.1016/b978-0-12-394304-0.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retinal pigment epithelium (RPE) plays an essential role in the function of the neural retina and the maintenance of vision. Most of the functions displayed by RPE require a dynamic organization of the acto-myosin cytoskeleton. Myosin II, a main cytoskeletal component in muscle and non-muscle cells, is directly involved in force generation required for organelle movement, selective molecule transport within cell compartments, exocytosis, endocytosis, phagocytosis, and cell division, among others. Contractile processes are triggered by the phosphorylation of myosin II light chains (MLCs), which promotes actin-myosin interaction and the assembly of contractile fibers. Considerable evidence indicates that non-muscle myosin II activation is critically involved in various pathological states, increasing the interest in studying the signaling pathways controlling MLC phosphorylation. Particularly, recent findings suggest a role for non-muscle myosin II-induced contraction in RPE cell transformation involved in the establishment of numerous retinal diseases. This review summarizes the current knowledge regarding myosin function in RPE cells, as well as the signaling networks leading to MLC phosphorylation under pathological conditions. Understanding the molecular mechanisms underlying RPE dysfunction would improve the development of new therapies for the treatment or prevention of different ocular disorders leading to blindness.
Collapse
Affiliation(s)
- Ariadna Yolanda Ruiz-Loredo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico DF, Mexico
| | | |
Collapse
|
32
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
33
|
Gough W, Hulkower KI, Lynch R, McGlynn P, Uhlik M, Yan L, Lee JA. A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay. ACTA ACUST UNITED AC 2011; 16:155-63. [PMID: 21297103 DOI: 10.1177/1087057110393340] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell migration is a key phenotype for a number of therapeutically important biological responses, including angiogenesis. A commonly used method to assess cell migration is the scratch assay, which measures the movement of cells into a wound made by physically scoring a confluent cell monolayer to create an area devoid of cells. Although this method has been adequate for qualitative characterization of migration inhibitors, it does not provide the highly reproducible results required for quantitative compound structure-activity relationship evaluation because of the inconsistent size and placement of the wound area within the microplate well. The Oris™ Cell Migration Assay presents a superior alternative to the scratch assay, permitting formation of precisely placed and homogeneously sized cell-free areas into which migration can occur without releasing factors from wounded or dead cells or damaging the underlying extracellular matrix. Herein the authors compare results from the scratch and Oris™ cell migration assays using an endothelial progenitor cell line and the Src kinase inhibitor dasatinib. They find that using the Acumen™ Explorer laser microplate cytometer in combination with the Oris™ Cell Migration Assay plate provides a robust, efficient, and cost-effective cell migration assay exhibiting excellent signal to noise, plate uniformity, and statistical validation metrics.
Collapse
Affiliation(s)
- Wendy Gough
- Department of Quantitative and Structural Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gabunia K, Jain S, England RN, Autieri MV. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility. Am J Physiol Cell Physiol 2011; 300:C896-906. [PMID: 21209363 DOI: 10.1152/ajpcell.00439.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Dept. of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
35
|
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 2010; 67:545-54. [PMID: 20803696 PMCID: PMC3038199 DOI: 10.1002/cm.20472] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rho-associated kinase (Rho-kinase/ROCK/ROK) is an effector of the small GTPase Rho and belongs to the AGC family of kinases. Rho-kinase has pleiotropic functions including the regulation of cellular contraction, motility, morphology, polarity, cell division, and gene expression. Pharmacological analyses have revealed that Rho-kinase is involved in a wide range of diseases such as vasospasm, pulmonary hypertension, nerve injury, and glaucoma, and is therefore considered to be a potential therapeutic target. This review focuses on the structure, function, and modes of activation and action of Rho-kinase.
Collapse
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Nagoya University, Showa-ku, Japan
| | | | | |
Collapse
|
36
|
Tůmová M, Koffer A, Simíček M, Dráberová L, Dráber P. The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur J Immunol 2010; 40:3235-45. [PMID: 21061444 DOI: 10.1002/eji.201040403] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 07/14/2010] [Accepted: 08/06/2010] [Indexed: 01/08/2023]
Abstract
The transmembrane adaptor protein NTAL (non-T-cell activation linker) participates in signalosome assembly in hematopoietic cells, but its exact role in cell physiology remains enigmatic. We report here that BM-derived mast cells from NTAL-deficient mice, responding to Ag alone or in combination with SCF, exhibit reduced spreading on fibronectin, enhanced filamentous actin depolymerization and enhanced migration towards Ag relative to WT cells. No such differences between WT and NTAL(-/-) BM-derived mast cells were observed when SCF alone was used as activator. We have examined the activities of two small GTPases, Rac and Rho, which are important regulators of actin polymerization. Stimulation with Ag and/or SCF enhanced activity of Rac(1,2,3) in both NTAL(-/-) and WT cells. In contrast, RhoA activity decreased and this trend was much faster and more extensive in NTAL(-/-) cells, indicating a positive regulatory role of NTAL in the recovery of RhoA activity. After restoring NTAL into NTAL(-/-) cells, both spreading and actin responses were rescued. This is the first report of a crucial role of NTAL in signaling, via RhoA, to mast cell cytoskeleton.
