1
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha chaperone and guanine-nucleotide exchange factor RIC-8 regulates cilia morphogenesis in Caenorhabditis elegans sensory neurons. PLoS Genet 2023; 19:e1011015. [PMID: 37910589 PMCID: PMC10642896 DOI: 10.1371/journal.pgen.1011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
2
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha Chaperone and Guanine-Nucleotide Exchange Factor RIC-8 Regulates Cilia Morphogenesis in Caenorhabditis elegans Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554856. [PMID: 37662329 PMCID: PMC10473713 DOI: 10.1101/2023.08.25.554856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite severe defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
3
|
Papasergi-Scott MM, Kwarcinski FE, Yu M, Panova O, Ovrutsky AM, Skiniotis G, Tall GG. Structures of Ric-8B in complex with Gα protein folding clients reveal isoform specificity mechanisms. Structure 2023; 31:553-564.e7. [PMID: 36931277 PMCID: PMC10164081 DOI: 10.1016/j.str.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank E Kwarcinski
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann M Ovrutsky
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
5
|
Hirata Y, Oda H, Osaki T, Takeuchi S. Biohybrid sensor for odor detection. LAB ON A CHIP 2021; 21:2643-2657. [PMID: 34132291 DOI: 10.1039/d1lc00233c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
Zeng H, Castillo-Cabrera J, Manser M, Lu B, Yang Z, Strande V, Begue D, Zamponi R, Qiu S, Sigoillot F, Wang Q, Lindeman A, Reece-Hoyes JS, Russ C, Bonenfant D, Jiang X, Wang Y, Cong F. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. eLife 2019; 8:50223. [PMID: 31741433 PMCID: PMC6927754 DOI: 10.7554/elife.50223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses. Cancer is caused by cells growing and dividing uncontrollably as a result of mutations in certain genes. Many human lung cancers have a mutation in the gene that makes the protein EGFR. In healthy cells, EGFR allows a cell to respond to chemical signals that encourage healthy growth. In cancer, the altered EGFR is always on, which allows the cell to rapidly grow without any control, resulting in cancer. One approach to treating these cancers is with drugs that block the activity of mutant EGFR. Although these drugs have been very successful, they do not always succeed in completely treating the cancer. This is because over time the cancer cells can become resistant to the drug and start forming new tumors. One way that this can happen is if random mutations lead to changes in other proteins that make the drug less effective or stop it from accessing the EGFR proteins. However, it is unclear how other proteins in cancer cells affect the response to these EGFR inhibiting drugs. Now, Zeng et al. have used gene editing to systematically remove every protein from human lung cancer cells grown in the laboratory to see how this affects resistance to EGFR inhibitor treatment. This revealed that a number of different proteins could change how cancer cells responded to the drug. For instance, cells lacking the protein RIC8A were more sensitive to EGFR inhibitors and less likely to develop resistance. This is because loss of RIC8A turns down a key cell survival pathway in cancer cells. Whereas, cancer cells lacking the ARIH2 protein were able to produce more proteins that are needed for cancer cell growth, which resulted in them having increased resistance to EGFR inhibitors. The proteins identified in this study could be used to develop new drugs that improve the effectiveness of EGFR inhibitors. Understanding how cancer cells respond to EGFR inhibitor treatment could help determine how likely a patient is to develop resistance to these drugs.
Collapse
Affiliation(s)
- Hao Zeng
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Johnny Castillo-Cabrera
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Mika Manser
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Bo Lu
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Zinger Yang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Vaik Strande
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Begue
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Raffaella Zamponi
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Shumei Qiu
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Frederic Sigoillot
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Qiong Wang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - John S Reece-Hoyes
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Debora Bonenfant
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Xiaomo Jiang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Youzhen Wang
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Feng Cong
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| |
Collapse
|
7
|
Parks XX, Ronzier E, O-Uchi J, Lopes CM. Fluvastatin inhibits Rab5-mediated IKs internalization caused by chronic Ca 2+-dependent PKC activation. J Mol Cell Cardiol 2019; 129:314-325. [PMID: 30898664 DOI: 10.1016/j.yjmcc.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/26/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.
Collapse
Affiliation(s)
- Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Jin O-Uchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America; Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States of America
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America.
| |
Collapse
|
8
|
Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M. The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 2018; 145:dev.164269. [PMID: 30297374 DOI: 10.1242/dev.164269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Collapse
Affiliation(s)
- Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Alice Roycroft
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sylvain Marcellini
- Departamento de Biología Cellular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| |
Collapse
|
9
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
10
|
Toro-Tapia G, Villaseca S, Leal JI, Beyer A, Fuentealba J, Torrejón M. Xenopus as a model organism to study heterotrimeric G-protein pathway during collective cell migration of neural crest. Genesis 2017; 55. [PMID: 28095644 DOI: 10.1002/dvg.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/03/2023]
Abstract
Collective cell migration is essential in many fundamental aspects of normal development, like morphogenesis, organ formation, wound healing, and immune responses, as well as in the etiology of severe pathologies, like cancer metastasis. In spite of the huge amount of data accumulated on cell migration, such a complex process involves many molecular actors, some of which still remain to be functionally characterized. One of these signals is the heterotrimeric G-protein pathway that has been studied mainly in gastrulation movements. Recently we have reported that Ric-8A, a GEF for Gα proteins, plays an important role in neural crest migration in Xenopus development. Xenopus neural crest cells, a highly migratory embryonic cell population induced at the border of the neural plate that migrates extensively in order to differentiate in other tissues during development, have become a good model to understand the dynamics that regulate cell migration. In this review, we aim to provide sufficient evidence supporting how useful Xenopus model with its different tools, such as explants and transplants, paired with improved in vivo imaging techniques, will allow us to tackle the multiple signaling mechanisms involved in neural crest cell migration.
