1
|
Vornewald PM, Forman R, Yao R, Parmar N, Lindholm HT, Lee LSK, Martín-Alonso M, Else KJ, Oudhoff MJ. Mmp17-deficient mice exhibit heightened goblet cell effector expression in the colon and increased resistance to chronic Trichuris muris infection. Front Immunol 2023; 14:1243528. [PMID: 37869014 PMCID: PMC10587605 DOI: 10.3389/fimmu.2023.1243528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-β, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.
Collapse
Affiliation(s)
- Pia M. Vornewald
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruth Forman
- Lydia Becker Institute of Immunology & Inflammation, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Rouan Yao
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T. Lindholm
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lilith S. K. Lee
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Mara Martín-Alonso
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology & Inflammation, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Menno J. Oudhoff
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Muñoz-Sáez E, Moracho N, Learte AIR, Collignon A, Arroyo AG, Noel A, Sounni NE, Sánchez-Camacho C. Molecular Mechanisms Driven by MT4-MMP in Cancer Progression. Int J Mol Sci 2023; 24:9944. [PMID: 37373092 DOI: 10.3390/ijms24129944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
MT4-MMP (or MMP-17) belongs to the membrane-type matrix metalloproteinases (MT-MMPs), a distinct subset of the MMP family that is anchored to the cell surface, in this case by a glycosylphosphatidylinositol (GPI) motif. Its expression in a variety of cancers is well documented. However, the molecular mechanisms by which MT4-MMP contributes to tumor development need further investigation. In this review, we aim to summarize the contribution of MT4-MMP in tumorigenesis, focusing on the molecular mechanisms triggered by the enzyme in tumor cell migration, invasiveness, and proliferation, in the tumor vasculature and microenvironment, as well as during metastasis. In particular, we highlight the putative substrates processed and signaling cascades activated by MT4-MMP that may underlie these malignancy processes and compare this with what is known about its role during embryonic development. Finally, MT4-MMP is a relevant biomarker of malignancy that can be used for monitoring cancer progression in patients as well as a potential target for future therapeutic drug development.
Collapse
Affiliation(s)
- Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Alice Collignon
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
| | - Agnés Noel
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Cristina Sánchez-Camacho
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P, Opdenakker G. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol 2023; 19:363-377. [PMID: 37161083 DOI: 10.1038/s41584-023-00966-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Proteolysis of structural molecules of the extracellular matrix (ECM) is an irreversible post-translational modification in all arthropathies. Common joint disorders, including osteoarthritis and rheumatoid arthritis, have been associated with increased levels of matrix remodelling enzymes, including matrix metalloproteinases (MMPs). MMPs, in concert with other host proteinases and glycanases, destroy proteoglycans, collagens and other ECM molecules. MMPs may also control joint remodelling indirectly by signalling through cell-surface receptors or by proteolysis of cytokines and receptor molecules. After synthesis as pro-forms, MMPs can be activated by various types of post-translational modifications, including proteolysis. Once activated, MMPs are controlled by general and specific tissue inhibitors of metalloproteinases (TIMPs). In rheumatoid arthritis, proteolysis of the ECM results in so-called remnant epitopes that enhance and perpetuate autoimmune processes in susceptible hosts. In osteoarthritis, the considerable production of MMP-13 by chondrocytes, often concurrent with mechanical overload, is a key event. Hence, information about the regulation, timing, localization and activities of MMPs in specific disease phases and arthritic entities will help to develop better diagnostics. Insights into beneficial and detrimental effects of MMPs on joint tissue inflammation are also necessary to plan and execute (pre)clinical studies for better therapy and precision medicine with MMP inhibitors. With the advances in proteomics and single-cell transcriptomics, two critical points need attention: neglected neutrophil MMP biology, and the analysis of net proteolytic activities as the result of balances between MMPs and their inhibitors.
Collapse
Affiliation(s)
- Bernard Grillet
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia.
- University Hospitals Gasthuisberg, UZ Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
5
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
6
|
Martín-Alonso M, Iqbal S, Vornewald PM, Lindholm HT, Damen MJ, Martínez F, Hoel S, Díez-Sánchez A, Altelaar M, Katajisto P, Arroyo AG, Oudhoff MJ. Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nat Commun 2021; 12:6741. [PMID: 34795242 PMCID: PMC8602650 DOI: 10.1038/s41467-021-26904-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.