Collapse
Affiliation(s)
- Magda Tůmová
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
37
|
Jbireal JMA, Strell C, Niggemann B, Zänker K, Entschladen F. The selective role of myosin VI in lymphoid leukemia cell migration. Leuk Res 2010; 34:1656-62. [PMID: 20493527 DOI: 10.1016/j.leukres.2010.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Several myosin isotypes are discussed to be involved in the migration of various cells ranging from tumor cells to leukocytes. We investigated the involvement of myosins II and VI in the lymphoid leukemia cells lines Jurkat, NB4, Dohh-2, and Molt-4 by a three-dimensional, collagen-based migration assay. Down-regulation of myosin VI by siRNA significantly reduced the migratory activity of all cells, whereas the pharmacological inhibition of non-muscle myosin II using blebbistatin had only marginal influence. Therefore, in contrast to differentiated leukocytes and cells from solid tumors, myosin VI plays a crucial role in the migration of leukemic cells.
Collapse
|
38
|
Si J, Ge Y, Zhuang S, Gong R. Inhibiting nonmuscle myosin II impedes inflammatory infiltration and ameliorates progressive renal disease. J Transl Med 2010; 90:448-58. [PMID: 20065948 DOI: 10.1038/labinvest.2009.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The motor protein nonmuscle myosin II (NMII) through its interaction with the actin cytoskeleton constitutes the machinery of cell crawling and has an important role in driving locomotion and infiltration of immune competent cells during inflammatory response and immune reaction. Blebbistatin is a highly selective inhibitor of NMII adenosine triphosphatase. This study examined the effect of NMII inhibition by blebbistatin on inflammation. In vitro, blebbistatin markedly induced actinomyosin complex disassembly in various cultured immunocytes, and functionally impaired their motile activity and invasive capacity as assessed by the Boyden chamber motility assay and the matrigel invasion assay. In vivo, in a rat model of acute inflammation induced by tumor necrosis factor, blebbistatin obliterated renal sequestration of circulating fluorescence-labeled macrophages in a dose-dependent fashion. Moreover, in rats with progressive obstructive nephropathy, blebbistatin treatment exhibited a remarkable renoprotective effect, as evidenced by normalized kidney weight, improved gross morphology, and diminished histologic injury in the tubulointerstitium. This beneficial effect was associated with significant amelioration of renal inflammation, consistent with a primary anti-inflammatory action by blebbistatin. In addition, in rats with established obstructive nephropathy, blebbistatin pretreated macrophages showed obliterated recruitment into the inflamed renal parenchyma, denoting that blebbistatin directly impedes inflammatory infiltration by immunocytes. Collectively, our findings suggest that inhibition of NMII has a potent and direct anti-inflammatory effect on the basis of impairment of the actinomyosin powered locomotive machinery, which is essential for migration and infiltration of immune competent cells.
Collapse
Affiliation(s)
- Jin Si
- Department of Medicine, Brown University School of Medicine, Providence, RI, USA
| | | | | | | |
Collapse
|
39
|
Moss SC, Lightell DJ, Marx SO, Marks AR, Woods TC. Rapamycin regulates endothelial cell migration through regulation of the cyclin-dependent kinase inhibitor p27Kip1. J Biol Chem 2010; 285:11991-7. [PMID: 20097763 DOI: 10.1074/jbc.m109.066621] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapamycin is a macrolide antibiotic that inhibits vascular smooth muscle cell proliferation and migration and that is used clinically on drug-eluting stents to inhibit in-stent restenosis. Although inhibition of cell migration is an asset in preventing restenosis, it also leads to impaired stent endothelialization, a significant limitation of current drug-eluting stent technology that necessitates prolonged antiplatelet therapy. We measured the ability of rapamycin to inhibit the migration of human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAEC) toward the chemoattractant vascular endothelial cell growth factor. Although acute administration of rapamycin had no effect, exposure for 24 h inhibited HUVEC and HCAEC migration. Disruption of the mTORC2 via small interfering RNA was also effective in inhibiting HCAEC migration. Treatment of HCAECs for this period with rapamycin produced an increase in the cyclin-dependent kinase inhibitor p27(Kip), through a decrease in the targeting of the protein for degradation by phosphorylation at Thr(187). ECs isolated from a knock-in mouse expressing p27(Kip1) with a mutation of this residue to an alanine, blocking this phosphorylation, exhibited reduced migration compared with wild-type controls. Silencing of p27(Kip1) with small interfering RNA blocked the effects of rapamycin on migration and tube formation as well as RhoA activation and cytoskeletal reorganization. We conclude that prolonged exposure of ECs to rapamycin increases p27(Kip1) and in turn inhibits RhoA activation, blocking cell migration and differentiation. These data elucidate the molecular mechanism underlying regulation of p27(Kip1) protein and cell migration by rapamycin.