Collapse
Affiliation(s)
- G Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - S Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - A Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - M Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
11
|
Chishiki K, Kamakura S, Hayase J, Yuzawa S, Sumimoto H. Ric-8A-mediated stabilization of the trimeric G protein subunit Gαi is inhibited by pertussis toxin-catalyzed ADP-ribosylation. Biochem Biophys Res Commun 2017; 483:941-945. [PMID: 28082199 DOI: 10.1016/j.bbrc.2017.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
The heterotrimeric G protein subunit Gαi can be activated by G protein-coupled receptors and the cytosolic protein Ric-8A, the latter of which is also known to prevent ubiquitin-dependent degradation of Gαi. Here we show that the amounts of the three Gαi-related proteins Gαi1, Gαi2, and Gαi3, but not that of Gαq, are rapidly decreased by cell treatment with pertussis toxin (PTX). The decrease appears to be due to ADP-ribosylation of Gαi, because PTX treatment does not affect the amount of a mutant Gαi2 carrying alanine substitution for Cys352, the residue that is ADP-ribosylated by the toxin. The presence of endogenous and exogenous Ric-8A increases Gαi stability as shown in cells treated with the protein synthesis inhibitor cycloheximide; however, Ric-8A fails to efficiently stabilize ADP-ribosylated Gαi. The failure agrees with the inability of Ric-8A to bind to ADP-ribosylated Gαi both in vitro and in vivo. Thus PTX appears to exert its pathological effects at least in part by converting Gαi to an unstable ADP-ribosylated form, in addition to the well-known inability of ADP-ribosylated Gαi to transduce signals triggered by G protein-coupled receptors.
Collapse
Affiliation(s)
- Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoru Yuzawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
12
|
Abstract
The G12 family of heterotrimeric G proteins is defined by their α-subunits,
Gα12 and Gα13. These α-subunits
regulate cellular homeostasis, cell migration, and oncogenesis in a
context-specific manner primarily through their interactions with distinct
proteins partners that include diverse effector molecules and scaffold proteins.
With a focus on identifying any other novel regulatory protein(s) that can
directly interact with Gα13, we subjected Gα13
to tandem affinity purification-coupled mass spectrometric analysis. Our results
from such analysis indicate that Gα13 potently interacts with
mammalian Ric-8A. Our mass spectrometric analysis data also indicates that
Ric-8A, which was tandem affinity purified along with Gα13, is
phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion
approach, we have defined that the C-terminus of Gα13 containing
the guanine-ring interaction site is essential and sufficient for its
interaction with Ric-8A. Evaluation of Gα13-specific signaling
pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A
potentiates Gα13-mediated activation of RhoA, Cdc42, and the
downstream p38MAPK. We also establish that the tyrosine phosphorylation of
Ric-8A, thus far unidentified, is potently stimulated by Gα13.
Our results also indicate that the stimulation of tyrosine-phosphorylation of
Ric-8A by Gα13 is partially sensitive to inhibitors of
Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that
Gα13 promotes the translocation of Ric-8A to plasma membrane
and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus,
our results demonstrate for the first time that Gα13 stimulates
the tyrosine phosphorylation of Ric-8A and Gα13-mediated
tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to
plasma membrane.
Collapse
|
13
|
Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis. PLoS One 2015; 10:e0129131. [PMID: 26062014 PMCID: PMC4465189 DOI: 10.1371/journal.pone.0129131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility.
Collapse
|
14
|
Tse MK, Morris CJ, Zhang M, Wong YH. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gα(i3). Mol Cell Biochem 2014; 401:27-38. [PMID: 25480567 DOI: 10.1007/s11010-014-2289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) which stabilizes the Gα(i/o) subunits as an AGS3/Gα(i/o)-GDP complex. It has recently been demonstrated in reconstitution experiments that the AGS3/Gα(i/o)-GDP complex may act as a substrate of resistance to inhibitors of cholinesterase 8A (Ric-8A), a guanine exchange factor (GEF) for heterotrimeric Gα proteins. Since the ability of Ric-8A to activate Gα(i/o) subunits that are bound to AGS3 in a cellular environment has not been confirmed, we thus examined the effect of Ric-8A on cAMP accumulation in HEK293 cells expressing different forms of AGS3 and Gα(i3). Co-immunoprecipitation assays indicate that full-length AGS3 and its N- and C-terminal truncated mutants can interact with Ric-8A in HEK293 cells. Yeast two-hybrid assay further confirmed that Ric-8A can directly bind to AGS3S, a short form of AGS3 which is endogenously expressed in heart. However, Ric-8A failed to facilitate Gα(i)-induced suppression of adenylyl cyclase, suggesting that it may not serve as a GEF for AGS3/Gα(i/o)-GDP complex in a cellular environment.
Collapse
Affiliation(s)
- Man K Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
15
|
Papasergi MM, Patel BR, Tall GG. The G protein α chaperone Ric-8 as a potential therapeutic target. Mol Pharmacol 2014; 87:52-63. [PMID: 25319541 DOI: 10.1124/mol.114.094664] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein-coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein-protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies.
Collapse
Affiliation(s)
- Makaía M Papasergi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Bharti R Patel
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Gregory G Tall
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
16
|
Canonical and noncanonical g-protein signaling helps coordinate actin dynamics to promote macrophage phagocytosis of zymosan. Mol Cell Biol 2014; 34:4186-99. [PMID: 25225330 DOI: 10.1128/mcb.00325-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both chemotaxis and phagocytosis depend upon actin-driven cell protrusions and cell membrane remodeling. While chemoattractant receptors rely upon canonical G-protein signaling to activate downstream effectors, whether such signaling pathways affect phagocytosis is contentious. Here, we report that Gαi nucleotide exchange and signaling helps macrophages coordinate the recognition, capture, and engulfment of zymosan bioparticles. We show that zymosan exposure recruits F-actin, Gαi proteins, and Elmo1 to phagocytic cups and early phagosomes. Zymosan triggered an increase in intracellular Ca(2+) that was partially sensitive to Gαi nucleotide exchange inhibition and expression of GTP-bound Gαi recruited Elmo1 to the plasma membrane. Reducing GDP-Gαi nucleotide exchange, decreasing Gαi expression, pharmacologically interrupting Gβγ signaling, or reducing Elmo1 expression all impaired phagocytosis, while favoring the duration that Gαi remained GTP bound promoted it. Our studies demonstrate that targeting heterotrimeric G-protein signaling offers opportunities to enhance or retard macrophage engulfment of phagocytic targets such as zymosan.