Collapse
Affiliation(s)
- Mara Martín-Alonso
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Martínez
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Sigrid Hoel
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
7
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
8
|
MT4-MMP: The GPI-Anchored Membrane-Type Matrix Metalloprotease with Multiple Functions in Diseases. Int J Mol Sci 2019; 20:ijms20020354. [PMID: 30654475 PMCID: PMC6359745 DOI: 10.3390/ijms20020354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/02/2023] Open
Abstract
MT4-MMP (or MMP17) belongs to the Membrane-Type Matrix Metalloproteinase (MT-MMP) family. This family of proteases contributes to extracellular matrix remodeling during several physiological processes, including embryogenesis, organogenesis, tissue regeneration, angiogenesis, wound healing, and inflammation. MT4-MMP (MMP17) presents unique characteristics compared to other members of the family in terms of sequence homology, substrate specificity, and internalization mode, suggesting distinct physiological and pathological functions. While the physiological functions of MT4-MMP are poorly understood, it has been involved in different pathological processes such as arthritis, cardiovascular disease, and cancer progression. The mt4-mmp transcript has been detected in a large diversity of cancers. The contribution of MT4-MMP to tumor development has been further investigated in gastric cancer, colon cancer, head and neck cancer, and more deeply in breast cancer. Given its contribution to different pathologies, particularly cancers, MT4-MMP represents an interesting therapeutic target. In this review, we examine its biological and structural properties, and we propose an overview of its physiological and pathological functions.
Collapse
|
9
|
Blanco MJ, Learte AIR, Marchena MA, Muñoz-Sáez E, Cid MA, Rodríguez-Martín I, Sánchez-Camacho C. Tracing Gene Expression Through Detection of β-galactosidase Activity in Whole Mouse Embryos. J Vis Exp 2018. [PMID: 30010638 DOI: 10.3791/57785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Escherichia coli LacZ gene, encoding β-galactosidase, is largely used as a reporter for gene expression and as a tracer in cell lineage studies. The classical histochemical reaction is based on the hydrolysis of the substrate X-gal in combination with ferric and ferrous ions, which produces an insoluble blue precipitate that is easy to visualize. Therefore, β-galactosidase activity serves as a marker for the expression pattern of the gene of interest as the development proceeds. Here we describe the standard protocol for the detection of β-galactosidase activity in early whole mouse embryos and the subsequent method for paraffin sectioning and counterstaining. Additionally, a procedure for clarifying whole embryos is provided to better visualize X-gal staining in deeper regions of the embryo. Consistent results are obtained by performing this procedure, although optimization of reaction conditions is needed to minimize background activity. Limitations in the assay should be also considered, particularly regarding the size of the embryo in whole mount staining. Our protocol provides a sensitive and a reliable method for β-galactosidase detection during the mouse development that can be further applied to the cryostat sections as well as whole organs. Thus, the dynamic gene expression patterns throughout development can be easily analyzed by using this protocol in whole embryos, but also detailed expression at the cellular level can be assessed after paraffin sectioning.
Collapse
Affiliation(s)
- María José Blanco
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - Ana I R Learte
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - Miguel A Marchena
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - Emma Muñoz-Sáez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - María Antonia Cid
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | | | - Cristina Sánchez-Camacho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); School of Doctoral Studies and Research, Universidad Europea de Madrid;
| |
Collapse
|
10
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
11
|
MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun 2018; 9:910. [PMID: 29500407 PMCID: PMC5834547 DOI: 10.1038/s41467-018-03351-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases are involved in vascular remodeling. Little is known about their immune regulatory role in atherosclerosis. Here we show that mice deficient for MT4-MMP have increased adherence of macrophages to inflamed peritonea, and larger lipid deposits and macrophage burden in atherosclerotic plaques. We also demonstrate that MT4-MMP deficiency results in higher numbers of patrolling monocytes crawling and adhered to inflamed endothelia, and the accumulation of Mafb+ apoptosis inhibitor of macrophage (AIM)+ macrophages at incipient atherosclerotic lesions in mice. Functionally, MT4-MMP-null Mafb+AIM+ peritoneal macrophages express higher AIM and scavenger receptor CD36, are more resistant to apoptosis, and bind acLDL avidly, all of which contribute to atherosclerosis. CCR5 inhibition alleviates these effects by hindering the enhanced recruitment of MT4-MMP-null patrolling monocytes to early atherosclerotic lesions, thus blocking Mafb+AIM+ macrophage accumulation and atherosclerosis acceleration. Our results suggest that MT4-MMP targeting may constitute a novel strategy to boost patrolling monocyte activity in early inflammation.