Collapse
Affiliation(s)
- Stephanie C Moss
- Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, USA
| | | | | | | | | |
Collapse
|
40
|
Sarkar S, Egelhoff T, Baskaran H. INSIGHTS INTO THE ROLES OF NON-MUSCLE MYOSIN IIA IN HUMAN KERATINOCYTE MIGRATION. Cell Mol Bioeng 2009; 2:486-494. [PMID: 20548965 DOI: 10.1007/s12195-009-0094-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epidermal cell migration is a key factor in wound healing responses, regulated by the F-actin-myosin II systems. Previous reports have established the importance of non-muscle myosin II (NMII) in regulating cell migration. However, the role of NMII in primary human keratinocytes has not been investigated. In this study we used a microfabrication-based two-dimensional migration assay to examine the role of NMII in keratinocyte migration. We developed confluent cell islands of various sizes (0.025 - 0.25 mm(2)) and quantified migration as Fold Increase in island area over time. We report here that NMII was expressed and activated in migrating keratinocytes. Inhibition of NMIIA motor activity with blebbistatin increased migration significantly in all cell island sizes in six hours compared to control. Inhibition of Rho-kinase by Y-27632 did not alter migration while inhibition of myosin light chain kinase by ML-7 suppressed migration significantly in six hours. Both blebbistatin and Y-27632 induced formation of large membrane ruffles and elongated tails. In contrast, ML-7 blocked cell spreading, resulting in a rounded morphology. Taken together, these data suggest that NMIIA decreases migration in keratinocytes, but the mechanism may be differentially regulated by upstream kinases.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
41
|
Takefuji M, Asano H, Mori K, Amano M, Kato K, Watanabe T, Morita Y, Katsumi A, Itoh T, Takenawa T, Hirashiki A, Izawa H, Nagata K, Hirayama H, Takatsu F, Naoe T, Yokota M, Kaibuchi K. Mutation of ARHGAP9 in patients with coronary spastic angina. J Hum Genet 2009; 55:42-9. [PMID: 19911011 DOI: 10.1038/jhg.2009.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Coronary artery spasm has an important function in the etiology of variant angina and other acute coronary syndromes. Abnormal activation of Rho-family GTPases has been observed in cardiovascular disorders, but the function of genetic variability in Rho-family GTPases remains to be evaluated in cardiovascular disorders. We examined the genetic variability of Rho-family GTPases and their regulators in coronary artery spasm. We performed a comprehensive candidate gene analysis of 67 single nucleotide polymorphisms with amino-acid substitution in Rho-family GTPases and their regulators in 103 unrelated Japanese patients with acetylcholine-induced coronary artery spasm and 102 control Japanese subjects without acetylcholine-induced coronary artery spasm. We noted an association of the single nucleotide polymorphism of ARHGAP9 (rs11544238, Ala370Ser) with coronary artery spasm (odds ratio =2.67). We found that ARHGAP9 inactivated Rac as RacGAP and that the mRNA level of ARHGAP9 was strongly detected in hematopoietic cells. ARHGAP9 negatively regulated cell migration. The Ala370Ser polymorphism counteracted ARHGAP9-reduced cell migration, spreading and adhesion. The Ala370Ser polymorphism in the ARHGAP9 gene is associated with coronary artery spasm. These data suggest that the polymorphism of ARHGAP9 has a critical function in the infiltration of hematopoietic cells into the endothelium and inflammation leading to endothelial dysfunction.