Collapse
|
17
|
Boularan C, Kehrl JH. Implications of non-canonical G-protein signaling for the immune system. Cell Signal 2014; 26:1269-82. [PMID: 24583286 DOI: 10.1016/j.cellsig.2014.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/13/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of three subunits α, β, and γ, function as molecular switches to control downstream effector molecules activated by G protein-coupled receptors (GPCRs). The GTP/GDP binding status of Gα transmits information about the ligand binding state of the GPCR to intended signal transduction pathways. In immune cells heterotrimeric G proteins impact signal transduction pathways that directly, or indirectly, regulate cell migration, activation, survival, proliferation, and differentiation. The cells of the innate and adaptive immune system abundantly express chemoattractant receptors and lesser amounts of many other types of GPCRs. But heterotrimeric G-proteins not only function in classical GPCR signaling, but also in non-canonical signaling. In these pathways the guanine exchange factor (GEF) exerted by a GPCR in the canonical pathway is replaced or supplemented by another protein such as Ric-8A. In addition, other proteins such as AGS3-6 can compete with Gβγ for binding to GDP bound Gα. This competition can promote Gβγ signaling by freeing Gβγ from rapidly rebinding GDP bound Gα. The proteins that participate in these non-canonical signaling pathways will be briefly described and their role, or potential one, in cells of the immune system will be highlighted.
Collapse
Affiliation(s)
- Cédric Boularan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
18
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
19
|
Jenie RI, Nishimura M, Fujino M, Nakaya M, Mizuno N, Tago K, Kurose H, Itoh H. Increased ubiquitination and the crosstalk of G protein signaling in cardiac myocytes: involvement of Ric-8B in Gs suppression by Gq signal. Genes Cells 2013; 18:1095-106. [PMID: 24134321 DOI: 10.1111/gtc.12099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/01/2013] [Indexed: 01/19/2023]
Abstract
Hyperactivation of Gq signaling causes cardiac hypertrophy, and β-adrenergic receptor-mediated Gs signaling is attenuated in hypertrophic cardiomyocytes. Here, we found the increase in a global ubiquitination in hypertrophic mouse heart. The activation of Gq signaling resulted in the ubiquitination of Gαs in neonatal rat cardiomyocytes, reduced Gαs expression, and suppressed cAMP response to β-adrenergic receptor stimulation. Ectopic expression of Gαq induced a similar suppression, which is due to the degradation of Gαs by a ubiquitin-proteasome pathway. Co-expression of Ric-8B, a positive regulator of Gαs, effectively canceled the Gαq-induced ubiquitination of Gαs and recovered the cAMP accumulation. In vitro, Gαq competes for the binding of Gαs to Ric-8B. These data show a new role of Ric-8B in the crosstalk of two distinct G protein signaling pathways, which are possibly involved in a part of mechanisms of chronic heart failure.
Collapse
Affiliation(s)
- Riris I Jenie
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Peters KA, Rogers SL. Drosophila Ric-8 interacts with the Gα12/13 subunit, Concertina, during activation of the Folded gastrulation pathway. Mol Biol Cell 2013; 24:3460-71. [PMID: 24006487 PMCID: PMC3818808 DOI: 10.1091/mbc.e12-11-0813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A novel tissue culture model for studying cellular constriction is introduced and used to show that activation of the Fog signaling pathway depends on Ric-8 and that Ric-8 preferentially binds and localizes inactive Cta. Conserved residues are identified within Ric-8 that are important for the binding and function of Cta. Heterotrimeric G proteins, composed of α, β, and γ subunits, are activated by exchange of GDP for GTP on the Gα subunit. Canonically, Gα is stimulated by the guanine-nucleotide exchange factor (GEF) activity of ligand-bound G protein–coupled receptors. However, Gα subunits may also be activated in a noncanonical manner by members of the Ric-8 family, cytoplasmic proteins that also act as GEFs for Gα subunits. We used a signaling pathway active during Drosophila gastrulation as a model system to study Ric-8/Gα interactions. A component of this pathway, the Drosophila Gα12/13 subunit, Concertina (Cta), is necessary to trigger actomyosin contractility during gastrulation events. Ric-8 mutants exhibit similar gastrulation defects to Cta mutants. Here we use a novel tissue culture system to study a signaling pathway that controls cytoskeletal rearrangements necessary for cellular morphogenesis. We show that Ric-8 regulates this pathway through physical interaction with Cta and preferentially interacts with inactive Cta and directs its localization within the cell. We also use this system to conduct a structure–function analysis of Ric-8 and identify key residues required for both Cta interaction and cellular contractility.
Collapse
Affiliation(s)
- Kimberly A Peters
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27514
| | | |
Collapse
|
21
|
Ruisu K, Kask K, Meier R, Saare M, Raid R, Veraksitš A, Karis A, Tõnissoo T, Pooga M. Ablation of RIC8A function in mouse neurons leads to a severe neuromuscular phenotype and postnatal death. PLoS One 2013; 8:e74031. [PMID: 23977396 PMCID: PMC3745415 DOI: 10.1371/journal.pone.0074031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/30/2013] [Indexed: 12/29/2022] Open
Abstract
Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a (F/F) ) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre (+/-) Ric8 (lacZ/F) mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre (+/-) Ric8a (lacZ/F) mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.