Collapse
|
12
|
Xiao Y, Li B, Liu J. miRNA‑27a regulates arthritis via PPARγ in vivo and in vitro. Mol Med Rep 2018; 17:5454-5462. [PMID: 29393373 DOI: 10.3892/mmr.2018.8531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/18/2018] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the role of microRNA (miR)‑27a in the development of arthritis and its mechanism of action. Initially, collagen was used to develop an in vivo rat model of arthritis. Changes in the miRs in the rats were analyzed. It was subsequently observed that miR‑27a expression was reduced in patients with arthritis, compared with the control group. In the present study an in vitro miR‑27a overexpression model of arthritis was established and it was observed that miR‑27a increased the proliferation of osteoblast‑like cells in vitro. miR‑27a overexpression promoted osteogenic differentiation, increased alkaline phosphatase (ALP) and osteoporosis (OST) content, induced insulin‑like growth factor binding protein-5 (IGFBP‑5) protein expression, reduced inflammation and suppressed peroxisome proliferator‑activated receptor γ (PPARγ) and matrix metalloproteinase-17 (MMP‑17) protein expression in arthritis. However, miR‑27a downregulation inhibited osteogenic differentiation, increased inflammation and PPARγ and MMP‑17 protein expression and suppressed ALP and OST content in an in vitro model of arthritis. The PPARγ inhibitor reduced the function of miR‑27a downregulation on arthritis. Therefore the results of the present study revealed that miR‑27a regulates arthritis via PPARγ.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Joint Surgery, Tianjin Hospital, Tianjin Medical University, Tianjin 300211, P.R. China
| | - Bing Li
- Department of Joint Surgery, Tianjin Hospital, Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLoS One 2017; 12:e0184767. [PMID: 28926609 PMCID: PMC5604975 DOI: 10.1371/journal.pone.0184767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/30/2017] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development.
Collapse
|
14
|
Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. Sci Rep 2017; 7:44560. [PMID: 28300207 PMCID: PMC5353688 DOI: 10.1038/srep44560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteases that can cleave extracellular matrix and alter signaling pathways. They have been implicated in many disease states, but it has been difficult to understand the contribution of individual MMPs, as there are over 20 MMPs in vertebrates. The vertebrate MMPs have overlapping substrates, they exhibit genetic redundancy and compensation, and pharmacological inhibitors are non-specific. In contrast, there are only two MMP genes in Drosophila, DmMmp1 and DmMmp2, which makes Drosophila an attractive system to analyze the basis of MMP specificity. Previously, Drosophila MMPs have been categorized by their pericellular localization, as Mmp1 appeared to be secreted and Mmp2 appeared to be membrane-anchored, suggesting that protein localization was the critical distinction in this small MMP family. We report here that products of both genes are found at the cell surface and released into media. Additionally, we show that products of both genes contain GPI-anchors, and unexpectedly, that GPI-anchored MMPs promote cell adhesion when they are rendered inactive. Finally, by using new reagents and assays, we show that the two MMPs cleave different substrates, suggesting that this is the important distinction within this smallest MMP family.
Collapse
|
15
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
16
|
Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D, Müller U, Schweizer M, Saftig P, Bräse S, Lichtenthaler SF. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 2016; 5. [PMID: 26802628 PMCID: PMC4786429 DOI: 10.7554/elife.12748] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/11/2022] Open
Abstract
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain.