Collapse
Affiliation(s)
- Mikito Takefuji
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sugimoto M, Yamanouchi D, Komori K. Therapeutic approach against intimal hyperplasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) and the Rho/Rho-kinase pathway. Surg Today 2009; 39:459-65. [DOI: 10.1007/s00595-008-3912-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022]
|
43
|
Kniazeva E, Putnam AJ. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 2009; 297:C179-87. [PMID: 19439531 DOI: 10.1152/ajpcell.00018.2009] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Identifying the mechanisms regulating angiogenesis in pathological conditions such as cancer and heart disease is crucial to develop successful therapies. The dependence of angiogenesis on characteristic properties of these conditions, such as alterations in tissue stiffness due to changes in the composition of the extracellular matrix (ECM), may shed light on potential therapeutic strategies. Prior studies have suggested that ECM compliance regulates capillary morphogenesis, but the mechanisms remain unclear. In this study, we hypothesized that ECM density, which influences substrate mechanics, may regulate angiogenesis via a mechanism involving actin-mediated cell-generated forces. To investigate this hypothesis, we utilized an in vitro model of angiogenesis in which endothelial cells coated on microcarrier beads are distributed within a three-dimensional (3-D) fibrin ECM. A monolayer of fibroblasts, which provides pro-angiogenic factors, is cultured on top of the gel. Variations in fibrin gel density, along with a library of pharmacological agents that inhibit forces generated by the actin cytoskeleton, were used to prove the necessity of cell-generated tractional forces in blood vessel formation. Our data demonstrate that cell-generated forces not only play a crucial role in the early sprouting stages of capillary morphogenesis but are also required in the later maintenance stages, and thereby suggest a broader interdependence among tissue stiffness, cell contractile forces, and angiogenesis.
Collapse
Affiliation(s)
- Ekaterina Kniazeva
- Dept. of Biomedical Engineering, Univ. of California, Irvine, Irvine, CA 92697-2715, USA
| | | |
Collapse
|
44
|
Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. ACTA ACUST UNITED AC 2009; 185:11-9. [PMID: 19332889 PMCID: PMC2700505 DOI: 10.1083/jcb.200807195] [Citation(s) in RCA: 471] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue invasion during metastasis requires cancer cells to negotiate a stromal environment dominated by cross-linked networks of type I collagen. Although cancer cells are known to use proteinases to sever collagen networks and thus ease their passage through these barriers, migration across extracellular matrices has also been reported to occur by protease-independent mechanisms, whereby cells squeeze through collagen-lined pores by adopting an ameboid phenotype. We investigate these alternate models of motility here and demonstrate that cancer cells have an absolute requirement for the membrane-anchored metalloproteinase MT1-MMP for invasion, and that protease-independent mechanisms of cell migration are only plausible when the collagen network is devoid of the covalent cross-links that characterize normal tissues.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
45
|
Babbin BA, Koch S, Bachar M, Conti MA, Parkos CA, Adelstein RS, Nusrat A, Ivanov AI. Non-muscle myosin IIA differentially regulates intestinal epithelial cell restitution and matrix invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:436-48. [PMID: 19147824 DOI: 10.2353/ajpath.2009.080171] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epithelial cell motility is critical for self-rejuvenation of normal intestinal mucosa, wound repair, and cancer metastasis. This process is regulated by the reorganization of the F-actin cytoskeleton, which is driven by a myosin II motor. However, the role of myosin II in regulating epithelial cell migration remains poorly understood. This study addressed the role of non-muscle myosin (NM) IIA in two different modes of epithelial cell migration: two-dimensional (2-D) migration that occurs during wound closure and three-dimensional (3-D) migration through a Matrigel matrix that occurs during cancer metastasis. Pharmacological inhibition or siRNA-mediated knockdown of NM IIA in SK-CO15 human colonic epithelial cells resulted in decreased 2-D migration and increased 3-D invasion. The attenuated 2-D migration was associated with increased cell adhesiveness to collagen and laminin and enhanced expression of beta1-integrin and paxillin. On the 2-D surface, NM IIA-deficient SK-CO15 cells failed to assemble focal adhesions and F-actin stress fibers. In contrast, the enhanced invasion of NM IIA-depleted cells was dependent on Raf-ERK1/2 signaling pathway activation, enhanced calpain activity, and increased calpain-2 expression. Our findings suggest that NM IIA promotes 2-D epithelial cell migration but antagonizes 3-D invasion. These observations indicate multiple functions for NM IIA, which, along with the regulation of the F-actin cytoskeleton and cell-matrix adhesions, involve previously unrecognized control of intracellular signaling and protein expression.