Collapse
Affiliation(s)
- Katrin Ruisu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (KR); (TT)
| | - Keiu Kask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Riho Meier
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Merly Saare
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alar Veraksitš
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Alar Karis
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (KR); (TT)
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Abstract
Resistance to inhibitors of cholinesterase 8 proteins (Ric-8A and Ric-8B) collectively bind the four classes of heterotrimeric G protein α subunits. Ric-8A and Ric-8B act as non-receptor guanine nucleotide exchange factors (GEFs) toward the Gα subunits that each binds in vitro and seemingly regulate diverse G protein signaling systems in cells. Combined evidence from worm, fly and mammalian systems has shown that Ric-8 proteins are required to maintain proper cellular abundances of G proteins. Ric-8 proteins support G protein levels by serving as molecular chaperones that promote Gα subunit biosynthesis. In this review, the evidence that Ric-8 proteins act as non-receptor GEF activators of G proteins in signal transduction contexts will be weighed against the evidence supporting the molecular chaperoning function of Ric-8 in promoting G protein abundance. I will conclude by suggesting that Ric-8 proteins may act in either capacity in specific contexts. The field awaits additional experimentation to delineate the putative multi-functionality of Ric-8 towards G proteins in cells.
Collapse
Affiliation(s)
- Gregory G Tall
- Department of Pharmacology and Physiology, University of Rochester Medical Center , Rochester, NY, USA.
| |
Collapse
|
23
|
Chishiki K, Kamakura S, Yuzawa S, Hayase J, Sumimoto H. Ubiquitination of the heterotrimeric G protein α subunits Gαi2 and Gαq is prevented by the guanine nucleotide exchange factor Ric-8A. Biochem Biophys Res Commun 2013; 435:414-9. [DOI: 10.1016/j.bbrc.2013.04.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
|
24
|
Fuentealba J, Toro-Tapia G, Arriagada C, Riquelme L, Beyer A, Henriquez JP, Caprile T, Mayor R, Marcellini S, Hinrichs MV, Olate J, Torrejón M. Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration. Dev Biol 2013; 378:74-82. [PMID: 23588098 DOI: 10.1016/j.ydbio.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/02/2023]
Abstract
The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Gabay M, Pinter ME, Wright FA, Chan P, Murphy AJ, Valenzuela DM, Yancopoulos GD, Tall GG. Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit membrane association. Sci Signal 2011; 4:ra79. [PMID: 22114146 DOI: 10.1126/scisignal.2002223] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ric-8A (resistance to inhibitors of cholinesterase 8A) and Ric-8B are guanine nucleotide exchange factors that enhance different heterotrimeric guanine nucleotide-binding protein (G protein) signaling pathways by unknown mechanisms. Because transgenic disruption of Ric-8A or Ric-8B in mice caused early embryonic lethality, we derived viable Ric-8A- or Ric-8B-deleted embryonic stem (ES) cell lines from blastocysts of these mice. We observed pleiotropic G protein signaling defects in Ric-8A(-/-) ES cells, which resulted from reduced steady-state amounts of Gα(i), Gα(q), and Gα(13) proteins to <5% of those of wild-type cells. The amounts of Gα(s) and total Gβ protein were partially reduced in Ric-8A(-/-) cells compared to those in wild-type cells, and only the amount of Gα(s) was reduced substantially in Ric-8B(-/-) cells. The abundances of mRNAs encoding the G protein α subunits were largely unchanged by loss of Ric-8A or Ric-8B. The plasma membrane residence of G proteins persisted in the absence of Ric-8 but was markedly reduced compared to that in wild-type cells. Endogenous Gα(i) and Gα(q) were efficiently translated in Ric-8A(-/-) cells but integrated into endomembranes poorly; however, the reduced amounts of G protein α subunits that reached the membrane still bound to nascent Gβγ. Finally, Gα(i), Gα(q), and Gβ(1) proteins exhibited accelerated rates of degradation in Ric-8A(-/-) cells compared to those in wild-type cells. Together, these data suggest that Ric-8 proteins are molecular chaperones required for the initial association of nascent Gα subunits with cellular membranes.
Collapse
Affiliation(s)
- Meital Gabay
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vellano CP, Maher EM, Hepler JR, Blumer JB. G protein-coupled receptors and resistance to inhibitors of cholinesterase-8A (Ric-8A) both regulate the regulator of g protein signaling 14 RGS14·Gαi1 complex in live cells. J Biol Chem 2011; 286:38659-38669. [PMID: 21880739 PMCID: PMC3207400 DOI: 10.1074/jbc.m111.274928] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/19/2011] [Indexed: 01/10/2023] Open
Abstract
Regulator of G protein Signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates both conventional and unconventional G protein signaling pathways. Like other RGS (regulator of G protein signaling) proteins, RGS14 acts as a GTPase accelerating protein to terminate conventional Gα(i/o) signaling. However, unlike other RGS proteins, RGS14 also contains a G protein regulatory/GoLoco motif that specifically binds Gα(i1/3)-GDP in cells and in vitro. The non-receptor guanine nucleotide exchange factor Ric-8A can bind and act on the RGS14·Gα(i1)-GDP complex to play a role in unconventional G protein signaling independent of G protein-coupled receptors (GPCRs). Here we demonstrate that RGS14 forms a Gα(i/o)-dependent complex with a G(i)-linked GPCR and that this complex is regulated by receptor agonist and Ric-8A (resistance to inhibitors of cholinesterase-8A). Using live cell bioluminescence resonance energy transfer, we show that RGS14 functionally associates with the α(2A)-adrenergic receptor (α(2A)-AR) in a Gα(i/o)-dependent manner. This interaction is markedly disrupted after receptor stimulation by the specific agonist UK14304, suggesting complex dissociation or rearrangement. Agonist-mediated dissociation of the RGS14·α(2A)-AR complex occurs in the presence of Gα(i/o) but not Gα(s) or Gα(q). Unexpectedly, RGS14 does not dissociate from Gα(i1) in the presence of stimulated α(2A)-AR, suggesting preservation of RGS14·Gα(i1) complexes after receptor activation. However, Ric-8A facilitates dissociation of both the RGS14·Gα(i1) complex and the Gα(i1)-dependent RGS14·α(2A)-AR complex after receptor activation. Together, these findings indicate that RGS14 can form complexes with GPCRs in cells that are dependent on Gα(i/o) and that these RGS14·Gα(i1)·GPCR complexes may be substrates for other signaling partners such as Ric-8A.