Collapse
Affiliation(s)
- Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institut für Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Alessio Vittorio Colombo
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Benjamin Schusser
- Department of Animal Science, Institute for Animal Physiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julia Herber
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Elisabeth Kremmer
- German Research Center for Environmental Health, Institute of Molecular Tumor immunology, Helmholtz Zentrum München, Munich, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michaela Schweizer
- Service-Gruppe für Elektronenmikroskopie, Zentrum für Molekulare Neurobiologie, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
17
|
Martín-Alonso M, García-Redondo AB, Guo D, Camafeita E, Martínez F, Alfranca A, Méndez-Barbero N, Pollán Á, Sánchez-Camacho C, Denhardt DT, Seiki M, Vázquez J, Salaices M, Redondo JM, Milewicz D, Arroyo AG. Deficiency of MMP17/MT4-MMP proteolytic activity predisposes to aortic aneurysm in mice. Circ Res 2015; 117:e13-26. [PMID: 25963716 DOI: 10.1161/circresaha.117.305108] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/08/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Aortic dissection or rupture resulting from aneurysm causes 1% to 2% of deaths in developed countries. These disorders are associated with mutations in genes that affect vascular smooth muscle cell differentiation and contractility or extracellular matrix composition and assembly. However, as many as 75% of patients with a family history of aortic aneurysms do not have an identified genetic syndrome. OBJECTIVE To determine the role of the protease MMP17/MT4-MMP in the arterial wall and its possible relevance in human aortic pathology. METHODS AND RESULTS Screening of patients with inherited thoracic aortic aneurysms and dissections identified a missense mutation (R373H) in the MMP17 gene that prevented the expression of the protease in human transfected cells. Using a loss-of-function genetic mouse model, we demonstrated that the lack of Mmp17 resulted in the presence of dysfunctional vascular smooth muscle cells and altered extracellular matrix in the vessel wall; and it led to increased susceptibility to angiotensin-II-induced thoracic aortic aneurysm. We also showed that Mmp17-mediated osteopontin cleavage regulated vascular smooth muscle cell maturation via c-Jun N-terminal kinase signaling during aorta wall development. Some features of the arterial phenotype were prevented by re-expression of catalytically active Mmp17 or the N-terminal osteopontin fragment in Mmp17-null neonates. CONCLUSIONS Mmp17 proteolytic activity regulates vascular smooth muscle cell phenotype in the arterial vessel wall, and its absence predisposes to thoracic aortic aneurysm in mice. The rescue of part of the vessel-wall phenotype by a lentiviral strategy opens avenues for therapeutic intervention in these life-threatening disorders.
Collapse
MESH Headings
- Adult
- Amino Acid Substitution
- Aortic Dissection/genetics
- Angiotensin II
- Animals
- Aorta/embryology
- Aorta/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/etiology
- Extracellular Matrix/pathology
- Extracellular Matrix Proteins/metabolism
- Genetic Predisposition to Disease
- Genetic Therapy
- Genetic Vectors/therapeutic use
- HEK293 Cells
- Humans
- Lentivirus/genetics
- Male
- Matrix Metalloproteinases, Membrane-Associated/chemistry
- Matrix Metalloproteinases, Membrane-Associated/deficiency
- Matrix Metalloproteinases, Membrane-Associated/genetics
- Matrix Metalloproteinases, Membrane-Associated/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Mutation, Missense
- Osteopontin/metabolism
- Protein Conformation
Collapse
Affiliation(s)
- Mara Martín-Alonso
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Ana B García-Redondo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Dongchuan Guo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Emilio Camafeita
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Fernando Martínez
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Arántzazu Alfranca
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Nerea Méndez-Barbero
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Ángela Pollán
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Cristina Sánchez-Camacho
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - David T Denhardt
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Motoharu Seiki
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Jesús Vázquez
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Mercedes Salaices
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Juan Miguel Redondo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Dianna Milewicz
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.)
| | - Alicia G Arroyo
- From the Department of Vascular Biology and Inflammation (M.M.-A., A.A., N.M.-B., A.P., J.M.R., A.G.A.), Proteomics Unit (E.C., J.V.) and Bioinformatics Unit (F.M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R., M.S.); Department of Internal Medicine, University of Texas Health Science Center at Houston, TX (D.G., D.M.); Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain (C.S.-C.); Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (D.T.D.); and Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan (M.S.).
| |
Collapse
|
18
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
19
|
Marco M, Fortin C, Fulop T. Membrane-type matrix metalloproteinases: key mediators of leukocyte function. J Leukoc Biol 2013; 94:237-46. [PMID: 23695309 DOI: 10.1189/jlb.0612267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukocytes are major cellular effectors of the immune response. To accomplish this task, these cells display a vast arsenal of proteinases, among which, members of the MMP family are especially important. Leukocytes express several members of the MMP family, including secreted- and membrane-anchored MT- MMPs, which synergistically orchestrate an appropriate proteolytic reaction that ultimately modulates immunological responses. The MT-MMP subfamily comprises TM- and GPI-anchored proteinases, which are targeted to well-defined membrane microdomains and exhibit different substrate specificities. Whereas much information exists on the biological roles of secreted MMPs in leukocytes, the roles of MT-MMPs remain relatively obscure. This review summarizes the current knowledge on the expression of MT-MMPs in leukocyte and their contribution to the immune responses and to pathological conditions.