Collapse
Affiliation(s)
- Brian A Babbin
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Breaching the basement membrane: who, when and how? Trends Cell Biol 2008; 18:560-74. [DOI: 10.1016/j.tcb.2008.08.007] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 12/16/2022]
|
47
|
Luu O, Nagel M, Wacker S, Lemaire P, Winklbauer R. Control of gastrula cell motility by the Goosecoid/Mix.1/ Siamois network: basic patterns and paradoxical effects. Dev Dyn 2008; 237:1307-20. [PMID: 18407556 DOI: 10.1002/dvdy.21522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the vegetal half of the Xenopus gastrula, cell populations differ with respect to migration on fibronectin substratum. We show that the paired-class homeodomain transcription factors Goosecoid (Gsc), Mix.1, and Siamois (Sia) are involved in the modulation of migration velocity and cell polarity. Mix.1 is expressed in the whole vegetal half and serves as a competence factor that is necessary, but not sufficient, for rapid cell migration and polarization. In the head mesoderm, Gsc and Sia are coexpressed with Mix.1, promoting rapid cell migration and polarization. Ectopic expression of Gsc and Sia in both vegetal and ventral regions often generates paradoxical effects; if a factor activates a certain motility trait in one region, it inhibits it in the other. Migration velocity and cell polarity are regulated independently. Fast and efficiently migrating multipolar cells and slow-moving polarized cells can be obtained by ectopic expression of these transcription factors in different combinations.
Collapse
Affiliation(s)
- Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
Muessel MJ, Scott KS, Friedl P, Bradding P, Wardlaw AJ. CCL11 and GM-CSF differentially use the Rho GTPase pathway to regulate motility of human eosinophils in a three-dimensional microenvironment. THE JOURNAL OF IMMUNOLOGY 2008; 180:8354-60. [PMID: 18523302 DOI: 10.4049/jimmunol.180.12.8354] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asthma is a common disease that causes considerable morbidity. Increased numbers of airway eosinophils are a hallmark of asthma. Mechanisms controlling the entry of eosinophils into asthmatic lung have been intensively investigated, but factors regulating migration within the tissue microenvironment are less well understood. We modeled this by studying chemoattractant and growth factor-mediated human eosinophil migration within a three-dimensional collagen matrix. Stimulation with GM-CSF induced dose-dependent, random migration with a maximum of 77 +/- 4.7% of cells migrating. In contrast, CCL11 and C5a caused a more modest although significant degree of migration (19 +/- 1.8% and 20 +/- 2.6%, respectively). Migration to GM-CSF was partially dependent on Ca(2+) and alpha(M)beta(2) integrins. The Rho family of small GTPases regulates intracellular signaling of cell migration. GM-CSF-induced migration was only partially dependent on Rho kinase/Rho-associated kinase (ROCK) and was independent of RhoA activation. In contrast, CCL11-induced migration was fully dependent on both RhoA and ROCK. Activation of RhoA was therefore neither necessary nor sufficient to cause eosinophil migration in a three-dimensional collagen environment. This study suggests that eosinophil growth factors are likely to be required for eosinophil migration within the bronchial mucosa, and this involves signal transduction pathways distinct from those used by G protein-associated chemoattractants.
Collapse
Affiliation(s)
- Michelle J Muessel
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
49
|
Schröter T, Griffin E, Weiser A, Feng Y, LoGrasso P. Detection of myosin light chain phosphorylation—A cell-based assay for screening Rho-kinase inhibitors. Biochem Biophys Res Commun 2008; 374:356-60. [DOI: 10.1016/j.bbrc.2008.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
|
50
|
Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S, Amano M, Kaibuchi K. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev Cell 2008; 14:205-15. [PMID: 18267089 DOI: 10.1016/j.devcel.2007.11.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/11/2007] [Accepted: 11/27/2007] [Indexed: 01/08/2023]
Abstract
A polarity complex of PAR-3, PAR-6, and atypical protein kinase C (aPKC) functions in various cell polarization events. PAR-3 directly interacts with Tiam1/Taim2 (STEF), Rac1-specific guanine nucleotide exchange factors, and forms a complex with aPKC-PAR-6-Cdc42*GTP, leading to Rac1 activation. RhoA antagonizes Rac1 in certain types of cells. However, the relationship between RhoA and the PAR complex remains elusive. We found here that Rho-kinase/ROCK/ROK, the effector of RhoA, phosphorylated PAR-3 at Thr833 and thereby disrupted its interaction with aPKC and PAR-6, but not with Tiam2. Phosphorylated PAR-3 was observed in the leading edge, and in central and rear portions of migrating cells having front-rear polarity. Knockdown of PAR-3 by small interfering RNA (siRNA) impaired cell migration, front-rear polarization, and PAR-3-mediated Rac1 activation, which were recovered with siRNA-resistant PAR-3, but not with the phospho-mimic PAR-3 mutant. We propose that RhoA/Rho-kinase inhibits PAR complex formation through PAR-3 phosphorylation, resulting in Rac1 inactivation.
Collapse
Affiliation(s)
- Masanori Nakayama
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|