Collapse
Affiliation(s)
- Christopher P Vellano
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Ellen M Maher
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
28
|
Maldonado-Agurto R, Toro G, Fuentealba J, Arriagada C, Campos T, Albistur M, Henriquez JP, Olate J, Hinrichs MV, Torrejón M. Cloning and spatiotemporal expression of RIC-8 in Xenopus embryogenesis. Gene Expr Patterns 2011; 11:401-8. [PMID: 21726669 DOI: 10.1016/j.gep.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/03/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
RIC-8 is a highly conserved protein that promotes G protein signaling as it acts as a Guanine nucleotide Exchanging Factor (GEF) over a subset of Gα subunits. In invertebrates, RIC-8 plays crucial roles in synaptic transmission as well as in asymmetric cell division. As a first step to address further studies on RIC-8 function in vertebrates, here we have cloned a ric-8 gene from Xenopus tropicalis (xtric-8) and determined its spatiotemporal expression pattern throughout embryogenesis. The xtric-8 transcript is expressed maternally and zygotically and, as development proceeds, it shows a dynamic expression pattern. At early developmental stages, xtric-8 is expressed in the animal hemisphere, whereas its expression is later restricted to neural tissues, such as the neural tube and the brain, as well as in the eye and neural crest-derived structures, including those of the craniofacial region. Together, our findings suggest that RIC-8 functions are related to the development of the nervous system.
Collapse
Affiliation(s)
- R Maldonado-Agurto
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Casilla, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The Ric-8B gene is highly expressed in proliferating preosteoblastic cells and downregulated during osteoblast differentiation in a SWI/SNF- and C/EBPbeta-mediated manner. Mol Cell Biol 2011; 31:2997-3008. [PMID: 21606199 DOI: 10.1128/mcb.05096-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ric-8 gene encodes a guanine exchange factor (GEF) that modulates G protein-mediated signaling, exhibiting a relevant role during regulation of cell division. In mammals, two Ric-8 homologues have been reported (Ric-8A and Ric-8B), and recent studies indicate equivalent roles for each protein. Here, we show that the Ric-8B gene is negatively regulated during osteoblast differentiation by the transcription factor C/EBPβ. Only the larger C/EBPβ isoform (C/EBPβ-LAP*) downregulates Ric-8B gene promoter activity in osteoblastic cells. Accordingly, knockdown of C/EBPβ expression by small intefering RNA in osteoblastic cells results in a significant increase of Ric-8B gene expression. Transient overexpression of Brg1 or Brm, the catalytic subunits of the SWI/SNF chromatin-remodeling complex, inhibits Ric-8B promoter activity. Also, the presence of inactive SWI/SNF complexes in osteoblastic cells results in increased endogenous Ric-8B transcription, indicating that SWI/SNF activity negatively regulates Ric-8B expression. During osteoblast differentiation, Ric-8B gene repression is accompanied by changes in nucleosome placement at the proximal Ric-8B gene promoter and reduced accessibility to regulatory sequences.
Collapse
|
30
|
Montmayeur JP, Barr TP, Kam SA, Packer SJ, Strichartz GR. ET-1 induced Elevation of intracellular calcium in clonal neuronal and embryonic kidney cells involves endogenous endothelin-A receptors linked to phospholipase C through Gα(q/11). Pharmacol Res 2011; 64:258-67. [PMID: 21515378 DOI: 10.1016/j.phrs.2011.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 01/23/2023]
Abstract
Endothelin-1 (ET-1) is a pain mediator, elevated in skin after injury, which potentiates noxious thermal and mechanical stimuli (hyperalgesia) through the activation of ET(A) (and, perhaps, ET(B)) receptors on pain fibers. Part of the mechanism underlying this effect has recently been shown to involve potentiation of neuronal TRPV1 by PKCɛ. However, the early steps of this pathway, which are recapitulated in HEK 293 cells co-expressing TRPV1 and ET(A) receptors, remain unexplored. To clarify these steps, we investigated the pharmacological profile and signaling properties of native endothelin receptors in immortalized cell lines including HEK 293 and ND7 model sensory neurons. Previously we showed that in ND7/104, a dorsal root ganglia-derived cell line, ET-1 elicits a rise in intracellular calcium ([Ca(2+)](in)) which is blocked by BQ-123, an ET(A) receptor antagonist, but not by BQ-788, an ET(B) receptor antagonist, suggesting that ET(A) receptors mediate this effect. Here we extend these findings to HEK 293T cells. Examination of the expression of ET(A) and ET(B) receptors by RT-PCR and [(125)I]-ET-1 binding experiments confirms the slight predominance of ET(A) receptor binding sites and messenger RNA in both ND7/104 and HEK 293T cells. In addition, selective agonists of the ET(B) receptor (sarafotoxin 6c, BQ-3020 or IRL-1620) do not induce a transient increase in [Ca(2+)](in). Furthermore, reduction of ET(B) mRNA levels by siRNA does not abrogate calcium mobilization by ET-1 in HEK 293T cells, corroborating the lack of an ET(B) receptor role in this response. However, in HEK 293 cells with low endogenous ET(A) mRNA levels, ET-1 does not induce a transient increase in [Ca(2+)](in). Observation of the [Ca(2+)](in) elevation in ND7/104 and HEK 293T cells in the absence of extracellular calcium suggests that ET-1 elicits a release of calcium from intracellular stores, and pretreatment of the cells with pertussis toxin or a selective inhibitor of phospholipase C (PLC) point to a mechanism involving Gαq/11 coupling. These results are consistent with the hypothesis that a certain threshold of ET(A) receptor expression is necessary to drive a transient [Ca(2+)](in) increase in these cells and that this process involves release of calcium from intracellular stores following Gαq/11 activation.