Collapse
Affiliation(s)
- Marta Marco
- Departamento de Bioquímica Clínica Facultad de Química, Gral. Flores 2124, Universidad de la República, Montevideo, Uruguay CP 11800.
| | | | | |
Collapse
|
20
|
Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 2012; 303:H919-30. [PMID: 22904159 DOI: 10.1152/ajpheart.00577.2012] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of tadpole collagenase in 1962, the matrix metalloproteinase (MMP) family has emerged as a significant proteinase group with recognized effects on the cardiovascular system. Over the last 40 years, many milestones have been achieved, from the identification of the first MMP, to the generation of the first MMP cDNA clone and null mouse, to the clinical approval of the first MMP inhibitor. Over the years, a few myths and misunderstandings have interwoven into the truths. In this review, we will discuss the major milestones of MMP research, as well as review the misinterpretations and misperceptions that have evolved. Clarifying the confusions and dispelling the myths will both provide a better understanding of MMP properties and functions and focus the cardiovascular field on the outstanding research questions that need to be addressed.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | |
Collapse
|
21
|
Nimri L, Barak H, Graeve L, Schwartz B. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells. Mol Carcinog 2012; 52:859-70. [PMID: 22674854 DOI: 10.1002/mc.21927] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 01/17/2023]
Abstract
Caveolin-1 (cav-1) and flotillin-1 are two major structural proteins associated with lipid rafts in mammalian cells. The membrane-type matrix metalloproteinases (MT-MMPs) are expressed at the cell surface, hydrolyze extracellular matrix, and play an important role in cancer cell migration and metastasis. Expression of cav-1, flotillin-1, and MT4-MMP in lysates and lipid rafts of LS174T and HM-7 colon cancer cells was determined. The impact of restoration of cav-1 expression on proliferation, adhesion, motility in vitro, and growth of implanted tumors in vivo was characterized. Cav-1 is not expressed in lipid rafts of the highly metastatic colon cancer cell line (HM-7), but expressed in cytosolic fractions of the parental lower metastatic cell line (LS174T). In contrast, MT4-MMP was expressed in lipid rafts of HM-7 cells but not in LS174T cells. Overexpression of cav-1 in HM-7 cells down-regulate proliferation, viability, wound closure, adhesion to laminin, invasion, and development of filopodial and lamellipodial structures in a dose-dependent manner. Cav-1 positive HM-7 clones ceased to express MT4-MMP in their lipid rafts. Comparative proteomic analyses of lipid rafts from cav-1 positive and cav-1 negative cells demonstrated de novo expression of flotillin-1 only on the cells expressing cav-1. Xenografting control cells devoid of cav-1 in nude mice induced development of bigger tumors expressing higher levels of proliferating cell nuclear antigen as compared to mice injected with cells expressing the highest cav-1 levels. We conclude that cav-1 orchestrates and reorganize several proteins in lipid rafts, activities directly associated with reduced tumorigenic and metastatic ability of colon cancer cells.