Collapse
Affiliation(s)
- Jean-Pierre Montmayeur
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA; Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, F-21000 Dijon, France
| | | | | | | | | |
Collapse
|
31
|
Tõnissoo T, Lulla S, Meier R, Saare M, Ruisu K, Pooga M, Karis A. Nucleotide exchange factor RIC-8 is indispensable in mammalian early development. Dev Dyn 2011; 239:3404-15. [PMID: 21069829 DOI: 10.1002/dvdy.22480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The guanine nucleotide exchange factor RIC-8 is a conserved protein essential for the asymmetric division in the early embryogenesis in different organisms. The function of RIC-8 in mammalian development is not characterized so far. In this study we map the expression of RIC-8 during the early development of mouse. To elucidate the RIC-8 function we used Ric-8(-/-) mutant embryos. The Ric-8(-/-) embryos reach the gastrulation stage but do not develop further and die at E6.5-E8.5. We characterized the Ric-8(-/-) embryonic phenotype by morphological and marker gene analyses. The gastrulation is initiated in Ric-8(-/-) embryos but their growth is retarded, epiblast and mesoderm disorganized. Additionally, the basement membrane is defective, amnion folding and the formation of allantois are interfered, also the cavitation. Furthermore, the orientation of the Ric-8(-/-) embryo in the uterus was abnormal. Our study reveals that the activity of RIC-8 protein is irreplaceable for the correct gastrulation of mouse embryo.
Collapse
Affiliation(s)
- Tambet Tõnissoo
- Department of Developmental Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci U S A 2010; 107:13666-71. [PMID: 20639466 DOI: 10.1073/pnas.1003553107] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins) transmit extracellular stimuli perceived by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. Hundreds of GPCRs exist in humans and are the targets of a large percentage of the pharmaceutical drugs used today. Because G proteins are regulated by GPCRs, small molecules that directly modulate G proteins have the potential to become therapeutic agents. However, strategies to develop modulators have been hampered by a lack of structural knowledge of targeting sites for specific modulator binding. Here we present the mechanism of action of the cyclic depsipeptide YM-254890, which is a recently discovered Gq-selective inhibitor. YM-254890 specifically inhibits the GDP/GTP exchange reaction of alpha subunit of Gq protein (Galphaq) by inhibiting the GDP release from Galphaq. X-ray crystal structure analysis of the Galphaqbetagamma-YM-254890 complex shows that YM-254890 binds the hydrophobic cleft between two interdomain linkers connecting the GTPase and helical domains of the Galphaq. The binding stabilizes an inactive GDP-bound form through direct interactions with switch I and impairs the linker flexibility. Our studies provide a novel targeting site for the development of small molecules that selectively inhibit each Galpha subunit and an insight into the molecular mechanism of G protein activation.
Collapse
|
33
|
Garcia-Marcos M, Ghosh P, Ear J, Farquhar MG. A structural determinant that renders G alpha(i) sensitive to activation by GIV/girdin is required to promote cell migration. J Biol Chem 2010; 285:12765-77. [PMID: 20157114 DOI: 10.1074/jbc.m109.045161] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although several non-receptor activators of heterotrimeric G proteins have been identified, the structural features of G proteins that determine their interaction with such activators and the subsequent biological effects are poorly understood. Here we investigated the structural determinants in G alpha(i3) necessary for its regulation by GIV/girdin, a guanine-nucleotide exchange factor (GEF) that activates G alpha(i) subunits. Using G protein activity and in vitro pulldown assays we demonstrate that G alpha(i3) is a better substrate for GIV than the highly homologous G alpha(o). We identified Trp-258 in the G alpha(i) subunit as a novel structural determinant for GIV binding by comparing GIV binding to G alpha(i3)/G alpha(o) chimeras. Mutation of Trp-258 to the corresponding Phe in G alpha(o) decreased GIV binding in vitro and in cultured cells but did not perturb interaction with other G alpha-binding partners, i.e. G betagamma, AGS3 (a guanine nucleotide dissociation inhibitor), GAIP/RGS19 (a GTPase-activating protein), and LPAR1 (a G protein-coupled receptor). Activation of G alpha(i3) by GIV was also dramatically reduced when Trp-258 was replaced with Tyr, Leu, Ser, His, Asp, or Ala, highlighting that Trp is required for maximal activation. Moreover, when mutant G alpha(i3) W258F was expressed in HeLa cells they failed to undergo cell migration and to enhance Akt signaling after growth factor or G protein-coupled receptor stimulation. Thus activation of G alpha(i3) by GIV is essential for biological functions associated with G alpha(i3) activation. In conclusion, we have discovered a novel structural determinant on G alpha(i) that plays a key role in defining the selectivity and efficiency of the GEF activity of GIV on G alpha(i) and that represents an attractive target site for designing small molecules to disrupt the G alpha(i)-GIV interface for therapeutic purposes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
34
|
Nagai Y, Nishimura A, Tago K, Mizuno N, Itoh H. Ric-8B stabilizes the alpha subunit of stimulatory G protein by inhibiting its ubiquitination. J Biol Chem 2010; 285:11114-20. [PMID: 20133939 DOI: 10.1074/jbc.m109.063313] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha subunit of stimulatory G protein (G alpha(s)) activates adenylyl cyclase, which catalyzes cAMP production, and regulates many physiological aspects, such as cardiac regulation and endocrine systems. Ric-8B (resistance to inhibitors of cholinesterase 8B) has been identified as the G alpha(s)-binding protein; however, its role in G(s) signaling remains obscure. In this study, we present evidence that Ric-8B specifically and positively regulates G(s) signaling by stabilizing the G alpha(s) protein. An in vitro biochemical study suggested that Ric-8B does not possess guanine nucleotide exchange factor activity. However, knockdown of Ric-8B attenuated beta-adrenergic agonist-induced cAMP accumulation, indicating that Ric-8B positively regulates G(s) signaling. Interestingly, overexpression and knockdown of Ric-8B resulted in an increase and a decrease in the G alpha(s) protein, respectively, without affecting the G alpha(s) mRNA level. We found that the G alpha(s) protein is ubiquitinated and that this ubiquitination is inhibited by Ric-8B. This Ric-8B-mediated inhibition of G alpha(s) ubiquitination requires interaction between Ric-8B and G alpha(s) because Ric-8B splicing variants, which are defective for G alpha(s) binding, failed to inhibit the ubiquitination. Taken together, these results suggest that Ric-8B plays a critical and specific role in the control of G alpha(s) protein levels by modulating G alpha(s) ubiquitination and positively regulates G(s) signaling.