Collapse
Affiliation(s)
- Lili Nimri
- The Robert H. Smith Faculty of Agriculture, Food and Environment, School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
22
|
Host L, Paye A, Detry B, Blacher S, Munaut C, Foidart JM, Seiki M, Sounni NE, Noel A. The proteolytic activity of MT4-MMP is required for its pro-angiogenic and pro-metastatic promoting effects. Int J Cancer 2012; 131:1537-48. [PMID: 22262494 DOI: 10.1002/ijc.27436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/29/2011] [Indexed: 11/12/2022]
Abstract
Membrane-type 4 matrix metalloprotease (MT4-MMP) expression in breast adenocarcinoma stimulates tumor growth and metastatic spreading to the lung. However, whether these pro-tumorigenic and pro-metastatic effects of MT4-MMP are related to a proteolytic action is not yet known. Through site directed mutagenesis MT4-MMP has been inactivated in cancer cells through Glutamic acid 249 substitution by Alanine in the active site. Active MT4-MMP triggered an angiogenic switch at day 7 after tumor implantation and drastically accelerated subcutaneous tumor growth as well as lung colonization in recombination activating gene-1-deficient mice. All these effects were abrogated upon MT4-MMP inactivation. In sharp contrast to most MMPs being primarily of stromal origin, we provide evidence that tumor-derived MT4-MMP, but not host-derived MT4-MMP contributes to angiogenesis. A genetic approach using MT4-MMP-deficient mice revealed that the status of MT4-MMP produced by host cells did not affect the angiogenic response. Despite of this tumor intrinsic feature, to exert its tumor promoting effect, MT4-MMP requires a permissive microenvironment. Indeed, tumor-derived MT4-MMP failed to circumvent the lack of an host angio-promoting factor such as plasminogen activator inhibitor-1. Overall, our study demonstrates the key contribution of MT4-MMP catalytic activity in the tumor compartment, at the interface with host cells. It identifies MT4-MMP as a key intrinsic tumor cell determinant that contributes to the elaboration of a permissive microenvironment for metastatic dissemination.
Collapse
Affiliation(s)
- Lorin Host
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, GIGA-Cancer, University of Liege, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci 2011; 31:7753-62. [PMID: 21613488 DOI: 10.1523/jneurosci.0907-11.2011] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.
Collapse
|
24
|
Sohail A, Marco M, Zhao H, Shi Q, Merriman S, Mobashery S, Fridman R. Characterization of the dimerization interface of membrane type 4 (MT4)-matrix metalloproteinase. J Biol Chem 2011; 286:33178-89. [PMID: 21828052 DOI: 10.1074/jbc.m111.253369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MT4-MMP (MMP17) belongs to a unique subset of membrane type-matrix metalloproteinases that are anchored to the cell surface via a glycosylphosphatidylinositol moiety. However, little is known about its biochemical properties. Here, we report that MT4-MMP is displayed on the cell surface as a mixed population of monomeric, dimeric, and oligomeric forms. Sucrose gradient fractionation demonstrated that these forms of MT4-MMP are all present in lipid rafts. Mutational and computational analyses revealed that Cys(564), which is present within the stem region, mediates MT4-MMP homodimerization by forming a disulfide bond. Substitution of Cys(564) results in a more rapid MT4-MMP turnover, when compared with the wild-type enzyme, consistent with a role for dimerization in protein stability. Expression of MT4-MMP in Madin-Darby canine kidney cells enhanced cell migration and invasion of Matrigel, a process that requires catalytic activity. However, a serine substitution at Cys(564) did not reduce MT4-MMP-stimulated cell invasion of Matrigel suggesting that homodimerization is not required for this process. Deglycosylation studies showed that MT4-MMP is modified by N-glycosylation. Moreover, inhibition of N-glycosylation by tunicamycin diminished the extent of MT4-MMP dimerization suggesting that N-glycans may confer stability to the dimeric form. Taken together, the data presented here provide a new insight into the characteristics of MT4-MMP and highlight the common and distinct properties of the glycosylphosphatidylinositol-anchored membrane type-matrix metalloproteinases.
Collapse
Affiliation(s)
- Anjum Sohail
- Department of Pathology and the Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Srichai MB, Colleta H, Gewin L, Matrisian L, Abel TW, Koshikawa N, Seiki M, Pozzi A, Harris RC, Zent R. Membrane-type 4 matrix metalloproteinase (MT4-MMP) modulates water homeostasis in mice. PLoS One 2011; 6:e17099. [PMID: 21347258 PMCID: PMC3037967 DOI: 10.1371/journal.pone.0017099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/19/2011] [Indexed: 12/11/2022] Open
Abstract
MT4-MMP is a membrane-type metalloproteinase (MMP) anchored to the membrane by a glycosyl-phosphatidylinositol (GPI) motif. GPI-type MT-MMPs (MT4- and MT6-MMP) are related to other MT-MMPs, but their physiological substrates and functions in vivo have yet to be identified. In this manuscript we show that MT4-MMP is expressed early in kidney development, as well as in the adult kidney, where the highest levels of expression are found in the papilla. MT4-MMP null mice had minimal renal developmental abnormalities, with a minor branching morphogenesis defect in early embryonic kidney development and slightly dysmorphic collecting ducts in adult mice. Interestingly, MT4-MMP null mice had higher baseline urine osmolarities relative to wild type controls, but these animals were able to concentrate and dilute their urines normally. However, MT4-MMP-null mice had decreased daily water intake and daily urine output, consistent with primary hypodipsia. MT4-MMP was shown to be expressed in areas of the hypothalamus considered important for regulating thirst. Thus, our results show that although MT4-MMP is expressed in the kidney, this metalloproteinase does not play a major role in renal development or function; however it does appear to modify the neural stimuli that modulate thirst.
Collapse
Affiliation(s)
- Manakan B. Srichai
- Department of Medicine, Veterans Administration Hospital, Nashville, Tennessee, United States of America
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heloisa Colleta
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Leslie Gewin
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Linsey Matrisian
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato ku, Tokyo, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato ku, Tokyo, Japan
| | - Ambra Pozzi
- Department of Medicine, Veterans Administration Hospital, Nashville, Tennessee, United States of America
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Raymond C. Harris
- Department of Medicine, Veterans Administration Hospital, Nashville, Tennessee, United States of America
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Roy Zent
- Department of Medicine, Veterans Administration Hospital, Nashville, Tennessee, United States of America
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies. Biochem Res Int 2010; 2011:191670. [PMID: 21152183 PMCID: PMC2989751 DOI: 10.1155/2011/191670] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/04/2010] [Indexed: 01/15/2023] Open
Abstract
MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs) caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies) against individual membrane-bound MMPs.
Collapse
|
27
|
Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol 2010; 25:567-95. [PMID: 19575644 DOI: 10.1146/annurev.cellbio.24.110707.175315] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.
Collapse
Affiliation(s)
- R Grant Rowe
- The Division of Molecular Medicine & Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
28
|
Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:3-19. [DOI: 10.1016/j.bbamcr.2009.07.004] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 12/19/2022]
|
29
|
Chabottaux V, Ricaud S, Host L, Blacher S, Paye A, Thiry M, Garofalakis A, Pestourie C, Gombert K, Bruyere F, Lewandowsky D, Tavitian B, Foidart JM, Duconge F, Noel A. Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumour vascular architecture. J Cell Mol Med 2009; 13:4002-13. [PMID: 19426156 PMCID: PMC4516547 DOI: 10.1111/j.1582-4934.2009.00764.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The present study aims at investigating the mechanism by which membrane-type 4 matrix metalloproteinase (MT4-MMP), a membrane-anchored MMP expressed by human breast tumour cells promotes the metastatic dissemination into lung. We applied experimental (intravenous) and spontaneous (subcutaneous) models of lung metastasis using human breast adenocarcinoma MDA-MB-231 cells overexpressing or not MT4-MMP. We found that MT4-MMP does not affect lymph node colonization nor extravasation of cells from the bloodstream, but increases the intravasation step leading to metastasis. Ultrastructural and fluorescent microscopic observations coupled with automatic computer-assisted quantifications revealed that MT4-MMP expression induces blood vessel enlargement and promotes the detachment of mural cells from the vascular tree, thus causing an increased tumour vascular leak. On this basis, we propose that MT4-MMP promotes lung metastasis by disturbing the tumour vessel integrity and thereby facilitating tumour cell intravasation.
Collapse
Affiliation(s)
- Vincent Chabottaux
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liege, Tour de Pathologie, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev 2008; 27:289-302. [PMID: 18286233 DOI: 10.1007/s10555-008-9129-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane type-MMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines. Two members of the MT-MMP subfamily, MMP-17 (MT4-MMP) and MMP-25 (MT6-MMP), are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol (GPI) anchor, which confers these enzymes a unique set of regulatory and functional mechanisms that separates them from the rest of the MMP family. Discovered almost a decade ago, the body of work on GPI-MT-MMPs today is still surprisingly limited when compared to other MT-MMPs. However, new evidence shows that the GPI-MT-MMPs are highly expressed in human cancer, where they are associated with progression. Accumulating biochemical and functional evidence also highlights their distinct properties. In this review, we summarize the structural, biochemical, and biological properties of GPI-MT-MMPs and present an overview of their expression and role in cancer. We further discuss the potential implications of GPI-anchoring for enzyme function. Finally, we comment on the new scientific challenges that lie ahead to better understand the function and role in cancer of these intriguing but yet unique MMPs.
Collapse
|