Collapse
Affiliation(s)
- Yusuke Nagai
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
35
|
Fenech C, Patrikainen L, Kerr DS, Grall S, Liu Z, Laugerette F, Malnic B, Montmayeur JP. Ric-8A, a Galpha protein guanine nucleotide exchange factor potentiates taste receptor signaling. Front Cell Neurosci 2009; 3:11. [PMID: 19847316 PMCID: PMC2763893 DOI: 10.3389/neuro.03.011.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/22/2009] [Indexed: 11/18/2022] Open
Abstract
Taste receptors for sweet, bitter and umami tastants are G-protein-coupled receptors (GPCRs). While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS), RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs) are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.
Collapse
Affiliation(s)
- Claire Fenech
- UMR 5170 CNRS, Centre des Sciences du Goût Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Figueroa M, Hinrichs MV, Bunster M, Babbitt P, Martinez-Oyanedel J, Olate J. Biophysical studies support a predicted superhelical structure with armadillo repeats for Ric-8. Protein Sci 2009; 18:1139-45. [PMID: 19472323 DOI: 10.1002/pro.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ric-8 is a highly conserved cytosolic protein (MW 63 KDa) initially identified in C. elegans as an essential factor in neurotransmitter release and asymmetric cell division. Two different isoforms have been described in mammals, Ric-8A and Ric-8B; each possess guanine nucleotide exchange activity (GEF) on heterotrimeric G-proteins, but with different Galpha subunits specificities. To gain insight on the mechanisms involved in Ric-8 cellular functions it is essential to obtain some information about its structure. Therefore, the aim of this work was to create a structural model for Ric-8. In this case, it was not possible to construct a model based on comparison with a template structure because Ric-8 does not present sequence similarity with any other protein. Consequently, different bioinformatics approaches that include protein folding and structure prediction were used. The Ric-8 structural model is composed of 10 armadillo folding motifs, organized in a right-twisted alpha-alpha super helix. In order to validate the structural model, a His-tag fusion construct of Ric-8 was expressed in E. coli, purified by affinity and anion exchange chromatography and subjected to circular dichroism analysis (CD) and thermostability studies. Ric-8 is approximately 80% alpha helix, with a Tm of 43.1 degrees C, consistent with an armadillo-type structure such as alpha-importin, a protein composed of 10 armadillo repeats. The proposed structural model for Ric-8 is intriguing because armadillo proteins are known to interact with multiple partners and participate in diverse cellular functions. These results open the possibility of finding new protein partners for Ric-8 with new cellular functions.
Collapse
Affiliation(s)
- Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
37
|
GIV is a nonreceptor GEF for G alpha i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci U S A 2009; 106:3178-83. [PMID: 19211784 DOI: 10.1073/pnas.0900294106] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotrimeric G proteins are molecular switches that control signal transduction. Ligand-occupied, G protein-coupled receptors serve as the canonical guanine nucleotide exchange factors (GEFs) that activate heterotrimeric G proteins. A few unrelated nonreceptor GEFs have also been described, but little or nothing is known about their structure, mechanism of action, or cellular functions in mammals. We have discovered that GIV/Girdin serves as a nonreceptor GEF for G alpha i through an evolutionarily conserved motif that shares sequence homology with the synthetic GEF peptide KB-752. Using the available structure of the KB-752 x G alpha i1 complex as a template, we modeled the G alpha i-GIV interface and identified the key residues that are required to form it. Mutation of these key residues disrupts the interaction and impairs Akt enhancement, actin remodeling, and cell migration in cancer cells. Mechanistically, we demonstrate that the GEF motif is capable of activating as well as sequestering the G alpha-subunit, thereby enhancing Akt signaling via the G betagamma-PI3K pathway. Recently, GIV has been implicated in cancer metastasis by virtue of its ability to enhance Akt activity and remodel the actin cytoskeleton during cancer invasion. Thus, the novel regulatory motif described here provides the structural and biochemical basis for the prometastatic features of GIV, making the functional disruption of this unique G alpha i-GIV interface a promising target for therapy against cancer metastasis.
Collapse
|
38
|
Yoshikawa K, Touhara K. Myr-Ric-8A enhances G(alpha15)-mediated Ca2+ response of vertebrate olfactory receptors. Chem Senses 2008; 34:15-23. [PMID: 18682606 DOI: 10.1093/chemse/bjn047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The determination of ligand specificities of odorant receptors will contribute to the understanding of how odorants are discriminated by the olfactory system. To date, the ways in which some olfactory receptors (ORs) pair with their cognate ligands has been studied using a Ca(2+) imaging technique. This approach has been used to investigate orphan G protein-coupled receptors expressed in heterologous cells; however, most attempts to functionally express ORs on the cell surface of heterologous cells have failed. Recently, receptor-transporting protein 1 and Ric-8B have been identified as proteins involved in targeting receptors to the cell membrane and amplifying receptor signals, and thus, they are able to facilitate cellular responses via ORs in a heterologous cell system. Here, we describe a technique in which we employed a myristoylation sequence-conjugated mutant of Ric-8A (Myr-Ric-8A) as a signal amplifier and show Myr-Ric-8A greatly enhances G(alpha15)-mediated Ca(2+) responses of ORs in HEK293 cells. Coexpression of Myr-Ric-8A enabled us to deorphanize a mouse OR and to determine its molecular receptive range. Our results suggest that Myr-Ric-8A should be helpful in functional characterization of ORs in heterologous cells using Ca(2+) imaging.
Collapse
Affiliation(s)
- Keiichi Yoshikawa
- Department of Integrated Biosciences, Rm201, The University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
39
|
Thomas CJ, Tall GG, Adhikari A, Sprang SR. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem 2008; 283:23150-60. [PMID: 18541531 DOI: 10.1074/jbc.m802422200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Galpha subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Galpha.GDP subunits and forms a stable nucleotide-free Ric-8A:Galpha complex. AGS3, a guanine nucleotide dissociation inhibitor (GDI), binds and stabilizes Galpha subunits in their GDP-bound state. Because Ric-8A and AGS3 may recognize and compete for Galpha.GDP in this pathway, we probed the interactions of a truncated AGS3 (AGS3-C; containing only the residues responsible for GDI activity), with Ric-8A:Galpha(il) and that of Ric-8A with the AGS3-C:Galpha(il).GDP complex. Pulldown assays, gel filtration, isothermal titration calorimetry, and rapid mixing stopped-flow fluorescence spectroscopy indicate that Ric-8A catalyzes the rapid release of GDP from AGS3-C:Galpha(i1).GDP. Thus, Ric-8A forms a transient ternary complex with AGS3-C:Galpha(i1).GDP. Subsequent dissociation of AGS3-C and GDP from Galpha(i1) yields a stable nucleotide free Ric-8A.Galpha(i1) complex that, in the presence of GTP, dissociates to yield Ric-8A and Galpha(i1).GTP. AGS3-C does not induce dissociation of the Ric-8A.Galpha(i1) complex, even when present at very high concentrations. The action of Ric-8A on AGS3:Galpha(i1).GDP ensures unidirectional activation of Galpha subunits that cannot be reversed by AGS3.
Collapse
Affiliation(s)
- Celestine J Thomas
- Division of Biological Science, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
40
|
Romo X, Pastén P, Martínez S, Soto X, Lara P, de Arellano AR, Torrejón M, Montecino M, Hinrichs MV, Olate J. xRic-8 is a GEF for Gsalpha and participates in maintaining meiotic arrest in Xenopus laevis oocytes. J Cell Physiol 2008; 214:673-80. [PMID: 17960561 DOI: 10.1002/jcp.21257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immature stage VI Xenopus oocytes are arrested at the G(2)/M border of meiosis I until exposed to progesterone, which induces meiotic resumption through a non-genomic mechanism. One of the earliest events produced by this hormone is inhibition of the plasma membrane enzyme adenylyl cyclase (AC), with the concomitant drop in intracellular cAMP levels and reinitiation of the cell cycle. Recently Gsalpha and Gbetagamma have been shown to play an important role as positive regulators of Xenopus oocyte AC, maintaining the oocyte in the arrested state. However, a question that still remains unanswered, is how the activated state of Gsalpha and Gbetagamma is achieved in the immature oocyte, since no receptor or ligand have been found to be required. Here we provide evidence that xRic-8 can act in vitro and in vivo as a GEF for Gsalpha. Overexpression of xRic-8, through mRNA injection, greatly inhibits progesterone induced oocyte maturation and endogenous xRic-8 mRNA depletion, through siRNA microinjection, induces spontaneous oocyte maturation. These results suggest that xRic-8 is participating in the immature oocyte by keeping Gsalpha-Gbetagamma-AC signaling complex in an activated state and therefore maintaining G2 arrest.
Collapse
Affiliation(s)
- Ximena Romo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|
42
|
Sugawara Y, Nishii H, Takahashi T, Yamauchi J, Mizuno N, Tago K, Itoh H. The lipid raft proteins flotillins/reggies interact with Galphaq and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase. Cell Signal 2007; 19:1301-8. [PMID: 17307333 DOI: 10.1016/j.cellsig.2007.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/28/2006] [Accepted: 01/04/2007] [Indexed: 11/24/2022]
Abstract
The heterotrimeric G protein alpha q subunit (Galphaq) mediates a variety of cell functions by activating the effector molecule phospholipase Cbeta. Galphaq activity is regulated by G protein betagamma subunits, G protein-coupled receptors, RGS proteins, and Ric-8. In this study, we identified the lipid raft resident proteins, flotillin-1/reggie-2 and flotillin-2/reggie-1, as Galphaq-binding proteins. The interactions of Galphaq and flotillins were independent of the nucleotide-binding state of Galphaq, and the N-terminal portion of flotillins was critical for the interaction. A short interfering RNA-mediated knockdown of flotillins, particularly flotillin-2, attenuated the UTP-induced activation of p38 mitogen-activated protein kinase (MAPK) but not that of ERK1/2. The activation of p38 MAPK was inhibited by the Src family tyrosine kinase inhibitor PP2 and the cholesterol-depleting agent methyl-beta-cyclodextrin, which is generally used for the disruption of lipid rafts. In contrast, the activation of ERK1/2 was not inhibited by these compounds. These lines of evidence suggested that a Gq-coupled receptor activates specifically p38 MAPK through lipid rafts and Src kinase activation, in which flotillins positively modulate the Gq signaling.
Collapse
Affiliation(s)
- Yo Sugawara
- Laboratory of Signal Transduction, Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|